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Abstract. We present an incentive model for route distribution in the context of
path vector routing protocols and focus on the Border Gateway Protocol (BGP).
We model BGP route distribution and computation using a game in which a
BGP speaker advertises its prefix to its direct neighbors promising them a re-
ward for further distributing the route deeper into the network. The result of this
cascaded route distribution is an advertised prefix and hence reachability of the
BGP speaker. We first study the convergence of BGP protocol dynamics to a
unique outcome tree in the defined game. We then study the existence of equilib-
ria in the full information game considering competition dynamics focusing on
the simplest two classes of graphs: 1) the line (and the tree) graphs which involve
no competition, and 2) the ring graph which involves competition.

1 Introduction

The Border Gateway Protocol (BGP) [13] is a policy-based path vector protocol and is
the de-facto protocol for Internet interdomain routing. BGP is intrinsically about dis-
tributing route information about destinations (which are IP prefixes) to establish paths
in the network. Path discovery, or simply discovery hereafter, starting with some desti-
nation prefix is the outcome of route distribution and route computation. Accounting for
and sharing the cost of discovery is an interesting problem and its absence from current
path discovery schemes has led to critical economic and scalability concerns. As an ex-
ample, the BGP control plane functionality is oblivious to cost. A node (BGP speaker)
that advertises a provider-independent prefix (identifier) does not pay for the cost of
being discoverable. Such a cost, which may be large given that the prefix is maintained
at every node in the Default Free Zone (DFZ), is paid by the rest of the network. For ex-
ample, Herrin [6] has preliminarily analyzed the non-trivial cost of maintaining a BGP
route. Such incentive mismatch in the current BGP workings is further exacerbated by
provider-independent addressing, multi-homing, and traffic engineering practices [12].
The fact that the number of BGP prefixes in the global routing table (or RIB) is con-
stantly increasing at a rate of roughly 100,000 entries every 2 years and is expected to
reach a total of 388,000 entries in 2011 [7], has motivated us to devise a model that
accounts for distribution incentives in BGP.

A large body of work has focused on choosing the right incentives given that Au-
tonomous Systems (AS) are self-interested, utility-maximizing agents. Most previous



work has ignored the control plane incentives 1 (route advertisement) and has instead
focused on the forwarding plane incentives (e.g. transit costs). One possible explana-
tion is based on the fact that a node has an incentive to distribute routes to destinations
since the node will get paid for transiting traffic to these destinations, and hence route
distribution is ignored as it becomes an artifact of the transit process. We argue that
this assumption is not economically viable by considering the arrival of a new customer
(BGP speaker). While the servicing edge provider makes money from transiting the new
customer’s traffic to the customer, the middle providers do not necessarily make money
while still incurring the cost to maintain and distribute the customer’s route informa-
tion. In this work, we separate the control plane incentives (incentives to distribute route
information) from the forwarding plane incentives (incentives to forward packets) and
use game theory to model a BGP distribution game. The main problem we are interested
in is how to allow BGP prefix information to be distributed globally while aligning the
incentives of all the participating agents.

Model and Results We synthesize many of the ideas and results from [3,5,9,10] into
a coherent model for studying BGP route distribution incentives. A destination d is
willing to invest some initial amount of money rd to get its route information to be
globally distributed. Since d may only advertise its prefix to its direct neighbors, d must
incentivize them to further distribute the route. The neighbors then incentivize their
neighbors, and so on. While this work takes BGP as the motivating application, we are
interested in the general setting of distributing a good to a set of agents. In this paper, we
define a BGP distribution game by building upon the general model for studying BGP
devised by Griffin et. al in [5]. We assume full information since our main goal is to
study the existence of equilibria rather than how to reach the equilibrium. Studying the
equilibria for arbitrary graph structures is difficult given the complexity of the strategic
dependencies and the competition dynamics. Since are not aware of general existence
results that apply to our game, we initially focus on two simple graphs: 1) the line (and
the tree) graphs which involve no competition, and 2) the ring graph which involves
competition. Our results are detailed in section 3, and more fully in [8].

Related work The Simple Path Vector Protocol (SPVP) formalism [5] develops suf-
ficient conditions for the outcome of a path vector protocol to be stable. A respective
game-theoretic model was developed by Levin [10] to capture these conditions and in-
centives in a game theoretic setting. Feigenbaum et. al study incentive issues in BGP by
considering least cost path (LCP) policies [2] and more general policies [3]. Our model
is fundamentally different from [2] (and other works based in mechanism design) in
that the prices are strategic, the incentive structure is different, and we do not assume
the existence of a central “designer” (or bank) that allocates payments to the players
but is rather completely distributed as in real markets. The bank assumption is limiting
in a distributed setting, and an important question posed in [3] is whether the bank can
be replaced by direct payments by the nodes. Li et. al [11] study an incentive model for
query relaying in peer-to-peer (p2p) networks based on rewards, upon which Kleinberg

1In this paper, we use the term“control plan” to refer only to route prefix advertisements (not
route updates) as we assume that the network structure is static.



et. al [9] build to model a more general class of trees. In [9], Kleinberg and Raghavan
allude to a similar version of our distribution game in the context of query incentive
networks. They pose the general question of whether an equilibrium exists for general
Directed Acyclic Graphs (DAGs) in the query propagation game. Both of these prob-
abilistic models do not account for competition. While we borrow the basic idea, we
address the different problem of route distribution rather than information seeking.

2 The General Game

Borrowing notation from [3,10], we consider a graph G = (V,E) where V is a set of
n nodes (alternatively termed players, or agents) each identified by a unique index
i = {1, . . . ,n}, and a destination d, and E is the set of edges or links. Without loss of
generality (WLOG), we study the BGP discovery/route distribution problem for some
fixed destination AS with prefix d (as in [5,3,10]). The model is extendable to all possi-
ble destinations (BGP speakers) by noticing that route distribution and computation are
performed independently per prefix. The destination d is referred to as the advertiser
and the set of players in the network are termed seekers. Seekers may be distributors
who participate in distributing d’s route information to other seeker nodes or consumers
who simply consume the route. For each seeker node j, Let P( j) be the set of all routes
to d that are known to j through advertisements, P( j) ⊆P( j), the latter being the set
of all simple routes from j. The empty route φ ∈P( j). Denote by R j ∈ P( j) a simple
route from j to the destination d with R j = φ when no route exists at j, and let (k, j)R j
be the route formed by concatenating link (k, j) with R j, where (k, j) ∈ E. Denote by
B(i) the set of direct neighbors of node i and let next(Ri) be the next hop node on the
route Ri from i to d. Finally, define node j to be an upstream node relative to node i
when j ∈ Ri. The opposite holds for a downstream node. The general distribution game
is as follows: destination d first exports its prefix (identifier) information to its neigh-
bors promising them a reward rd ∈ Z+ which directly depends on d’s utility of being
discoverable. A node i, a player, in turn receives offers from its neighbors where each
neighbor j’s offer takes the form of a reward r ji. We use rnext(Ri) to refer to the reward
that the upstream parent from i on Ri offers to i.
Strategy Space: Given a set of advertised routes P(i) where each route Ri ∈ P(i) is as-
sociated with a promised reward rnext(Ri) ∈Z+, a pure strategy si ∈ Si of an autonomous
node i comprises two decisions:
First, after receiving offers from neighboring nodes, pick a single “best” route Ri ∈ P(i)
(where “best” is defined shortly in Theorem 1);
Second, pick a reward vector ri = [ri j] j promising a reward ri j to each candidate neigh-
bor j ∈B(i) that it has not received a competing offer from (i.e., such that r ji < ri j where
r ji = 0 means that i did not receive an offer from j). Then export the route and reward
to the respective candidate neighbors. The distribution process repeats up to some depth
that is directly dependent on the initial investment rd as well as on the strategies of the
players.
Cost: The cost of participation is local to the node and includes for example the cost
associated with the effort spent in maintaining the route information. We assume that
every player i incurs a cost of participation ci and for simplicity we take ci = c = 1.



Utility: A strategy profile s = (s1, . . . ,sn) and a reward rd define an outcome of the
game. 2 Every outcome determines a set of paths to destination d given by Od =
(R1, . . . ,Rn). A utility function ui(s) for player i associates every outcome with a real
value in R. We use the notation s−i to refer to the strategy profile of all players exclud-
ing i. A simple class of utility functions we experiment with rewards a node linearly
based on the number of sales that the node makes. This model incentivizes distribu-
tion and potentially requires a large initial investment from d. More clearly, define
Ni(s) = { j ∈ V\{i}|i ∈ R j} to be the set of nodes that pick their best route to d go-
ing through i (nodes downstream of i) and let δi(s) = |Ni(s)|. Let the utility of a node i
from an outcome or strategy profile s be:

ui(s) = (rnext(Ri)− ci)+ ∑
{ j|i=next(R j)}

(rnext(Ri)− ri j)(δ j(s)+1) (1)

The first term (rnext(Ri)− ci) of (1) is incurred by every participating node and is the
one unit of reward from the upstream parent on the chosen best path minus the local
cost. Based on the fixed cost assumption, we often drop this first term when comparing
player payoffs from different strategies since the term is always positive when c = 1.
The second term of (1) (the summation) is incurred only by distributors and is the total
profit made by i where (rnext(Ri)− ri j)(δ j(s)+ 1) is i’s profit from the sale to neighbor
j (which depends on δ j). A rational selfish node will always try to maximize its utility
by picking si = (Ri, [ri j] j). There is an inherent tradeoff between (rnext(Ri)− ri j) and
(δ j(s)) s.t. i = next(R j) when trying to maximize the utility in Equation (1) in the face
of competition as shall become clear later. A higher promised reward ri j allows the node
to compete (and possibly increase δ j) but cuts the profit margin. Finally, we implicitly
assume that the destination node d gets a constant marginal utility of rd for each dis-
tinct player that maintains a route to d - the marginal utility of being discoverable by
any seeker - and declares rd truthfully to its neighbors i.e., rd is not strategic.
Assumptions: We take the following simplifying assumptions to keep our model tractable:

1. the advertiser d does not differentiate among the different players (ASes).
2. the advertised rewards are integers and are strictly decreasing with depth i.e. ri j ∈

Z+ and ri j < rnext(Ri),∀ i, j and let 1 unit be the cost of distribution.
3. finally, our choice of the utility function isolates a class of policies which we refer

to as the Highest Reward Path (HRP). We assume for the scope of this work that
transit costs are extraneous to the model.

Convergence under HRP. Before proceeding with the game model, we first prove the
following theorem which results in the Highest Reward Path (HRP) policy. All proofs
may be found in the full version of this paper [8].

Theorem 1 In order to maximize its utility, node i must always pick the route Ri with
the highest promised reward i.e. such that rnext(Ri) ≥ rnext(Rl),∀ Rl ∈ P(i).

2We abuse notation hereafter and we refer to the outcome with simply the strategy profile s
where it should be clear from context that an outcome is defined by the tuple < s,rd >.



Theorem (1) implies that a player could perform her two actions sequentially, by first
choosing the highest reward route Ri, then deciding on the reward vector ri j to export to
its neighbors. Thus, we shall represent player i’s strategy hereafter simply with the re-
wards vector [ri j] and it should be clear that player i will always pick the “best” route to
be the route with the highest promised reward. When the rewards are equal however, we
assume that a node breaks ties consistently. Given the asynchronous nature of BGP, we
ask the question of whether the BGP protocol dynamics converge to a unique outcome
tree Td under some strategy profile s [5]. From Theorem (1), it may be shown that the
BGP outcome converges under any strategy profile s, including the equilibrium (see [8]
for proof). This result allows us to focus on the existence of equilibria.

2.1 The Static Multi-Stage Game with fixed schedule

We restrict the analysis of equilibria to the simple line and ring graphs. In order to
apply the correct solution concept, we fix the schedule of play (i.e. who plays when?)
based on the inherent order of play in the model. We resort to the multi-stage game with
observed actions [4] where stages in our game have no temporal semantics. Rather,
stages identify the network positions which have strategic significance due to the strictly
decreasing rewards assumption. Formally, and using notation from [4], each player i
plays only once at stage k > 0 where k is the distance from i to d in number of hops.
At every other stage, the player plays the “do nothing” action. The game starts at stage
1 after d declares rd . Players at the same stage play simultaneously, and we denote by
ak = (ak

1, , . . . ,a
k
n) the set of player actions at stage k, the stage-k action profile. Further,

denote by hk+1 = (rd ,a1, . . . ,ak), the history at the end of stage k which is simply the
initial reward rd concatenated with the sequence of actions at all previous stages. We let
h1 = (rd). Finally, hk+1 ⊂ Hk+1 the latter being the set of all possible stage-k histories.
When the game has a finite number of stages, say K +1, then a terminal history hK+1 is
equivalent to an outcome of the game (which is a tree Td) and the set of all outcomes is
HK+1.The pure-strategy of player i who plays at stage k > 0 is a function of the history
and is given by si : Hk → Rmi where mi is the number of direct neighbors of player i
that are at stage k +1 (implicitly, a player at stage k observes the full history hk before
playing). We resort to the multi-stage model (the fixed schedule) on our simple graphs
to eliminate the synchronization problems inherent in the BGP protocol and to focus
instead on the existence of equilibria. By restricting the analysis to the fixed schedule,
we do not miss any equilibria (see [8]). The key concept here is that it is the information
sets [4] that matter rather than the time of play i.e. since all the nodes at distance 1 from
d observe rd before playing, all these nodes belong to the same information set whether
they play at the same time or at different time instants.
Starting with rd (which is h1), it is clear how the game produces actions at every later
stage based on the player strategies resulting in a terminal action profile or outcome.
Hence, given rd , an outcome in HK+1 may be associated with every strategy profile s
and so the definition of Nash equilibrium remains unchanged (see [4] for definitions
of Nash equilibrium, proper subgame, and subgame perfection). In our game, each
stage begins a new subgame which restricts the full game to a particular history. For
example, a history hk begins a subgame G(hk) such that the histories in the subgame
are restricted to hk+1 = (hk,ak), hk+2 = (hk,ak,ak+1), and so on. Hereafter, the general



notion of equilibrium we use is the Nash equilibrium and we shall make it clear when
we generalize to subgame perfect equilibria. We are only interested in pure-strategy
equilibria [4] and in studying the existence question as the incentive rd varies.

3 Equilibria on the Line Graph, the Tree, and the Ring Graph

In the general game model defined thus far, the tie-breaking preferences of the players is
a defining property of the game, and every outcome (including the equilibrium) depends
on the initial reward/utility rd of the advertiser. In the same spirit as [9] we inductively

(a) (b)

Fig. 1. (a) Line graph: a player’s index is the stage at which the player plays; d advertises
at stage 0; K = n; (b) Ring graph with even number of players: (i) 2-stage game, (ii)
3-stage game, and general (iii) K-stage game.

construct the equilibrium for the line graph of Figure 1(a) given the utility function
of Equation (1). We present the result for the line which may be directly extended
to trees. Before proceeding with the construction, notice that for the line, mi = 1 for
all players except the leaf player since each of those players has a single downstream
neighbor. In addition, δi(s) = δ j(s) + 1,∀i, j where j is i’s child (δi = 0 when i is a
leaf). We shall refer to both the player and the stage using the same index since our
intention should be clear from the context. For example, the child of player i is i + 1
and its parent is i− 1 where player i is the player at stage i. Additionally, we simply
represent the history hk+1 = (rk) for k > 0 where rk is the reward promised by player
k (player k’s action). The strategy of player k is therefore sk(hk) = sk(rk−1) which is
a singleton (instead of a vector) since mi = 1 (for completeness, let r0 = rd). This is a
perfect information game [4] since a single player moves at each stage and has complete
information about the actions of all players at previous stages. Backward induction may
be used to construct the subgame-perfect equilibrium. We construct the equilibrium
strategy s∗ inductively as follows: first, for all players i, let s∗i (x) = 0 when x≤ c (where
c is assumed to be 1). Then assume that s∗i (x) is defined for all x < r and for all i.
Obviously, with this information, every player i may compute δi(x,s∗−i) for all x < r.
This is simply due to the fact that δi depends on the downstream players from i who



must play an action or reward strictly less than r. Finally, for all players i we let s∗i (r) =
argmaxx(r− x)δi(x,s∗−i) where x < r.

Theorem 2 The strategy profile s∗ is a subgame-perfect equilibrium.

The proof may be directly extended to the tree since each player in the tree has a single
upstream parent as well and backward induction follows in the same way. On the tree,
the strategies of the players that play simultaneously at each stage are also independent.

Competition: the ring. We present next a negative result for the ring graph. In a ring,
each player has a degree = 2 and mi = 1 for all players except the leaf player. We
consider rings with an even number of nodes due to the direct competition dynamics.
Figure 1(b) shows the 2-, the 3-, and general K-stage versions of the game. In the multi-
stage game, after observing rd , players 1 and 2 play simultaneously at stage 1 promising
rewards r1 and r2 respectively to their downstream children, and so on. We refer to the
players at stage j using ids 2 j−1 and 2 j where the stage of a player i, denoted as l(i),
may be computed from the id as l(i) = d i

2e. For the rest of the discussion, we assume
WLOG that the player at stage K (with id 2K − 1) breaks ties by picking the route
through the left parent 2K−3. For the 2-stage game in Figure 1(b)(i), it is easy to show
that an equilibrium always exists in which s∗1(rd) = s∗2(rd) = (rd−1) when rd > 1 and 0
otherwise. This means that player 3 enjoys the benefits of perfect competition due to the
Bertrand-style competition [4] between players 1 and 2. The equilibrium in this game
is independent of player 3’s preference for breaking ties. We now present the following
negative result,

Claim 1 The 3-stage game induced on the ring (of Figure 1(b)(ii)) does not have a
subgame-perfect equilibrium. Particularly, there exists a class of subgames for h1 =
rd > 5 for which there is no Nash equilibrium.

The value rd > 5 signifies the breaking point of equilibrium or the reward at which
player 2, when maximizing her utility (rd − r2)δ2, will always oscillate between com-
peting for 5 (by playing large r2) or not (by playing small r2). This negative result for
the game induced on the 3-stage ring may be directly extended to the general game for
the K-stage ring by observing that a class of subgames G(hK−2) of the general K-stage
game are identical to the 3-stage game. While the full game does not always have an
equilibrium when K > 2 stages, we shall show next that there always exists an equilib-
rium for a special subgame.

Growth of Incentives, and a Special Subgame. We next answer the following question:
Find the minimum incentive r∗d , as a function of the depth of the network K (equivalently
the number of stages in the multi-stage game), such that there exists an equilibrium
outcome for the subgame G(r∗d) that is a spanning tree. We seek to compute the function
f such that r∗d = f (K). First, we present a result for the line, before extending it to
the ring. On the line, K is simply the number of players i.e. K = n, and f (K) grows
exponentially with the depth K as follows:

Lemma 1. On the line graph, we have f (0) = 0, f (1) = 1, f (2) = 2, and ∀ k > 2,
f (k) = (k−1) f (k−1)− (k−2) f (k−2)



We now revisit the the K-stage game of Figure 1(b)(iii) on the ring and we focus on
a specific subgame which is the restriction of the full game to h1 = r∗d = f (K), and
we denote this subgame by G(r∗d). Consider the following strategy profile s∗ for the
subgame: players at stage j play s∗2 j−1(h

j) = f (K− j), and s∗2 j(h
j) = f (K− j− 1),∀

1≤ j ≤ K−1, and let s∗2K−1(h
K) = 0.

Theorem 3 The profile s∗ is a Nash equilibrium for the subgame G(r∗d) on the K-stage
ring, ∀ K > 2.

This result may be interpreted as follows: if the advertiser were to play strategically
assuming she has a marginal utility of at least r∗d and is aiming for a spanning tree
(global discoverability), then r∗d = f (K) will be her Nash strategy in the game induced
on the K-stage ring, ∀ K > 2 (given s∗). We can now extend the growth result of Lemma
(1) to the ring denoting by fr(K) the growth function for the ring.

Corollary 1. On the ring graph, we have fr(k) = f (k) as given by Lemma (1).

In this paper, we have studied the equilibria existence question for a simple class of
graphs. Many questions remain to be answered including extending the results to gen-
eral network structures (and to the Internet small-world connectivity graph), relaxing
the fixed cost assumption, quantifying how hard is it to find the equilibria, and devising
mechanisms to get to them. All these questions are part of our ongoing work [8].

References

1. Blume, L., Easley, D., Kleinberg, J., Tardos, E.: Trading networks with price-setting agents.
In: EC ’07, pp. 143–151. ACM, New York, NY, USA (2007)

2. Feigenbaum, J., Papadimitriou, C., Sami, R., Shenker, S.: A bgp-based mechanism for
lowest-cost routing. Distrib. Comput. 18(1), 61–72 (2005)

3. Feigenbaum, J., Ramachandran, V., Schapira, M.: Incentive-compatible interdomain routing.
In: EC ’06, pp. 130–139. ACM, New York, NY, USA (2006)

4. Fudenberg, D., Tirole, J.: Game Theory. MIT Press (1991)
5. Griffin, T.G., Shepherd, F.B., Wilfong, G.: Policy disputes in path-vector protocols. In: ICNP

’99, p. 21. IEEE Computer Society, Washington, DC, USA (1999)
6. Herrin, W.: What does a bgp route cost? http://bill.herrin.us/network/bgpcost.html (2008)
7. Huston, G.: Bgp in 2008. http://www.potaroo.net/ispcol/2009-03/bgp2008.html (2008)
8. Khoury, J., Abdallah, C.T., Krause, K., Crichigno, J.: Route distribution incentives.

arXiv:0909.3558v1 [cs.GT]
9. Kleinberg, J., Raghavan, P.: Query incentive networks. In: FOCS ’05, pp. 132–141. IEEE

Computer Society, Washington, DC, USA (2005)
10. Levin, H., Schapira, M., Zohar, A.: Interdomain routing and games. In: STOC ’08, pp. 57–

66. ACM, New York, NY, USA (2008)
11. Li, C., Yu, B., Sycara, K.: An incentive mechanism for message relaying in unstructured

peer-to-peer systems. In: AAMAS ’07, pp. 1–8. ACM (2007)
12. Meyer, D., Zhang, L., Fall, K.: Report from the iab workshop on routing and addressing.

Internet RFC 4984, Sep 2007
13. Rekhter, Y., Li, T., Hares, S.: RFC 4271: A border gateway protocol 4 (bgp-4) (2006)

http://www.potaroo.net/ispcol/2009-03/bgp2008.html
http://arxiv.org/abs/0909.3558v1

	Route Distribution Incentives
	Joud Khoury, Chaouki T. Abdallah, Kate Krause, and Jorge Crichigno

