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Abstract

Over the past decade, research on network architecture design has intensified. However, contributions to the field
have mainly been idiosyncratic and architectural descriptions remain idiomatic. This state of affairs has led to
the emergence of a large body of network architecture proposals with no clear indication of their compatibility
points, their cross similarities, and their differences. Thus, a taxonomy of network architectures that provides a
framework for better understanding, organizing, and thinking about the complex architecture design space would
be a timely contribution. This paper presents a first step in that direction by attempting a classification based on
the architecture’s information model. The taxonomy is applied to a special network architecture highlighting its
descriptive and classification powers.
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1 Introduction

Computer networks are continuously evolving into smarter and more complex systems that can better accom-
modate the nomadic, ubiquitous, and pervasive computing lifestyles of the diverse users. As a result, new inter-
network architectures are continuously being proposed, rendering the network architecture space larger and more
diverse. Such architectures may be broadly categorized into either incremental or radical efforts. Incremental
architectures, such as [38, 44, 36], generally aim at addressing particular limitations of the current Internet ar-
chitecture through patching, while radical architectures, such as those supported by NewArch [3] and FIND [4]
initiatives, tend to adopt a clean-slate approach to designing a “better” Internet, without being necessarily re-
stricted by the current Internet model.

Unfortunately however, the majority of the architectural work remains idiosyncratic and descriptions of net-
work architectures are mostly idiomatic. This current state of affairs is expected to worsen as we start designing
and deploying a future Internet, an effort already initiated by NSF’s FIND [4], and GENI [2] initiatives. In fact,
after surveying the literature, it became obvious that the majority of the recent architectural work is either aimed
at exploring novel usage models that adhere to a class of applications, or at directly addressing a set of limitations
of the current Internet 1. Ostensibly, there seems to be a growing consensus in the community about the need for
designing a smarter network that is more than just a transparent “bit-plumbing” medium. While such evolution
into a smarter and more complex Internet is bringing new potentials and service models, the community gener-
ally lacks a unified framework or a taxonomy for thinking about such models and their design implications. In
this sense, we believe that a network architecture taxonomy is a timely contribution that can potentially frame
the architectural work, clarifying the problem and the solution spaces. Additionally, such a taxonomy provides
a unified framework for networking researchers: (1) to better reason about their work at the architectural level,
(2) to clearly compare the different proposals and better understand their similarities and differences, and (3) to
explore new dimensions for contributing to the field.

This paper presents an attempt towards a taxonomy of inter-networking architectures. Our taxonomy defines
a network architecture based on the information model. The latter operates on top of the substrate structure and
characterizes the underlying addressing structure, the data objects and the functionality attached to them, and the
relative control structure. Prior to defining the taxonomy, we present a high-level classification of some of the
existing literature based on the broad service models provided by the network. Such classification offers useful
insights regarding the architectural landscape, which are leveraged by the taxonomy. It is worthwhile mentioning
that several classes of our taxonomy may be further elaborated. Additionally, we fully expect that several new
classes and properties will be added by other researchers. We would like to note that the current taxonomy is not
intended for evaluating the performance of architectures and for determining whether one architecture is better
than another. Any such effort would require a thorough understanding of the design space (design parameters,
relationships, cost structures, etc.), an effort that we believe is more likely to succeed at narrower scopes than
the one at hand. In addition, we would like to mention that the literature is replete with network proposals that
correspond to the different taxons discussed throughout the paper. The examples we provide throughout are solely
meant to help the reader assimilate our ideas rather than provide an exhaustive list of the related work.

As we started studying the taxonomy problem, it seemed that the body of network architecture work is difficult
to classify due to the independent nature of the many contributions to the field. However, we have noticed that
modern networks are becoming increasingly intelligent, and the intelligence is being manifested by introducing
more processing and storage elements, and by providing the users with richer instruction sets instead of the simple
static IP packet. Interestingly, such evolving network architectures resemble the computer architecture field, in the
sense that a network architecture is currently being designed to provide a general purpose computing platform to
its diverse users. Consequently, it is our belief that the modern network architecture and the computer architecture
converge conceptually at the architectural level, despite the fact that they significantly diverge otherwise, primarily
due to the distributed and large-scale nature of network architectures. We shall leverage this idea to directly apply
some useful taxonomical notions from the computer architecture field to our work, particularly from [26, 23].

1Those limitations are mainly the lack of information, security, management, troubleshooting, mobility and QoS support, and the economic
conflicts as acknowledged by the community [8, 21].
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The remainder of the paper is structured as follows: Section 2 explains our classification approach, and the
intuition behind it. We start by classifying some modern network architectures, from a high-level perspective,
based on their supported service model. Building on the high-level perspective, a taxonomy based on the infor-
mation model is then discussed in section 3. We demonstrate the descriptive power of the taxonomy by applying
it to the Data-Oriented Networks Architecture (DONA) [30]. Related work is then presented in section 5 before
concluding with a discussion of the value and limitations of our work in section 6.

2 Classifying Network Architectures

Before discussing our classification approach, we recall some general definitions. A computer network is an inter-
connection of computers over which information 2 flows. The network architecture is the conceptual design and
the fundamental operation structure of a computer network. Based on these definitions, one may clearly recognize
the obvious defining structures of a computer network: computers and inter-connections, communication, and
information structures.

2.1 Classification Approach

How to approach the classification problem given the complexity of the design space? In other words, what should
the defining element(s) of our classification model be? We start by recognizing that every design is intended
to support a set of goals, which generally encapsulate the pressing needs/requirements of users 3. Generally
speaking, the design process then involves converging on a set of defining structures, and proceeding to optimize
those. The outcome is an architectural design that is comprised of the following abstraction levels: 1) the outer-
architecture represents what the network user can see. This is analogous to the network service interface or
Instruction Set Architecture (ISA) which defines the addressing modes, the data object semantics, and the available
operations; and 2) the inner-architecture represents the internal operation structure of the network including the
low level substrate structure and the functional aspects to support the outer-architecture.

We believe that both abstraction levels provide useful and complementary insights regarding the architectural
landscape. Hence, to answer our question of what the defining element(s) of the taxonomy should be, we found
it useful to start by devising a high-level classification of some of the existing literature based on their supported
service model (or the types of services the network provides to its users). This view has helped us in understanding
the underlying goals behind an architectural design, and has additionally highlighted the information model as
the main defining element of our taxonomy. The high-level classification, which we refer to as the service-model
perspective, is briefly discussed next.

2.2 Service model perspective

Classifying architectures from this perspective is motivated by several factors. First, the service model approach
implicitly accounts for the needs of the users relative to a network, which is the ultimate goal of any network
design. For example, the Internet’s simple “best-effort delivery” service model came about to satisfy a set of
goals, as explained in [16], primarily allowing multiplexed utilization of resources (which led to packet switching,
domain, gateways), survivability (which led to end-to-end state), etc. Second, most network architectures tend
to be naturally categorized and described relative to their service models. For example, we find in the literature
the “data-oriented” network architecture [30], the “delay-tolerant” architecture [1], the “differentiated services
(diffServ)” architecture [10], and so on. Finally, such a classification could enable future reasoning about - and

2Information, content, and data are used interchangeably within this paper, unless otherwise specified, to represent data abstractions
recognized by the network.

3Within the discussion, a user is the general term used to abstract any entity that utilizes the network services.
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evaluation of - the degree to which a particular architecture satisfies the service requirements of the users. One
such evaluation methodology based on utility was proposed in [41] 4.

Communication Model

Information Model

Computation Model

S
ecurity S

ervices

M
anagem

ent Services

Figure 1: Generalized service model view

The generalized service-model perspective is depicted in Figure 1. The communication, information, and
computation 5 models represent the building blocks that collectively define, together with the security and man-
agement services, the general service model of any network architecture. By building blocks we mean that every
architecture must provide these three models, whether explicitly or implicitly 6. On the other hand, security and
management services are not building blocks (since one can easily come up with architectures that do not provide
any security or management services), and they operate across the communication, information and computation
models.

• Communication model: This service model represents the communication and control services offered by
the network. For instance, delivery services whether “best-effort", QoS-aware ([10]), aware of disrup-
tion ([1]), and/or geographic location ([25]) all belong to this model. Communication paradigms whether
connection-oriented (e.g. ATM) or connectionless (e.g. SMDS, X.25) are classified under this model as
well.

• Information model: This model deals with the information services that the network provides to its users.
The networking community currently recognizes the need for network built-in information services (nam-
ing, searching, security, and analysis services) to support a multitude of applications and their requirements
(archiving, distribution, etc.) [5].

• Computation or Programmability model: This model represents the level of programmability support
within the network. The programmability services might potentially span all the other service models,
allowing for example the programmability of the communication model and/or the information model etc.
Programmable networks [14, 43], for example, provide an explicit computation model.

The security and management services provided by the network are generally, but not necessarily, offered in-
band with the rest of the service models. For example, secure communication services include secure end-to-end
tunneling and transport (IPSec or SSL), secure identity (HIP [35]) etc. In general, the approach to security and
management in traditional newtorks has been incremental, and not accounted for by design.

In fact, it is possible (and maybe convenient) to fully classify the literature based on the service model view
depicted in Figure 1 if each of the constituent service models is further divided into its defining elements. How-
ever, and as we are mainly interested in the inner-architecture, the major focus of this section is to illustrate
some of the prominent architectural work that represents critical points of the aforementioned service spectrum.
Additionally, we believe that the independent contributions to the field are converging, and this section aims to
highlight such phenomenon by means of a survey. Table I presents, in matrix form, such a survey of the liter-
ature, limited to general inter-network architectures. Hence, we do not consider overlays, scoped architectural

4In [41], Shenker defines utility as the degree to which a network service model matches the needs of the network users i.e. how good an
architecture is, is measured by the happiness of its users.

5We abuse terminology referring to the terms computation and programmability interchangeably hereafter.
6For example, the Internet provides an information model implicitly (the datagram and information transparency) but not explicitly.

3



UNM Technical Report: EECE-TR-08-008

Year C
om

m

In
fo

C
om

p

Description
In

de
pe

nd
en

tP
ro

po
sa

ls Internet [16] 1970s x providing best-effort delivery of datagrams among globally identified endpoints
Active Nets [43] late 90’s x x provide a framework for dynamic creation and deployment of network services

at runtime
TRIAD [24] 2000-1 x x exposing a “content-layer” that provides transparent access and distribution of

named content
Plutarch [19] 2003 x provide a communication model that inherently allows inter-operation of

semantically disparate domains without mandating uniformity across them
FARA [17] 2003 x provide an abstract network model that builds on the Internet’s “best effort”

service model adding clean separation of endpoint names from network
addresses

TurfNet [40] 2004 x similar to Plutarch service model, but with global naming
DONA [30] 2007 x x providing data-access (locating and retrieving data) independent of location as

well as providing data distribution from multiple locations

FI
N

D
[4

]

Postcards [48] 2006 x x providing reliable delivery (push/pull) of content (large data units or files) to
mobile/stationary endpoints using in-network storage/caching

USwarm [45] 2006 x x providing multipoint-to-point bulk data transfer/distribution among hosts
(endpoints+intermediaries) with in-network storage/caching

ITDS [46] 2006 x x x providing information transfer in response to user (endpoint) specified service
expressions through in-network processing/data handling

WiKI [11] 2006 x x x providing a network query interface to users for expressing intent and
implementing operations through a declarative framework for managing
in-network information and state (router and host state, and data streams)

TNA [28] 2006 x x provides a transient network substrate that enables identification and
communication among entities based on global, and persistent
(location-independent) identifiers

PostModern [9] 2006 x x providing a tussle-resistant communication service, delivery of functional
datagrams, that equips providers with usage control over their networks through
policy enforcement, and users with policy-aware control over their traffic
forwarding

Table I: Matrix view classification of inter-network architectures based on their explicit service model classes.

work (such as naming, or routing architectures) and we do not provide an exhaustive list of inter-network tech-
nologies which is not the goal of this section 7. The work is divided into two parts. The first part overviews
some of the independent contributions to the field, while the second part is solely concerned with the FIND [4]
work illustrating the community’s view of what the future Internet should look like. Note that Table I marks
the service models only as those are made explicit in the architectural description, and consequently it does not
contradict our previous claim of the communication, information, and computation models being building blocks.
Several insights may be gathered by observing the matrix. First, there seems to be a growing consensus about the
need for expanding the network’s service model beyond the communication space, especially as researchers start
thinking of designing a future Internet. Additionally, and most importantly, one can clearly notice the emphasis
on information services, which is intuitive given the prevailing information-centric usage models with the current
Internet. Hence, while the communication structure is necessary for defining and representing a modern network
architecture, it is in general insuffcient. Information and computation structures are other building blocks that
need to be properly understood within modern networks. We shall leverage this observation in the next section to
present a taxonomy that revolves around the architecture’s information model.

7The majority of inter-network technologies (ATM, X.25, XNS, DECnet etc.) would be classified in our matrix as communication-
oriented. We only reference those technologies when they directly serve the goals of our taxonomy. For a comprehensive list of the inter-
network technologies, we refer the reader to [15].
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3 Taxonomy

Our taxonomy is based on the network’s information model, as it aims to clarify the following questions:

• What are the types of data objects recognized by the network?; and

• How does the network operate on those objects? In other words, how is the network capable of manipulat-
ing the objects?

Towards this end, the taxonomy defines architectures starting with the underlying substrate structure (the topol-
ogy, the functional units, and their interconnection structure) over which the information model operates, and
ending with the information model itself (addressing structure, types of data objects, and control structure).

3.1 Substrate Structure

The network substrate is comprised of the underlying physical network elements over which the information
model is defined. The substrate structure, hence, describes the network topology, the functional units, and their
interconnection structure.

Topology

Assumptions regarding the inter-network topology are crucial to our analysis. We assume the inter-network is
composed of zones. A zone forms an autonomous part of the inter-network and represents a logical region with
explicit boundaries. We intentionally define the notion of a network zone to be abstract enough to encapsulate
the various definitions proposed in the literature, including the Internet Autonomous Systems (AS), Contexts in
Plutarch [19], Turfs in Turfnet [40], and so on. The zone has an explicit “boundary”, a logical construct that can
take various forms, such as administrative, physical, protocol, or even social boundaries. Within the remainder
of the discussion, the notions of “global” and “local” are to be interpreted relative to the zone. For example, a
global function (examples of functions are addressing, naming, and forwarding) is one that operates across zones,
whereas a local function is to be interpreted as zone-local.

Of particular interest to our taxonomy are the following topological properties:

• Structure: is an important property that can take any of the values: hierarchical, flat, or special (e.g. ring)
topology. An inter-network that is composed of hierarchical zones will topologically include a root set of
zones, generally referred to as “Tier-1”. A flat topology on the other hand does not necessitate a topological
root.

• Composition: The topological structure depends on how the zones are composed. Composition can take
three forms as follows: 1) controlled-overlap means that part of the topology is shared by multiple zones,
2) integration is when one zone subsumes another resulting in an integrated data/control plane for the
composed zone (sometimes referred to as horizontal composition), and 3) direct peering is when zones,
generally heterogeneous, directly connect through dedicated elements (sometimes referred to as vertical
composition). Note that from a physical viewpoint, direct peering encapsulates the Internet AS relation-
ships, whether customer-provider, or peering.

Components and Interconnections

We isolate the following components types or functional units:

• Storage Elements (SEs) which may be of two types:

5
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– Memory Elements (ME) are abstract elements that store information within the network, such as
content servers/providers; and

– Cache Elements (CE) are memory elements that provide faster access to their information, either by
being physically closer to the user and/or because they are connected to the user by a higher bandwidth
link than the ME. Examples include proxies or caches used in content distribution networks (CDNs).

• Processing Elements (PEs) which perform information processing and may be further divided into:

– Data Processing Element (DPE); and
– Instruction Processing Element (IPE).

More details on instructions and data are presented later in the information model. However, for now,
one may envision an IPE instance to be a router, or a proxy that operates on packets 8, while a DPE
instance might be a content transcoding element inside the network.

• Switching Elements (SWEs) are abstract elements that switch information between SEs and PEs.

Having introduced the abstract component types, we proceed to describe their properties that are of interest to
this taxonomy, as follows:

1. The Dispersal property/factor is specified for each of the above component types. It describes the required
physical distribution/placement of an element type relative to the topology, with a number n to mean one
element (or a constant set of elements) per n zones. Values for n may be: 1 (to mean an element exists for
each zone), k (to mean an element exists for a group of k zones, such as a Tier-1 ISP provider hierarchy or
the set of edge domains on the Internet), and Z (to mean an element exists for all the zones, such as in the
case of a centralized global service), where Z is assumed to be the total number of zones in the topology.

2. The Interconnection property describes the logical interconnection structure among the component types.
Two combinations of element interconnections are of interest to us, mainly those specifying the PE −

Figure 2: Interconnection types; A square represents an abstract element (SE or PE), while an ellipse represents
a switching element (SWE).

PE, and the PE − SE element interconnections. The different types of interconnections are depicted in
Figure 2, and those may be: 1) dedicated to mean that the ith component of the first type is connected
to the ith component of the second type; 2) meshed to mean that every component of the first type is
directly connected to every component of the second type; and 3) switched to mean that a switching element
connects components of the first type to those of the second type.

Consequently, the tuple (Dispersal, Interconnection) fully describes the component interconnection structure.
Additionally, it directly relates to scalability by exposing the bottleneck infrastructure elements. We briefly
present some examples related to the current Internet substrate structure to better illustrate the aforementioned
properties. Internet routers are IPEs (that process implicit forward instruction) with dispersal factor n = 1, and
for which their IPE-IPE interconnections is meshed. DNS infrastructure elements, and particularly domain DNS
servers are IPEs (that process resolve instructions) with n = 1 and may simultaneously be CEs (that cache query
results) and MEs (that serve the domain’s zone files) with n = 1. The DNS root servers, however, are MEs (root
database) with n = Z 9. Additionally, the IPE-ME interconnection is generally switched since resolutions have to
pass by the root servers that act as the switch between the IPEs and the MEs.

8A packet is a form of a static instruction.
9Assuming not replicated.
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3.2 Information Model

The information model is defined based on three classes of data objects that encapsulate the information abstrac-
tions recognized by the network. At the core of the information model is the notion of data objects that are bound
to and accessed from network ‘locations’ relative to some addressing structure. Consequently, before delving into
the details of the data objects, we discuss the first defining element of the network information model, namely the
addressing structure.

Loc A
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Loc A

Loc Z

…


…


Physical
Address Space

Addr A

Addr F

Addr Z

…


…


…


Loc F

Figure 3: Abstracting network locations (red circles) and visualizing a physical address space.
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Figure 4: Virtual address space is either integrated (1), or disconnected (2).

Addressing Structure

The information model starts by assuming the existence of locations within the network, where the term ‘loca-
tion’ may have topological or geographical connotation. When the locations are addressable, we obtain the notion
of the network physical address belonging to the physical address space. The latter consists of all the possible
addresses of all the addressable locations on the network and is denoted by Sp. Consequently, the physical ad-
dress is defined as a location identifier. Figure 3 depicts our visualization of the locations and of the address space
constructs. Examples of Addr A in Figure 3 may be an IP address, a path, a set of coordinates, etc. (as long as
there exists an underlying control that can link the physical address to the network location it points to).
On the other hand, when the objects on the network are being addressed, we obtain the notion of the virtual
address belonging to a virtual address space, Sv. A virtual address is a location independent identifier which
is ultimately mapped to some location(s). Some examples of systems that instantiate virtual spaces are nam-
ing/directory systems, metadata registries, and trackers 10. According to our definitions, there is a conceptual
difference between the physical address and the virtual address in terms of what is being identified. The latter
generally identifies some high level information abstraction (such as a host, or a content object) in contrast to
identifying a location with the former. Data objects, which we shall characterize shortly, are always bound to
the locations, and hence every access to an object on the network will require an address (physical or virtual) to
succeed. We would like to note that our definitions of location, objects, physical and virtual addresses conform to
Saltzer’s RFC [39] but are less restrictive in the sense that we are solely interested in highlighting the boundary
relationship between location and object abstractions. To eliminate confusion, in [39] ‘networked objects’ is a
general term used to refer to services, nodes, and locations (or attachment points), while in our definition ‘ob-
jects’ are anything bound to locations (which includes nodes, services, or information abstractions in general).

10Other terms used in the literature to refer to the virtual address are the name or the label.
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Throughout the rest of the discussion, an address is to be interpreted as either a physical or a virtual address
unless otherwise specified.

As far as the taxonomy is concerned, the following set of properties characterizes the addressing structure. The
first property, address spaces, describes whether the addressing structure explicitly defines and makes available
as part of the ISA a physical address space (Sp), a virtual address space (Sv), or both.

• Physical: Solely providing a Sp implies that objects are only addressable (and generally accessible) by
location. In addition to necessitating prior knowledge of location, this model falls short of supporting
information binding volatility (such as in the case of mobility, re-homing, and disconnections). The IP
addressing architecture [16] is one example in which only the IP physical space is made available as part
of the ISA addressing structure.

• Virtual: On the other hand, solely providing a virtual space implies that objects are addressable inde-
pendent of location. Since no physical space is provided, there is no embedded notion of location on the
network from the user’s perspective. In this sense, the virtual address space is directly integrated with
locations i.e. an access to a virtual address will automatically result in accessing the location(s) to which
the virtual address points. Figure 4 (1) illustrates this addressing style. Some example architectures that
support this style are [13] and [28].

• Both: When both spaces are provided, it is necessary to characterize their relationship defined with space-
correlation, as follows:

– Independent: Sv∩Sp = /0

This is the general case of current addressing architectures in which the spaces are semantically and
syntactically independent, and are only related through the mapping/search function. Examples of Sv
could be a space of flat hashes (e.g. DHT approaches) or human-readable strings (e.g. DNS) which is
independent of an underlying physical address space (e.g. IP, or topology labels in labeled compact
routing [22]).

– Correlated-partitioned: Sv ⊂ Sp
In this model (and the following one), the spaces are consolidated (generally syntactically) and the
semantic distinction between the spaces is made statically (i.e. known a priori) or dynamically (i.e. at
runtime). The model has the feature that the mapping function from physical addresses to locations
(otherwise referred to as routing) is inherently aware of Sv and could be reused for virtual address
search.

– Correlated-embedded: Sp ⊂ Sv
If we are allowed to think of the IPv6 space as virtual address space, then an example of this model
would be the embedding of the IPv4 space in the IPv6 space.

– Partial-overlap: Sp∩Sv 6= { /0,Sp,Sv}
We are not aware of any addressing architecture that supports this model.

– Equivalent: Sv = Sp
In this model, from the user’s perspective, locations and objects are indistinguishably addressed. An
example of such model could be a DHT that is restricted to being matched to the underlying physical
topology i.e. in which all pointers (such as successor or finger pointers in Chord) must be actual graph
links and hence nodes can only point to direct neighbors. In this setup, nodes could be though of as
locations in the graph and objects that are published on nodes take addresses from the same space.
Again, we are not aware of any such proposals or technologies.

Second, for each of the physical and the virtual address spaces, two structural properties are defined:

• Space structure: may be hierarchical, flat, or special; and

8
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• Addressing scope: defines the scope over which the address is valid. Values for scope are based on the
topology structure defined in the previous section, and those include: local (per zone), global (to all zones),
and partial (to a set of zones).

To gain a better insight into the taxonomy’s descriptive powers, consider the following examples of addressing
structures described with the properties just introduced:
1) Physical space is (hierarchical,global): The Internet and NIRA [47] are two architectures that explicitly rely
on a global, strictly hierarchical addressing scheme. Some of the advantages of this scheme are scalable routing
and small routing table sizes 11; 2) Virtual space is ( f lat,global): ROFL [13] and SFS [7] are architectures that
utilize this flat, DHT-style addressing scheme. Some of its advantages include semantic-free, flat, and location
independent-addressing. On the other hand, some of the disadvantages include global maintenance overhead,
consistency issues, and scalability concerns; and 3) Either space is (∗, local) 12: This is the case for example
when each network has its own private address space. Plutarch [19], Turfnet [40] are some examples. Some of
the advantages of such mode are provider-independent addressing and easier re/multi-homing. However, some
disadvantages include extensive translation, complex routing, and larger global routing tables.

Having discussed the addressing structure, we proceed to identify the different classes of network data objects
that comprise the second defining element of the information model.

Data Objects

The data objects are characterized by the ordered tuple (C,S,F), where C denotes the object class, S denotes the
scope or context within which the object is meaningful, and F denotes the set of functions applicable to the object.
We isolate three classes C of data objects 13: 1) primitive objects, 2) group objects, and 3) complex objects, and
their respective functions as follows:

Primitive Data Objects - are further categorized as either carrier objects or consumable objects. The for-
mer set represents the information carriers that are stored or processed within the network but are generally not
consumed i.e. neither bound to nor accessed from locations. We have identified the following set of carriers:
1) physical address; 2) virtual address; 3) instruction, represents a functional expression to be executed by the
network. Instructions may range in their functional expressiveness. For example, the IP packet is an instance of
an instruction data object that is inherently static i.e. the packet implicitly instructs the network to deliver a pay-
load from source to destination. On the other hand, [46] recognizes a more expressive instruction set for dynamic
service composition; 4) Data Unit, is the unit of communication and could include control and data; 5) stream,
is an aggregation of Data Units; and 6) status block, may be of different types. A status block encapsulates the
internal network state as well the status of operations performed within the network.

As to the consumable objects, those represent data objects that are explicitly bound to the network locations
and consumed from their locations. The following two styles of consumable objects are identified:

• Raw Information Bit Stream (RIBS): represents an untyped consumable data object that appears to the
network as a bit stream. All RIBS objects must be self-descriptive i.e. knowledge about the RIBS data (e.g.
typing, and interpretation) is encapsulated within the data itself. The Internet, for example, solely supports
RIBS objects and is hence transparent of information types (i.e. all typing intelligence is end-to-end);

• Typed Abstract Content Object (TACO): represents any typed consumable data. Interpretation of TACOs
is generally part of the network’s control structure. Several examples of possible typed content objects
may be recognized from today’s applications, including: static and dynamic content (such as files and web

11Scalability depends on efficient address aggregation, however. The de-aggregation practice on the current Internet’s routing system has
driven the latter to be unscalable [34].

12The symbol ‘*’ is the wildcard character.
13Recall that we are solely concerned with the internal network information model, and hence the end-to-end data abstractions which are

transparent to the network are irrelevant to this taxonomy.
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pages), continuous content (such as multi-media or live sensor feeds), interactive content (such as the case
with online gaming), and metadata objects.

The object scope S defines the scope within which the object is valid, taking values: local, global, or partial
relative to the substrate structure.

Several classes of functions F are applicable to primitive data objects. While we overview these classes, we
simply focus on characterizing the binding, access, and transfer functions that the network makes available for
manipulating the consumable data objects.

• Binding Functions: In its simplest form, binding is the process of assigning a data object to some location
on the network. Assume X and Y denote network addresses, we isolate the following forms of binding:

– Direct-value binding has the form X = value. Binding a data object to an IP address, or a host join
in [13] are some examples;

– Processed value binding has the form X = f (.). Some processing is performed before assigning the
object. For example, f (.) might be a query whose result is assigned to an address;

– Multiple-value binding 14 has the form X = Y . The data object in Y is replicated to X . In general,
this form of binding requires some form of COPY/MOVE instruction as part of the architecture’s ISA.
Data replication as in the case of CDNs is an instance of such binding style;

– Shared-value binding 15 has the form X = &Y to mean that X points to the same data object as Y .
Multihoming is an instance of this style;

While instances of such binding styles are present in the literature and were noted above, the majority of
the styles are still not explicitly supported by the current architectures’ instruction sets.

• Access Functions: Accessing information on the network may be characterized by the following prop-
erties: 1) access type specifies whether primitive, group and/or complex object access is supported; 2)
access paradigm specifies synchronous and/or asynchronous access. For example, publish-subscribe ar-
chitectures provide an asynchronous access paradigm; 3) access mode dictates whether read, write, and/or
read-modify-write are supported; ; and finally 4) addressing mode which is characterized with:

– Direct/absolute addressing (physical and/or virtual): The absolute address of the object to be ac-
cessed is known, whether physical (e.g. IP addressing) or virtual (e.g. [40]).

– Indirect addressing (physical and/or virtual) represents the indirection style addressing, where the
absolute address of the object is unknown, but an alternative address (pointer) is used for indirect
access. Physical-to-physical indirection (e.g. [27]), and virtual-to-physical indirection (e.g. [42]) are
some flavors of indirect addressing.

– Associative addressing (physical and/or virtual) is analogous to intentional addressing, in which
the sought object’s address is unknown, but some of its attributes are known and are employed
for addressing. Distributed searching, whether in the physical space (e.g. [19]) or the virtual space
(e.g. [45]), is generally utilized to locate the objects of interest.

– Group addressing (physical and/or virtual) involves addressing a group of locations (e.g. geocast and
multicast addressing), or a group of objects. Addressing a group of objects is equivalent to addressing
a group object type (to be discussed shortly).

– K-preference addressing (physical and/or virtual): is similar to group addressing except that k ele-
ments of the group are addressed instead of the whole group. Anycast addressing, for example, is a
special case of this mode in which k = 1 and the preference is ‘any’ (e.g. IP anycast, [30]).

14This is similar to assignment by value.
15This is similar to assignment by reference.
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• Transfer/Delivery Functions: Two properties of the delivery function are essential to this taxonomy, while
several others may be deduced from other properties of the information model (such as the addressing
modes). First, the information recognition describes whether the delivery is cognizant of information
types. For example, delivery of continuous content objects (such as multi-media stream) requires time-
sensitive transport mechanisms to preserve the real-time nature of the data. Second, the transfer multiplicity
denotes the multiplicities at both ends of the transfer pipe and can take the following forms starting with
the multiplicity of the information source:

– 1-1 is single source, single destination transfer similar to unicast delivery;

– 1-N is single source, multiple (or group) destination transfer similar to multicast delivery; and

– N-1 represents multiple source delivery as is the case with swarming architectures (e.g. Bittorrent and
USwarm [45]);

– N-N is a multiple source, multiple destination delivery model. This model is probably the most
intriguing. An example of such model would be a swarm-like information distribution to a multicast
group.

• Discovery/Search Functions: Almost all of the aforementioned virtual addressing modes require search-
ing for location of sought objects (which generally requires mapping of addresses to location(s)). The
search model is characterized as follows:

– Physical-Only: is the basic search model for locations (or alternatively routing on physical ad-
dresses), as with the Internet for example;

– Virtual-Decoupled is the search model that necessitates searching for an information object before
attempting to access (or perform other operation on) the latter. An explicit search instruction is hence
necessary (for example LOOKUP operation in [40]). Other examples include some endpoint mapping
(or search) in HIP [35], GSE [37] etc.

– Virtual-Embedded is the search model that is generally associated with virtual addressing modes.
In other words, the search is performed in-network alleviating the need for users (or endpoints) to
explicitly perform a search prior to executing operations on some sought object (e.g. [20] and [33]);

The form of the search function is largely dependent on the correlation of the address spaces.

The rest of the functions apply to primitive data objects in general. We simply distinguish those and we leave
their characterization for a future work. To start with, Transformation Functions convert the data objects from
one representation to another. Some examples include interstitial functions [19], and NAT boxes that perform
address/instruction/protocol translation, and transcoding. Decoding Functions interpret the data objects and
generate control vectors as a result. Interpretation of the data objects follows from their representation. On the
current Internet, for example, every router interprets the instruction in the same way and generates a forwarding
control vector that determines the next hop. Construction Functions produce new objects and their values.
Information fusion/integration, aggregation, joining, splitting etc. are some examples of manufacturing functions.
Finally, Status Functions get/set the various status blocks within the network, whether those involve internal
network state or operation status.

Group Data Objects - A group data object is a collection of primitive objects that generally share some
properties such as their type or their access control/policy. The constituent elements of the group belong to the
same address space. While the group as a whole is an addressable entity, its constituent elements might not be
individually addressable. Elements are identified by a combination of the group object identifier and the element
identifier within the group. Group addressing is thus required for group object access. One example of a group
object on the current Internet is the multicast group. Additional functions that apply to group data objects include:
creating the group object, adding elements (group joining), removing elements (group leaving), and removing the
group object.

11
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Complex Data Objects - Complex data objects are simply data structures that the architecture makes explicit.
It is intuitive that such complex data structures will emerge in the future, but it is hard at this stage to anticipate
their properties. One may envision an explicit distributed stack data structure for example that is tailored to some
architecture with an explicit push/pop usage model.

The third and final defining element of the information model is the control structure which defines the
underlying control to support the information model. Almost every aspect of the information model discussed so
far requires its dedicated control protocols and algorithms. For example, control for mapping characterizes the
control required for mapping from virtual/physical address spaces to location, and for maintaining the pointers.
Control for data access defines the control to support the addressing model and modes, etc. Clearly, such control
structures (and others) represent a significant body of the networking research, where each aspect stands alone as
a research topic by itself. Consequently, characterizing the control structure is beyond the scope of this paper and
is left for a future work.

3.3 Towards a complete taxonomy

Our approach towards a complete network architecture taxonomy is syntactically defined (using a BNF metasyn-
tax) in Table II. We have decided to represent the taxonomy textually rather than graphically since the textual
representation is clear and compact. We clarify the following notation: ‘,’ means concatenation; (x,y) means
grouping in which terms x, and y are separated by any whitespace character; {x} means a set of elements of x;
< x > means term x is left unspecified; and [x] means optional term.

network_arch := (‘ARCH’, id, ‘begin’,
substrate_struct, info_model,
‘end’)

substrate_struct := (‘SUB_STRUCT’, ‘begin’,
topology, {component},
{interconnection}, ‘end’)

topology := (top_struct, top_composition), “;”
component := ([id], component_type,

dispersal_factor), “;”
interconnection := ([id], ic_type, ic_link), “;”

top_struct := “hierarchical" | “flat" | “special"
top_composition := “controlled_overlap" |

“integration" | “direct_peering"
component_type := “SE" | “ME" | “CE" | “PE" | “IPE"

| “DPE" | “SWE"
dispersal_factor := “1" | “k" | “Z"

ic_type := “PE-PE" | “PE-SE"
ic_link := “dedicated" | “meshed" |

“switched"
id := character, {character | digit | “_”}

info_model := (‘INFO’, ‘begin’, addr_struct,
{data_type}, <control_struct>,
‘end’)

12
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addr_struct := (‘ADDR_STRUCT’, ‘begin’,
physical_space, virtual_space,
pv_space, ‘end’)

data_type := (‘DATA’, ‘begin’, data_class,
{function}, ‘end’)

physical_space := (‘P_SPACE’, space_structure,
addr_scope), “;”

virtual_space := (‘V_SPACE’, space_structure,
addr_scope), “;”

pv_space := (‘PV_SPACE’,
space_correlation), “;”

data_class := (class_type, {data_object})
function := (binding_fcn | access_fcn |

transfer_fcn) | search_fcn), “;”

space_structure := “hierarchical_addr" | “flat_addr" |
“special"

addr_scope := “local_scope" | “global_scope" |
“partial_scope"

space_correlation := “independent" | “partitioned" |
“embedded" | “overlap" |
“equivalent"

class_type := (“primitive" | “group" |
“complex"), “:"

data_object := (“paddress" | “vaddress" |
“instruction" | “data_unit" |
“stream" | “status_block" |
“RIBS" | “TACO" | group_object |
complex_object, object_scope),
“;”

binding_fcn := (“FN_BINDING",
{assign_mode})

access_fcn := (“FN_ACCESS", access_type,
access_paradigm,
{access_mode},
{addressing_mode})

transfer_fcn := (“FN_TRANSFER",
info_cognizant,
{s2d_multiplicity})

search_fcn := (“FN_SEARCH", search_model)

group_object := ‘group_’, id
complex_object := ‘complex_’, id

object_scope := addr_scope

13
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assign_mode := “direct-value" | “processed-value"
| “multiple-value" | “shared-value"

access_type := {class_type}
access_paradigm := “synchronous" | “asynchronous"

access_mode := “read" | “write" |
“read-modify-write"

addressing_mode := “direct_paddr" | “direct_vaddr" |
“indirect_paddr" |
“indirect_vaddr" |
“associative_paddr" |
‘associative_vaddr" |
“group_paddr" | “group_vaddr" |
“k-preference"

info_cognizant := {class_type}
s2d_multiplicity := “1-1" | “1-N" | “N-1" | “N-N"

search_model := “physical_only" |
“virtual_decoupled" |
“virtual_embedded"

Table II: A BNF syntax for taxonomical specification of network architectures.

4 Applying the taxonomy

To illustrate the applicability of our taxonomy in terms of its classification powers, we have applied it to a rather
special network architecture, the Data Oriented Network Architecture (DONA [30]) 16. The textual description
is listed below. In the listing below, ‘%’ stands for comment, “NA” means the term is irrelevant.

ARCH DONA
begin
SUB_STRUCT begin
% -topology structure
hierarchical NA; %Internet ASes
% -components
RH IPE 1; %Resolution Handlers
ROUTER IPE 1; %traditional BGP routers
PROVIDER ME k; %content providers
CACHE CE k; %content caches, extended RH
% -interconnection structure
PRVIDERS ME-ME meshed;
%exploits hierarchical topology

RH_RH PE-PE meshed;
end
INFO_MODEL begin
ADDR_STRUCT begin
% -addressing structure
P_SPACE hierarchical_addr global_scope;

%IP addressable locations, but global
% addressing is not necessary

V_SPACE flat_addr global_scope;
%HIP style identification

16DONA’s description is based on our understanding of the architecture, which may well be incomplete.
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PV_SPACE independent;
end %ADDR_STRUCT end
DATA begin
% -data type(s)
primitive:
paddress global; %IP, or maybe src route
vaddress global;% name is (P:L) tuple
instruction global; %find,lookup packets
data_unit global; stream global;
RIBS global; % datum-metadata, service

%e2e type intelligence
% -functions
FN_BINDING direct-value;

%REGISTER(.) func
FN_ACCESS primitive:group:

synchronous
direct_paddressing direct_vaddressing
k-preference; %anycast FIND(.) func

FN_TRANSFER NA 1-1 1-N; % for multicast
FN_SEARCH virtual_decoupled;

% FIND required
end %DATA

end %INFO end
end

A significant amount of knowledge about the architecture is conveyed by simply observing such a com-
pact taxonomical representation. Additionally, architectures are easily compared along their convergence and
divergence points by observing their respective representations side by side. For example, it easy to notice the
significant similarity, from our taxonomy point of view, between DONA and TRIAD [24] by representing the
latter. Aside from the differences in terms of the control structure and name semantics which we do not consider
in the taxonomy, their main other difference is the virtual space structure.

5 Related Work

The major differentiator of our work is its generality in understanding networks at the architectural level rather
than being confined to the communication/switching properties, or to the computational properties, or to particular
scoped network architectures that focus on naming, or routing, or content delivery. This section overviews the
related work. To start with, some recent work has particularly focused on creating a taxonomy for overlay
(or virtualized) networks, relative to the current Internet. Clark et. al [18], presents a taxonomy of overlays
that helps thinking about their motivations and their implications. Augusto [6] classifies networks based on
their application-specific or purpose-specific nature. Moreover, [32] presents a simple taxonomy of Network
Computing (NC) systems (or overlays) based on their applications, platforms, and management. Additionally,
classifying a particular type of overlay, the Content Delivery Networks (CDN), has been the subject of some
recent work [12, 31]. Again, while all this work is related (and complementary) to ours, our work addresses the
general architecture classification problem.

Other recent work has focused on modeling and reasoning about the communication aspects (mainly switch-
ing and binding properties) of networks [29, 49]. Such network modeling work is complementary to ours in
trying to better understand and formally reason about the network architecture space.

Classifying programmable networks has also been addressed in the literature [14, 43]. Reference [14] pro-
vides a generalized model for programmable networks that explicitly includes a computational model relevant to
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such networking environments. In the same way, our general service model perspective acknowledges a compu-
tational model as a building block for modern network architectures.

6 Discussion: Value and Limitations

The main contribution of our work is a taxonomy that helps organizing and thinking about the architectural
space. The taxonomy is based on a bottom up characterization of a network starting with the underlying physi-
cal substrate (the topology, components, and their interconnections) and ending with the information model (the
addressing structure, the data objects and the operations allowed on them, and the control structure). In terms of
value, in addition to offering a comprehensive overview of the set of architectural possibilities as well as a tuto-
rial for introduction to the field, our taxonomy helps organizing and thinking about the architecture space beyond
the communication model (switching/delivery characteristics of networks) which has been the major approach
adopted in the literature for taxonomizing architecture (as we have seen with connection-oriented vs connection-
less models). The latter approach has weak discriminatory power and hence fails to distinguish the different (and
particularly modern) architectures as to their information structures. Our taxonomy additionally helps in high-
lighting gaps in the design space for exploring new contributions to the field by identifying unexplored research
areas. Examples of some gaps that were highlighted include the ISA support for binding models and addressing
modes, the N-N delivery, and address space correlation. Moreover, the descriptive nature of our taxonomy helps
in comparing modern network architectures along their convergence and divergence points. Finally, the taxonomy
helps set the stage to for attempting to answer the question of whether intelligence in the network is useful, and
what is the minimal set of functionality that could be part of an architecture while maintaining the elegance of
end-to-end design. In this regard, we lack the expertise necessary to take any position in trying to answer those
questions.

In terms of its limitations, the paper in its current form falls short of providing tangible outcomes beyond the
descriptive one. Additionally, by no means do we claim that our taxonomy is complete. The taxonomy does not
provide characterizations for the control structure, for security in general, and for the timeliness of information.
Each of these missing structures spans multiple aspects of the information model, and their treatment is left for a
separate work due to lack of space. Despite those limitations at this point, which we plan to address in a future
work, we believe that this paper is helpful to the community.

Finally, the authors would like to note that the evaluation of the FIND proposals throughout the discussion are
solely based on the preliminary architectural descriptions provided on the FIND website [4]. Although not com-
plete, we still believe that incorporating the FIND clean-slate architectural work is crucial to achieving the goals
of this paper. However, we do apologize in advance for any misunderstandings of the architectural descriptions.
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