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a b s t r a c t

In this paper, the problem of linear parameter varying (LPV) filter design for time-

varying discrete-time polytopic systems with bounded rates of variation is investigated.

The design conditions are obtained by means of a parameter-dependent Lyapunov

function and extra variables for the filter design, expressed as bilinear matrix

inequalities. An LPV filter, which minimizes an upper bound to the H1 performance

of the estimation error, is obtained as the solution of an optimization problem. A convex

model to represent the parameters and their variations as a polytope is proposed in

order to provide less conservative design conditions. Robust filters for time-varying

polytopic systems can be obtained as a particular case of the proposed method.

Numerical examples illustrate the results.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Technological advances have always pushed the
control community to face more complex problems in
several different framework. Concerning the linear
filtering problem, which has extended from the earliest
times [1], a large number of papers dealing with
deterministic and stochastic scenarios can be seen in the
literature. The search for more sophisticated structures
has become decisive when dealing with signal recovering
and estimation under time-varying or constant uncertain-
ties, without mentioning that the design of optimal filters
for precisely known models is well characterized nowa-
days.

In this context, the Lyapunov theory has been exten-
sively applied as a tool to deal with the synthesis of filters

that guarantee the stability of the estimation error
dynamics meanwhile assuring a certain level of
performance. For example, quadratic Lyapunov functions
have been used to deal with time-invariant or arbitrarily
time-varying systems as can be seen in [2–4] concerning
the H2 and H1 robust filtering. Improvements of
these results may be obtained by using parameter-
dependent Lyapunov functions, as proposed in [5] for
the time-invariant case and in [6] for the time-varying
case with bounded rates of variation. Many works
dealing with robust filtering have appeared in print
lately.

Considering the case where the time-varying para-
meters, although may not be known a priori, can be
measured online, gain scheduling techniques represent an
interesting option for filtering or control of dynamic
systems when contrasted with robust methods. Further-
more, as discussed in [7], gain-scheduling strategies
extend the validity of the linearization approach of
nonlinear systems to a range of operating points. As
mentioned in [8], gain scheduling is an effective and
economical method for nonlinear control design in
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practice. In the filtering framework, recent works include
[9,10] where affine parameter varying filters, with limited
rate of variation, are obtained [11] in the context of
parameter-dependent filters by means of nonlinear
fractional transformation and quadratic stability [12]
concerned with LPV filtering for slowly varying
systems and [13] where the LPV filtering for
arbitrarily time-varying systems in polytopic domain is
addressed.

Extending the powerful features of gain scheduling
(well presented in [8]) to deal with the filtering problem is
of great importance specially within the class of time-
varying discrete-time systems. It is known from [14] that
when stability analysis for time-varying discrete-time
systems is at issue, robust stabilizability implies gain
scheduling stabilizability, but the converse is not true.
These facts in some sense motivate the results and effort
of the present work.

This paper investigates the LPV filtering of
time-varying systems with bounds on the rate of varia-
tion. A preliminary version of this paper appeared
in [15] considering only the robust filter design, and
applications in the context of networked robust filtering
in [16]. The approach proposed in this paper comple-
ments and extends previous results appeared in the
literature by presenting a systematic procedure for
filtering design that can be applied in four different
frameworks, namely LPV or robust filtering of time-
varying systems with bounded or unbounded rates of
variation. The Lyapunov theory is applied in order to
obtain the design conditions of the filter. A parameter-
dependent Lyapunov function is used to reduce the
conservatism of the proposed method, resulting in a more
general approach when compared to methods based on
quadratic stability. All system matrices are assumed to be
affected by time-varying parameters, which are supposed
to lie inside a polytope. A more precise parameter
variation modeling is applied to give a better description
of the uncertainty domain and an H1 guaranteed cost is
used as performance index. The H1 filtering limits the
maximum possible variance of the error signal over all
exogenous inputs with bounded variance [17], i.e. the H1

norm reflects the worst-case energy gain of the system
and does not require statistical assumptions on the
exogenous input (a situation in which the Kalman filtering
cannot be employed [18]). Moreover, the H1 guaranteed
cost provides robustness with respect to unmodeled
uncertainties. The LPV filter is then obtained by the
solution of an optimization problem that minimizes an
upper bound to the H1 index of performance subject to a
finite number of bilinear matrix inequality (BMI) con-
straints formulated only in terms of the vertices of a
polytope. No grids in the parametric space are used. Extra
variables introduced in the BMI conditions can be
explored in the search for better H1 performance of
the estimation error dynamic giving more flexibility to the
design process. Robust filters for time-invariant and
arbitrarily time-varying uncertain systems can be ob-
tained as particular cases of the proposed method.
Numerical examples illustrate the efficiency of the
proposed results.

2. Problem statement and preliminary results

Consider the time-varying discrete-time system, for k � 0

xðkþ 1Þ ¼ AðaðkÞÞxðkÞ þ BðaðkÞÞwðkÞ
zðkÞ ¼ C1ðaðkÞÞxðkÞ þ D1ðaðkÞÞwðkÞ
yðkÞ ¼ C2ðaðkÞÞxðkÞ þ D2ðaðkÞÞwðkÞ (1)

where xðkÞ 2 Rn is the state-space vector, wðkÞ 2 Rm is the
noise input belonging to l2½0;1Þ, zðkÞ 2 Rp is the signal to
be estimated and yðkÞ 2 Rq is the measured output. The
time-varying vector of parameters aðkÞ belongs to the unit
simplex (for all k � 0)

UN ¼ d 2 RN :
XN

i¼1

di ¼ 1; di � 0; i ¼ 1; . . . ;N

( )

and has bounded rates of variation of percentage b 2 ½0;1�.
For instance, b ¼ 0:05 indicates that the parameters are
constrained to vary only 5% of their original values
between two instants of time. The time-invariant case is
modeled by b ¼ 0 and arbitrarily fast variations by b ¼ 1.

All matrices are real, with appropriate dimensions,
belonging to the polytope1

(2)

More specifically, the system matrices are given, for any
time k � 0, by the convex combination of the well-defined
vertices of the polytope P.

A full order proper LPV filter is investigated here, being
given by

xf ðkþ 1Þ ¼ Af ðaÞxf ðkÞ þ Bf ðaÞyðkÞ; xf ð0Þ ¼ 0

zf ðkÞ ¼ Cf ðaÞxf ðkÞ þ Df ðaÞyðkÞ (3)

where xf ðtÞ 2 R
n is the filter state-space vector and zf ðtÞ 2

Rp the estimated signal. All filter matrices are real, with
appropriate dimensions, belonging to the polytope

(4)

The estimation error dynamics is given by

Bðkþ 1Þ ¼ ÂðaÞBðkÞ þ B̂ðaÞwðkÞ; Bð0Þ ¼ 0

eðkÞ ¼ ĈðaÞBðkÞ þ D̂ðaÞwðkÞ (5)

where BðkÞ ¼ ½xðkÞ0 xf ðkÞ
0
�0, eðkÞ ¼ zðkÞ � zf ðkÞ and

ÂðaÞ ¼
AðaÞ 0

Bf ðaÞC2ðaÞ Af ðaÞ

" #
; B̂ðaÞ ¼

BðaÞ

Bf ðaÞD2ðaÞ

" #

ĈðaÞ ¼ ½C1ðaÞ � Df ðaÞC2ðaÞ � Cf ðaÞ�,

D̂ðaÞ ¼ ½D1ðaÞ � Df ðaÞD2ðaÞ�. (6)

The filtering problem to be dealt with can be stated as
follows:

Problem 1. Find matrices Afi 2 R
n�n, Bfi 2 R

n�q, Cfi 2 R
p�n

and Dfi 2 R
p�q i ¼ 1; . . . ;N, of the filter (3), such that the

estimation error system (5) is asymptotically stable, and

ARTICLE IN PRESS

1 The time dependence of aðkÞ will be omitted to lighten the

notation.
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an upper bound g to the H1 estimation error perfor-
mance is minimized, that is,

sup
kwk2a0

kek2
2

kwk2
2

og2; w 2 l2½0;1Þ (7)

In order to model the parameter variation when
�boDaiðkÞob, ba0, it must be taken into account
that the feasible values of DaiðkÞ depend on the actual
values of aiðkÞ, as show in Fig. 1 (darken area). Thus, any
pair ðai;DaiÞ belongs to the polytope Li, i ¼ 1; . . . ;N
given by

Li9 d 2 R2 : d ¼
X6

j¼1

ljrj; l 2 U6

8<
:

9=
;,

(8)

that is, Li is the convex hull of vertices of the feasible area.

To construct the ða;DaÞ-space, the Cartesian product of
all Li, i ¼ 1; . . . ;N must be considered, taking into account
that the new vertices must satisfy a1 þ � � � þ aN ¼ 1 and
Da1 þ � � � þ DaN ¼ 0. The resulting polytope, called L, is
then given by

L9 d 2 R2N : d ¼
XM
i¼1

lisi; l 2 UM

( )
(9)

where si 2 R
2N are given vectors. Thus, both a and Da are

embedded together in an augmented space, called

l-space, of dimension 2N and, as a consequence, the first
step to search for a solution to any LMI/BMI depending on
both a and Da is to make a lifting to the l-space. From (9)

one has

ða;DaÞ0 ¼ Sl; S ¼ ½s1; . . . ; sM � 2 R
2N�M ; l 2 UM (10)

In the case of affine parameter-dependent matrices, that is

XðaðkÞÞ ¼
XN

i¼1

aiðkÞXi; aiðkÞ ¼
XM
j¼1

ljSij (11)

Xðaðkþ 1ÞÞ ¼
XN

i¼1

ðaiðkÞ þ DaiðkÞÞXi; DaiðkÞ ¼
XM
j¼1

ljSðiþNÞj

(12)

it follows that

X̄ðlÞ ¼
XN

i¼1

XM
j¼1

ljSijXi ¼
XM
j¼1

ljX̄j

X̃ ðlÞ ¼
XN

i¼1

XM
j¼1

ljðSij þ SðiþNÞjÞXi ¼
XM
j¼1

ljX̃ j (13)

where2

X̄j ¼
XN

i¼1

SijXi (14)

X̃ j ¼
XN

i¼1

ðSij þ SðiþNÞjÞXi (15)

Theorem 1 (Stability analysis). For a given g, if there exists

bounded matrix sequences PðaÞ0 ¼ PðaÞ40, GðzÞ, HðzÞ,
matrix F and full rank matrix T , with appropriate dimensions,
such that (the term (%) indicates symmetric blocks in the

matrix inequality)

PðaþÞ � F � F 0 FÂðaÞ0 � F 0TGðzÞ0T�1 FĈðaÞ0 � F 0THðzÞ0

ð%Þ L22 L23

ð%Þ ð%Þ L33

2
664

3
775o0

(16)

L22 ¼ ðT
0
Þ
�1GðzÞT 0FÂðaÞ0 þ ÂðaÞF 0TGðzÞ0T�1

�PðaÞ

þ g�1B̂ðaÞB̂ðaÞ0

L23 ¼ ðT
0
Þ
�1GðzÞT 0FĈðaÞ0 þ ÂðaÞF 0THðzÞ0 þ g�1B̂ðaÞD̂ðaÞ0

L33 ¼ HðzÞT 0FĈðaÞ0 þ ĈðaÞF 0THðzÞ0 � gIþ g�1D̂ðaÞD̂ðaÞ0

for all a; z 2 UN , where aþ ¼ aðkþ 1Þ, and bounded Da, then

the error dynamics (5) is asymptotically stable with an upper

bound g to the H1 performance.

Proof. Firstly, multiply the inequality (16) to the left by
T0 and to the right by T, with

T0 ¼
ÂðaÞ I 0

ĈðaÞ 0 I

" #

in order to obtain

ARTICLE IN PRESS

Δ�i

b

b

−b

1

1

−1

1−b �i

Fig. 1. Region on the plane Dai � ai where Dai can assume values as a

function of ai (dark region).

ÂðaÞPðaþÞÂðaÞ0 �PðaÞ þ g�1B̂ðaÞB̂ðaÞ0 ÂðaÞ0PðaþÞĈðaÞ0 þ g�1B̂ðaÞD̂ðaÞ0

ð%Þ ĈðaÞPðaþÞĈðaÞ0 þ g�1D̂ðaÞD̂ðaÞ0 � gI

" #
o0

2 The same conversion is applied to the system and filter matrices.
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Secondly, by choosing vðkÞ ¼ BðkÞ0PðaÞBðkÞ as a para-
meter-dependent Lyapunov function and considering the
dual system (i.e. Â ¼ Â

0
, B̂ ¼ Ĉ

0
, Ĉ ¼ B̂

0
and D̂ ¼ D̂

0
), it

follows, after some algebraic manipulation, that the above
inequality implies DvðkÞo� g�1 eðkÞ0 eðkÞ þ gwðkÞ0wðkÞ.
Therefore, system (5) has an upper bound g to the H1

performance, in accordance with the extension of the
discrete-time version of the bounded real lemma to cope
with time-varying parameters [6] and, from the Lyapunov
theory [7], is asymptotically stable. &

It is important to stress that the additional variables F,
GðzÞ and HðzÞ in (16) represent extra degree of freedom in
the search for a feasible solution of Theorem 1. As pointed
out in [19], these variables can be identified as Lagrangian
multipliers and can be explored for design purpose. In this
sense, different structures of matrices F, GðzÞ and HðzÞ
can be used yielding different sufficient conditions for
stability analysis. For instance, assuming polytopic struc-
tures, Gð�Þ and Hð�Þ can be parametrized in a or aþ, as used
throughout this paper.

The nonlinear inequality conditions of Theorem 1 must
be tested at all points of the simplex UN , i.e. at an infinite
number of points. Hence, the main goal hereafter is to
obtain finite-dimensional BMI conditions in terms of the
vertices of the polytope P to solve Problem 1. Using Schur
complement and change of variables, finite-dimensional
BMIs assuring the existence of such filters are given in the
next section.

3. Main results

By considering the particular structure

PðaÞ ¼ a1P1 þ a2P2 þ � � � þ aNPN ; a 2 UN (17)

lifted to the l-space, the following sufficient condition can
be obtained.

Theorem 2 (H1 LPV FILTERING). Given system (1) and

matrix S as in (10), if there exist matrices Z, Y , R,
Qi 2 R

n�n, Li 2 R
n�q, Ji 2 R

p�n, Dfi 2 R
p�q, G, Mi ¼

M0i40 2 R2n�2n, H 2 Rp�2n, i ¼ 1; . . . ;N and a scalar g40
such that, for matrices Q̄ i, L̄i, J̄i, D̄fi, M̄i, Āi, B̄i, C̄1i,C̄2i, D̄1i and

D̄2i given as in (14) and M̃ i as in (15)

Xi9

F11 F12 F̂3i � F̂
0

1H0 0

ð%Þ F22 GF̂3i þ F̂
0

2iH
0 F̂4i

ð%Þ ð%Þ HF̂3i þ F̂
0

3iH
0
� gI F34

ð%Þ ð%Þ ð%Þ �gI

2
666664

3
777775o0; i ¼ 1; . . . ;M

(18)

F11 ¼ M̃ i � F̂1 � F̂
0

1; F12 ¼ F̂2i � F̂
0

1G0

F22 ¼ GF̂2i þ F̂
0

2iG
0
� M̄i; F34 ¼ D̄1i � D̄f D̄2i

F̂1 ¼
Z Y 0 þ R0

Z Y 0

" #
; F̂2i ¼

Ā
0

iZ Ā
0

iY
0
þ C̄

0

2iL̄
0

i þ Q̄
0

i

Ā
0

iZ Ā
0

iY
0
þ C̄

0

2iL̄
0

i

2
4

3
5

F̂3i ¼

C̄
0

1i � C̄
0

2iD̄
0

fi � J̄
0

i

C̄
0

1i � C̄
0

2iD̄
0

fi

2
4

3
5; F̂4i ¼

Z0B̄i

YB̄i þ L̄iD̄2i

" #

Xik9

F̂11 F̂12 F̂3ik � 2F̂
0

1H0 0

ð%Þ F̂22 GF̂3ik þ F̂
0

2ikH0 F̂4ik

ð%Þ ð%Þ HF̂3ik þ F̂
0

3ikH0 � 2gI F̂34

ð%Þ ð%Þ ð%Þ �2gI

2
66666664

3
77777775
o0,

i ¼ 1; . . . ;M � 1

k ¼ iþ 1; . . . ;M

(
(19)

F̂11 ¼ M̃ i þ M̃k � 2F̂1 � 2F̂
0

1; F̂12 ¼ F̂2ik � 2F̂
0

1G0

F̂22 ¼ GF̂2ik þ F̂
0

2ikG0 � M̄i � M̄k

F̂34 ¼ D̄1i þ D̄1k � D̄fiD̄2k � D̄fkD̄2i

F̂2ik ¼
ðĀ
0

i þ Ā
0

kÞZ ðĀ
0

i þ Ā
0

kÞY
0
þ C̄

0

2iL̄
0

k þ C̄
0

2kL̄
0

i þ Q̄
0

i þ Q̄
0

k

ðĀ
0

i þ Ā
0

kÞZ ðĀ
0

i þ Ā
0

kÞY
0
þ C̄

0

2iL̄
0

k þ C̄
0

2kL̄
0

i

2
4

3
5

F̂3ik ¼

C̄
0

1i þ C̄
0

1k � C̄
0

2iD̄
0

fk � C̄
0

2kD̄
0

fi � J̄
0

i � J̄
0

k

C̄
0

1i þ C̄
0

1k � C̄
0

2iD̄
0

fk � C̄
0

2kD̄
0

fi

2
4

3
5

F̂4ik ¼
Z0ðB̄i þ B̄kÞ

YðB̄i þ B̄kÞ þ L̄iD̄2k þ L̄kD̄2i

" #

then there exists a robust filter in the form of (3), ensuring

the asymptotic stability of the estimation error dynamic (5)
and an H1 guaranteed cost g, for all ða;DaÞ 2 L with

vertices given by

Afi ¼ V̂
�1

QiðUZÞ�1; Bfi ¼ V̂
�1

Li; Cfi ¼ JiðUZÞ�1; Dfi

(20)

where U 2 Rn�n and V̂ 2 Rn�n are matrices arbitrarily

chosen such that R ¼ V̂UZ.

Proof. Applying the following operation:

XðlÞ ¼
XN

i¼1

l2
i Xi þ

XN�1

i¼1

XN

k¼iþ1

lilkXik (21)

to the BMIs (18) and (19) one gets

XðlÞ ¼

F11 F12 F13 0

ð%Þ F22 F23 F̂4

ð%Þ ð%Þ F33 F34

ð%Þ ð%Þ ð%Þ �gI

2
66664

3
77775o0 (22)

F11 ¼ M̃ ðlÞ � F̂1 � F̂
0

1; F12 ¼ F̂2ðlÞ � F̂
0

1G0; F13 ¼ F̂3ðlÞ � F̂
0

1H0

F22 ¼ GF̂2ðlÞ þ F̂2ðlÞ0G0 � M̄ðlÞ; F23 ¼ GF̂3ðlÞ þ F̂2ðlÞ0H0

F33 ¼ HF̂3ðlÞ þ F̂3ðlÞ0H0 � gI; F34 ¼ D̄1ðlÞ � D̄f ðlÞD̄2ðlÞ

where

F̂2ðlÞ ¼
ĀðlÞ0Z ĀðlÞ0Y 0 þ C̄2ðlÞ0L̄ðlÞ0 þ Q̄ ðlÞ0

ĀðlÞ0Z ĀðlÞ0Y 0 þ C̄2ðlÞ0L̄ðlÞ0

" #

F̂3ðlÞ0 ¼ ½C̄1ðlÞ � D̄f ðlÞC̄2ðlÞ � J̄ðlÞ C̄1ðlÞ � D̄f ðlÞC̄2ðlÞ�

F̂4ðlÞ0 ¼ ½B̄ðlÞ0Z B̄ðlÞ0Y 0 þ D̄2ðlÞ0L̄ðlÞ0�

Then, define the partitioned matrices [20]

F ¼
X0 U0

Û
0

X̂
0

" #
; F�1

¼
Y V̂

V Ŷ

" #
; T ¼

X�1 Y 0

0 V̂
0

" #

ARTICLE IN PRESS
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together with the following variable transformation

Q̄ ðlÞ L̄ðlÞ
J̄ðlÞ D̄f ðlÞ

" #
¼

V̂ 0

0 I

" #
Āf ðlÞ B̄f ðlÞ

C̄f ðlÞ D̄f ðlÞ

" #
UZ 0

0 I

� �
; R ¼ V̂UZ

(23)

where Z ¼ X�1. Using the above change of variable,
multiply inequality (22) to the left by Ŝ

0
and to the right

by Ŝ with

Ŝ ¼
S 0

0 I

� �
; S ¼

T�1 0

0 T�1

" #
; I ¼

I 0

0 I

� �

yielding the following inequality

P̃ðlÞ � F � F 0 FÂðlÞ0 � F 0TG0T�1 FĈðlÞ0 � F 0TH0 0

ð%Þ L̂22 L̂23 B̂ðlÞ

ð%Þ ð%Þ L̂33 D̂ðlÞ
ð%Þ ð%Þ ð%Þ �gI

2
66664

3
77775o0

(24)

L̂22 ¼ ðT
0
Þ
�1GT 0F ¯̂AðlÞ0 þ ¯̂AðlÞF 0TG0T�1

� P̄ðlÞ

L̂23 ¼ ðT
0
Þ
�1GT 0F ¯̂CðlÞ0 þ ¯̂AðlÞF 0TH0

L̂33 ¼ HT 0F ¯̂CðlÞ0 þ ¯̂CðlÞF 0TH0 � gI

where PðlÞ ¼ ðT 0Þ�1MðlÞT�1 and the matrices Âð�Þ, B̂ð�Þ, Ĉð�Þ

and D̂ð�Þ have the same structure of (6), but in the l-space.
Finally, considering the lift of the BMI to the l-space and
applying Schur complement, inequality (24) reduces to
(16) of Theorem 1 with GðzÞ ¼ G and HðzÞ ¼ H. The filter
matrices are obtained by the change of variables (23). &

Corollary 1. The minimum g attainable by the conditions of

Theorem 2 is given by the optimization problem

min g s.t. (18)2(19) (25)

Theorem 2 is presented in terms of BMI constraints due
to the use of extra variables F, G and H. The advantages of
this approach come from the fact that such variables can
be used in the search for better performance of the closed-
loop system. For instance, a lower H1 guaranteed
cost may be obtained exploring the new variables G and
H. Nevertheless, by choosing G ¼ 0 and H ¼ 0 the
conditions of Theorem 2 reduce to LMIs, and, in this case,
Corollary 1 becomes a convex optimization problem that
can be handled by semi-definite programming (SDP)
algorithms.

In order to solve Corollary 1 within the BMI framework,
many methods appeared so far in the literature could be
applied, as the two following algorithms. The first one
is sometimes called alternating SDP method [21] and
consists of fixing some variables and searching for others
in such a way that at each step a convex optimization
problem is solved. The second one is called path-following
method [22] and consists of linearizing the BMIs.
Although in both cases there is no guarantee of conver-
gence, these methods are easy to implement and provide
good results. In this paper, the first approach is used and
the algorithm is as follows.

Algorithm 1. Let G ¼ 0 and H ¼ 0. Let � and kmax be given.
Set k ¼ 1 and iterate:

(1) Fix the variables H and G, minimize w.r.t. gk, Z, Y , R, Qi,
Li, Ji, Dfi and Mi. Get the new values of Z, Y , R, Qi, Li, Ji

and Dfi.
(2) Fix the variables Z, Y , R, Qi, Li, Ji and Dfi, minimize w.r.t.

gk, H, G and Mi. Get the new values of H and G.
(3) If jgk � gk�1jo�, then stop (no significant changes).
(4) Set k ¼ kþ 1 and go to step 1 if k � kmax. Otherwise

stop.

In order to reduce the number of BMIs and the
computational time required to solve optimization pro-
blem (25), the conditions of Theorem 2 were obtained
with GðzÞ ¼ G and HðzÞ ¼ H. If GðzÞ and HðzÞ were
parametrized in terms of a, a more sophisticated proce-
dure, as the one proposed in [23], should be applied.

If b ¼ 0, Problem 1 corresponds to the filtering problem
of time-invariant uncertain systems. In this case, Theorem
2 provides sufficient conditions to design filters for
uncertain discrete-time systems in polytopic domains. In
the case b ¼ 1, i.e. the parameters may vary arbitrarily
inside the unit simplex UN , the conditions of Theorem 2
encompass the ones provided in [24, Theorem 2] leading
to less conservative results when contrasted to LPV filters
designed through quadratic Lyapunov functions.

3.1. Robust filtering

For the robust case, consider PðaÞ as in (17) and the
particular structures

GðzÞ ¼ GðaÞ ¼
XN

i¼1

aiGi; HðzÞ ¼ HðaÞ ¼
XN

i¼1

aiHi; a 2 UN

lifted to the l-space, yielding the following result.

Theorem 3 (H1 ROBUST FILTERING). Given system (1) and

matrix S as in (10), if there exist matrices Z, Y , R, Q 2 Rn�n,

L 2 Rn�q, J 2 Rp�n, Df 2 R
p�q, Gi, Mi ¼ M0i40 2 R2n�2n,

Hi 2 R
p�2n, i ¼ 1; . . . ;N and a scalar g40 such that, for

matrices Q̄ , L̄, J̄, D̄f , Ḡi, H̄i, M̄i, Āi, B̄i, C̄1i, C̄2i,D̄1i and D̄2i given

as in (14) and M̃ i as in (15)

Xi9

F11 F12 F̂3i � F̂
0

1H̄
0

i 0

ð%Þ F22 ḠiF̂3i þ F̂
0

2iH̄
0

i F̂4i

ð%Þ ð%Þ H̄iF̂3i þ F̂
0

3iH̄
0

i � gI F34

ð%Þ ð%Þ ð%Þ �gI

2
666664

3
777775o0; i ¼ 1; . . . ;M

(26)

F11 ¼ M̃ i � F̂1 � F̂
0

1; F12 ¼ F̂2i � F̂
0

1Ḡ
0

i

F22 ¼ ḠiF̂2i þ F̂
0

2iḠ
0

i � M̄i; F34 ¼ D̄1i � D̄f D̄2i

F̂1 ¼
Z Y 0 þ R0

Z Y 0

" #
; F̂2i ¼

Ā
0

iZ Ā
0

iY
0
þ C̄

0

2iL̄
0
þ Q̄

0

Ā
0

iZ Ā
0

iY
0
þ C̄

0

2iL̄
0

2
4

3
5

F̂3i ¼

C̄
0

1i � C̄
0

2iD̄
0

f � J̄
0

C̄
0

1i � C̄
0

2iD̄
0

f

2
4

3
5; F̂4i ¼

Z0B̄i

YB̄i þ L̄D̄2i

" #
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Xik9

F̂11 F̂12 F̂3i þ F̂3k � F̂
0

1ðH̄
0

i þ H̄
0

kÞ 0

ð%Þ F̂22 ḠiF̂3k þ ḠkF̂3i þ F̂
0

2iH̄
0

k þ F̂
0

2kH̄
0

i F̂4i þ F̂4k

ð%Þ ð%Þ H̄iF̂3k þ H̄kF̂3i þ F̂
0

3iH̄
0

k þ F̂
0

3kH̄
0

i � 2gI F̂34

ð%Þ ð%Þ ð%Þ �2gI

2
666664

3
777775o0

(27)

i ¼ 1; . . . ;M � 1; k ¼ iþ 1; . . . ;M

F̂11 ¼ M̃ i þ M̃k � 2F̂1 � 2F̂
0

1; F̂12 ¼ F̂2i þ F̂2k � F̂
0

1ðḠ
0

i þ Ḡ
0

kÞ

F̂22 ¼ ḠiF̂2k þ ḠkF̂2i þ F̂
0

2iḠ
0

k þ F̂
0

2kḠ
0

i � M̄i � M̄k

F̂34 ¼ D̄1i þ D̄1k � D̄f ðD̄2i þ D̄2kÞ

then there exists a robust filter in the form of (3), ensuring

the asymptotic stability of the estimation error dynamic (5)
and an H1 guaranteed cost g, for all ða;DaÞ 2 L with

vertices given as in (20).

Proof. Similar to the proof of Theorem 2. &

The remarks done for Theorem 2 also hold for Theorem 3.
Additionally, for b ¼ 0, GðaÞ ¼ 0 and HðaÞ ¼ 0, the condi-
tions of Theorem 3 reduce to the H1 extension of the
results in [5, Theorem 5.1].

3.2. Practical appeal and possible extensions

The filter design method presented in this section can
be applied to all types of dynamical process that can be
written as (1). It encompasses the cases of time-invariant
(b ¼ 0), bounded time-varying (0obo1) and arbitrarily
time-varying (b ¼ 1) systems. Consequently, it can be
used in many different practical situations, including
systems that exchange information through a commu-
nication channel, commonly known as networked control
systems (NCSs). The usefulness and importance of NCS
architectures is largely due to advances in digital control
and computer interfaced structures. Drawbacks associ-
ated with NCS are discussed in [25–27]. In the filtering
framework, the problem of estimating a signal of a
precisely known continuous-time system, sampled by a
zero order hold with a time-varying sampling period,
through an NCS can be faced by the proposed technique.
By using the Cayley–Hamilton theorem or the Taylor
series expansion, the time-varying sampled-data matrices
can be rewritten as in (2) and Theorem 2 can be applied to
provide the filter matrices. More specifically, consider
a time-invariant continuous-time system sampled by a
zero order hold with a period h. The structure of the

filtering model is illustrated in Fig. 2. Assuming that h may
change its value at run-time due to different reasons, as
bandwidth allocation and scheduling decisions, let the
actual value of h at each instant k (i.e. hk) lie inside a finite
discrete set as specified below

hk 2 fhmin; . . . ;hmaxg; hk ¼ k � g; k 2N (28)

The parameter g is known as the processor/network clock
granularity, [28]. The clock granularity is related with the
processor frequency and k 2 N is a function of time that
specifies how many times g the sampling period h will be
at instant k.

To represent the set of all possible sampled-data
system matrices due to uncertain sampling rates, a
polytopic model may be considered. In this case, the
system matrices, for any time k � 0, are described as a
convex combination of well-defined vertices, which are
given by the arrangements of the extreme values of (28)
with the help of the Cayley–Hamilton theorem or Taylor
series expansion [29]. The sampled system is then
rewritten as (1) and Theorem 2 (or Theorem 3) can be
used to provide a networked filter such that the estima-
tion error is asymptotically stable under time-varying
sampling rates. This problem is of great interest specially
when dealing with scheduling or dynamic bandwidth
allocation for bandwidth reduction [30].

Other improvements of Theorems 2 and 3 can be
obtained by exploring the structure of the Lyapunov
matrix PðaÞ and the extra variables F, GðzÞ and HðzÞ of
Theorem 1. As can be seen in (17), the Lyapunov matrix
used in Theorem 2 is affine in a. More sophisticated
structures may lead to better results, for example, the
polynomially parameter-dependent Lyapunov (PPDL)
functions used in [31] can be explored for bo1. The
case b ¼ 1 (arbitrarily parameter variation) seems to be
more involved. Whether or not PPDL functions with
higher degree will help to improve the performance when
compared to affine functions for synthesis purpose with
b ¼ 1 is still an open question. Nevertheless, parameter-
dependent Lyapunov matrices that depend on more
than one instant of time, as the path-dependent
Lyapunov function proposed in [32,33], can provide better
results for b ¼ 1 when contrasted to the affine Lyapunov
matrix.

Changes in the structure of matrices F, Gð�Þ and Hð�Þ

appeared in (16) may also lead to better results, follow-
ing for instance the lines given in [34,35]. A result for
arbitrarily time-varying systems, obtained with the
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path-dependent Lyapunov matrix3

PðaÞ ¼ Pða;aþÞ ¼
XN

i¼1

XN

j¼1

aiaþj
Pij; a;aþ 2 UN (29)

and the particular choices

GðzÞ ¼ GðrÞ ¼
XN

i¼1

riGi; HðzÞ ¼ HðrÞ ¼
XN

i¼1

riHi; r 2 UN

with r 2 UN is presented in the next theorem. Note that,
since b ¼ 1 (arbitrarily fast rates of variation), there is no
need to lift the matrices to the l-space.

Theorem 4 (PATH-DEPENDENT APPROACH). Given system (1), if

there exist matrices Z, Y , R, Qi 2 R
n�n, Li 2 R

n�q, Ji 2 R
p�n,

Dfi 2 R
p�q, Gi, Mij ¼ M0ij40 2 R2n�2n, Hi 2 R

p�2n i; j ¼

1; . . . ;N and a scalar g40 such that

Xij‘9

Mj‘ � F̂1 � F̂
0

1 F̂2i � F̂
0

1G0j F̂3i � F̂
0

1H0j 0

ð%Þ GjF̂2i þ F̂
0

2iG
0

j �Mij GjF̂3i þ F̂
0

2iH
0
j F̂4i

ð%Þ ð%Þ HjF̂3i þ F̂
0

3iH
0
j � gI D1i � DfiD2i

ð%Þ ð%Þ ð%Þ �gI

2
666664

3
777775o0

(30)

i ¼ 1; . . . ;N; j ¼ 1; . . . ;N; ‘ ¼ 1; . . . ;N

Xikj‘9

2Mj‘ � 2F̂1 � 2F̂
0

1 F̂2ik � 2F̂
0

1G0j F̂3ik � 2F̂
0

1H0j 0

ð%Þ F̂22 GjF̂3ik þ F̂
0

2ikH0j F̂4ik

ð%Þ ð%Þ HjF̂3ik þ F̂
0

3ikH0j � 2gI F̂34

ð%Þ ð%Þ ð%Þ �2gI

2
666664

3
777775o0

(31)

i ¼ 1; . . . ;N � 1; k ¼ iþ 1; . . . ;N; j ¼ 1; . . . ;N; ‘ ¼ 1; . . . ;N

F̂22 ¼ GjF̂2ik þ F̂
0

2ikG0j �Mij �Mkj

F̂34 ¼ D1i þ D1k � DfiD2k � DfkD2i

where F̂1, F̂2i, F̂3i, F̂4i, F̂2ik, F̂3ik and F̂4ik have the same

structure of the ones from Theorem 2 but in the a domain,
then there exists an LPV filter in the form of (3), ensuring the

asymptotic stability of the estimation error dynamic (5) and

an H1 guaranteed cost g, for all a 2 UN with arbitrary rates

of variation and vertices given as in (20).

Proof. Similar to the proof of Theorem 2 except that now
there is no lift to the l-space and the operation (21)
becomes

Xða;r;ZÞ ¼
XN

‘¼1

Z‘
XN

j¼1

rj

XN

i¼1

a2
i Xij‘ þ

XN�1

i¼1

XN

k¼iþ1

aiakXikj‘

( )8<
:

9=
; &

Note that the Lyapunov matrix (29) would imply on
three instants of time aðkÞ, aðkþ 1Þ and aðkþ 2Þ in
Theorem 1. Since these values are completely independent
when b ¼ 1, they are represented respectively by a, r and
Z (all of them belonging to unit simplexes, for all k � 0),
yielding matrix Xða;r;ZÞ in Theorem 4. The robust version

of Theorem 4 can be obtained in a similar way of
Theorem 3.

4. Numerical experiments

All the experiments have been performed in a PC
equipped with Athlon 64 X2 6000þ (3.0 GHz), 2 GB RAM
(800 MHz), using the SDP solver SeDuMi [36] interfaced
by the parser YALMIP [37]. The numerical complexity is
estimated in terms of the computational times given in
seconds. Particularly to the iterative procedure given in
Algorithm 1, the time of the i-th iteration is the total time
cumulated up to this iteration.

Example I. Consider the following time-varying discrete-
time system borrowed from [6]

xðkþ 1Þ ¼
0 �0:5

1 1þ yðkÞ

" #
xðkÞ þ

�6 0

1 0

" #
wðkÞ

zðkÞ ¼ ½1 0�xðkÞ

yðkÞ ¼ ½�100 10�xðkÞ þ ½0 1�wðkÞ (32)

where y � yðkÞ � y and jDyðkÞj � d. The equivalent poly-
topic representation of system (32) is obtained by the
change of variables yðkÞ ¼ a1ðkÞ yþa2ðkÞy and jDa1ðkÞj ¼

jDa2ðkÞj � d=jy� y j ¼ b. With respect to the ranges of
the time-varying parameters, the case to be investi-
gated is y ¼ � y ¼ 0:4 and 0 � d � 0:8 (corresponding to
0 � b � 1).

The first task is to synthesize robust filters using
Algorithm 1 with Theorem 3 and the approaches from
[6, Lemma 4] (Lyapunov matrix affine in yðkÞ) and [6,
Theorem 2] (Lyapunov matrix quadratic in yðkÞ). Algo-
rithm 1 is performed twice, considering the maximum
number of iterations as kmax ¼ 1 and kmax ¼ 5. Fig. 3 shows
the minimum g achieved with strictly proper filters
ðDf ¼ 0Þ. Note that with only one iteration, where in fact
the conditions of Theorem 3 reduce to LMIs, the proposed

ARTICLE IN PRESS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
8

10

12

14

16

18

20

22

δ

γ [6, Lem. 4]

[6, Thm. 2]

Thm. 3, it = 0

Thm. 3, it = 1

Thm. 3, it = 5

Fig. 3. H1 upper bound attained by using strictly proper robust filters

in the design problem of Example I.

3 The Lyapunov matrix can also be generalized for any number of

instants ahead following the lines given in [33], at the price of a quick

increase on the computational effort.
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approach based on affine parameter-dependent Lyapunov
matrix outperforms the best method of [6] that is based
on a Lyapunov matrix quadratic in yðkÞ. The zero iteration
case ðit ¼ 0Þ shown in the figure was obtained without
introducing the extra variables Gð�Þ and Hð�Þ. Smaller
guaranteed costs can be obtained through the iterative
procedure given in Algorithm 1 at the price of a higher
computational effort.

The second part of the experiment concerns a more
detailed comparison between the proposed design condi-
tions and the methods from the literature for the specific
cases d ¼ 0 (time-invariant parameter) and d ¼ 0:8 (arbi-
trarily fast). In the case d ¼ 0 the nonconvex procedure
from [34, Theorem 2] is also included in the comparisons.
For d ¼ 0:8, the LPV filter design conditions proposed in
the paper are compared to [38, Theorem 3]. The results are
shown in Table 1, where it ¼ 0 means without the extra
variables Gð�Þ and Hð�Þ. In the robust filtering case, the
proposed conditions provide the best H1 guaranteed
costs with five iterations at the price of slightly higher
computational efforts. In the LPV filtering case the
proposed conditions presented the same H1 guaranteed
costs than [38, Theorem 3] for the case d ¼ 0:8. Note
that, differently from [38, Theorem 3], the proposed
conditions could still synthesize LPV filters for the range
0odo0:8.

Example II. Consider a time-varying system with state-
space matrices given by

A ¼
0:265� 0:1650yðkÞ 0:45ð1þ yðkÞÞ

0:5ð1� yðkÞÞ 0:265� 0:215yðkÞ

" #

B ¼
1:5� 0:5yðkÞ

0:1

" #
; C 02 ¼

1

0

" #

where D2 ¼ 1, C1 ¼ I2, D1 ¼ 02 and �1 � yðkÞ � 1 is an
arbitrarily fast time-varying parameter (DyðkÞ ¼ 2). The
polytopic representation of the system is obtained as in
Example I. The aim is to synthesize robust and LPV H1

filters using the conditions proposed in the paper and the
ones from [6] and [38]. For the LPV case, only Theorems 2
and 4 were able to provide a feasible solution. In the
robust case, all methods failed except the robust version
of Theorem 4. The results can be seen in Table 2. The
robust filter matrices after one iteration are given by

Af ¼
0:524 1:584

�0:041 �0:093

" #
; Bf ¼

�0:785

0:812

" #

Cf ¼
0:007 0

0:524 1:797

" #
; Df ¼

0:993

�0:703

" #

and after six iterations, with an improvement of approxi-
mately 67%, by

Af ¼
0:251 0:367

�0:020 �0:045

" #
; Bf ¼

�6:314

4:104

" #

Cf ¼
0 �0:013

0:170 0:560

" #
; Df ¼

1:001

�0:385

" #

As expected, the H1 guaranteed cost associated to the
LPV filter was better but no improvement was obtained
with the BMI iterations. This example illustrates the fact
that there may exist systems where robust filters can only
be designed by using path-dependent Lyapunov matrices,
which encompass the methods based on Lyapunov
matrices depending (affinely, quadratically or polynomi-
ally) on parameters only at the current instant of time k.

Fig. 4 shows the results for the noise input generated
by the Matlab command wðkÞ ¼ 0:3 � randn, for
0 � k � 50, and zero initial condition. After six iterations,
the first state of the error vector had an improvement of
2.29% and the second state of 40.05%.

Example III. This example, borrowed from [29], consists
of a simplified model of an armature voltage-controlled
DC servo motor, consisting of a stationary field and a
rotating armature and load. All effects of the field are
neglected. The aim is to design an H1 robust filter to
estimate the armature current given the speed of the
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Table 1
H1 guaranteed costs and computational times obtained in the design

problem of Example I for time-invariant (d ¼ 0) and arbitrarily fast

(d ¼ 0:8) parameters.

Method Filter d g Time

[6, Lem. 4] Robust 0 11.16 0.44

[6, Thm. 2] 0 11.16 0.44

½34; Thm: 2�it¼5 0 9.30 1.45

Theorem 3it¼0 0 11.16 0.38

Theorem 3it¼1 0 10.65 0.78

Theorem 3it¼5 0 9.16 3.55

[6, Lem. 4] Robust 0.8 21.99 0.57

[6, Thm. 2] 0.8 21.99 0.58

Theorem 3it¼0 0.8 21.99 0.46

Theorem 3it¼1 0.8 17.72 0.95

Theorem 3it¼5 0.8 16.04 5.15

Theorem 4it¼0 0.8 17.59 0.22

Theorem 4it¼1 0.8 15.68 0.44

Theorem 4it¼5 0.8 14.52 2.18

[38, Thm. 3] LPV 0.8 8.49 0.42

Theorem 2it¼0 0.8 8.49 0.33

Theorem 2it¼1 0.8 8.49 0.48

Theorem 4it¼0 0.8 8.49 0.24

Theorem 4it¼1 0.8 8.49 0.33

Table 2
H1 guaranteed costs and computational times obtained in the design

problem of Example II.

Method Filter g Improvement (%) Time

T4it¼1 Robust 19.41 – 0.89

T4it¼2 9.10 53.10 2.03

T4it¼3 7.55 61.07 3.17

T4it¼4 6.82 64.85 4.21

T4it¼5 6.56 66.18 5.30

T4it¼6 6.26 67.75 6.41

T4it¼1 LPV 1.22 – 0.85

T4it¼2 1.22 0.00 1.96

The computational time (in seconds) is the cumulated time as the

number of BMI iterations evolves.
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shaft. All information is sent through a communication
network. The behavior of the DC servo motor shown in
Fig. 5 can be described by

€y

_ra

2
4

3
5 ¼

�
bv

J

KT

J

�
Ky

La
�

Ra

La

2
6664

3
7775

_y

ra

2
4

3
5þ 2

2

" #
o

y ¼ ½1 0 �
_y

ra

2
4

3
5 (33)

where ea is the externally applied armature voltage, ra is
the armature current, Ra the resistance of the armature
winding, La the armature winding inductance, em the
back-emf voltage induced by the rotating armature
winding (em ¼ Ky

_y;Ky40), bv the viscous damping due
to bearing friction, J the moment of inertia of the armature
and load and y the shaft position. Further, the torque
generated by the motor is given by T ¼ KT ia. For
J ¼ 0:01 kgm2=s2, bv ¼ 0:1 Nms, KT ¼ Ky ¼ 0:01 Nm=Amp,
Ra ¼ 1O and La ¼ 0:5 H, system (33) can be rewritten in
the form (1) with the following sampled-data matrices,
presented as a function of hk,

As ¼
expð�10hkÞ � 0:0003 expð�2hkÞ 0:125ðexpð�2hkÞ � expð�10hkÞÞ

0:002ðexpð�10hkÞ � expð�2hkÞÞ �0:0003 expð�10hkÞ þ expð�2hkÞ

" #

Bs ¼
0:025 expð�10hkÞ � 0:125 expð�2hkÞ þ 0:099

0:0000626 expð�10hkÞ � 0:99 expð�2hkÞ þ 0:99

" #
C1s ¼ ½0 1 �; C2s ¼ ½1 0 �; D1s ¼ 0; D2s ¼ 0 (34)

The sampling rate is allowed to vary within the interval
hk 2 ½0:001 0:099�. The system is then expressed by
polytope (2) with four vertices (N ¼ 4), obtained by

evaluating expð�10hkÞ and expð�2hkÞ at the extreme
values of hk, where the parameters ai are related to hk

and b ¼ 1. Theorem 3 provided a robust filter after one
iteration with H1 upper bound g ¼ 1:1519

Af ¼
9:453 76:445

�1:162 �9:396

" #
; Bf ¼

�1917:224

253:188

" #

Cf ¼ ½0:021 0:172�; Df ¼ ½5:101�

5. Conclusion

The H1 LPV filtering for uncertain discrete-time
systems with bounded time-varying parameters has been
addressed in this paper, where all system matrices are
considered to be affected by time-varying parameters.

ARTICLE IN PRESS

0 5 10 15 20 25 30 35 40 45 50

−1

0

1

0 5 10 15 20 25 30 35 40 45 50
−2

−1

0

1

2

0 5 10 15 20 25 30 35 40 45 50
−2

−1

0

1

2
e1 (t)

e1 (t)

e2 (t) noise

noise

Robust (it = 1)

Robust (it = 6)

� 
(k

)
e 

(k
)

e 
(k

)

Time (k)

e2 (t)

Fig. 4. Time-domain analysis. The first graph illustrates the parameter variation in time while the others show the estimation errors for two robust filters

designed in Example II.

+

+ +

+

−

− −

−
ea

Ra La

�a

Armature

em

b

J
θ

Rf

ef

Lf
if

Fig. 5. DC servo motor as presented in [29].

R.A. Borges et al. / Signal Processing 90 (2010) 282–291290



Author's personal copy

With a convex description of the parameter time varia-
tion, a less conservative design condition was obtained.
Extra variables were used to derive BMI conditions that
may be explored in the search for a better H1

performance. The filter design is accomplished by means
of an optimization problem, formulated only in terms
of the vertices of the polytope. The proposed approach
provides improvements and advantages when compared
to other methods from the literature, as illustrated by
examples.
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