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Abstract

This dissertation explores robust control topics related to the automatic lateral control
of highway vehicles. The main topic is the application of robust control to the lateral control
problem where the model uncertainty is characterized as additive unstructured perturba-
tions in the frequency-domain. This approach relies on interpolation theory to construct the
stabilizing controller. New interpolation techniques are presented which allow interpolation
on the jw axis and with points that have multiplicity. Test results comparing the robust
controller and a PID controller are presented. Two other robust control approaches, simul-
taneous stabilization of a family of plants and a multiobjective design, are also discussed in

the context of the lateral control problem.
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Chapter 1

Introduction

Automatic control of highway vehicles has been of great interest since the concept was first
introduced by General Motors Corporation at the 1939 World’s Fair [34]. Many advantages
to automatic operation of highway vehicles have been claimed. These include increased
freeway throughput, increased highway capacity, increased safety and reduced congestion.
Automated highways would also free humans of the driving task. The expected benefits of
automated highways are described in more detail in [42, 32]. This thesis ignores many of
the larger non-technical institutional issues, and focuses on the lateral control of highway
vehicles. The goal of the lateral control system is to keep the vehicle centered in the lane.
In addition, the lateral control system might be required to perform lane changes or evasive
maneuvers for collision avoidance.

In this introductory chapter, some of the difficulties associated with the lateral control
of highway vehicles are examined. These difficulties provide the motivation for applying
robust control techniques. Then, contributions of this thesis are summarized and an outline

of the document is provided.
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1.1 Lateral Control of Highway Vehicles

The goal of the lateral control system is to keep the vehicle on the desired trajectory.
Usually this is centered in the lane, but may also include lane changes and evasive collision
avoidance maneuvers. Therefore, one of the design objectives is to minimize the lateral path
error between the actual trajectory and the desired trajectory. A two degree-of-freedom
(DOF) linearized model is typically used to design the lateral control system. This model
is discussed in more detail in Chapter 2. However, it is important to note that it is a
linearized model, and that many of the parameters are subject to change or are unknown.
For instance, the vehicle mass changes as passengers and cargo are loaded and unloaded.
As tire pressure and road conditions change, the cornering stiffness of the tires can change
dramatically. The linearized model is also highly dependent on the vehicle’s velocity, which
has a wide range of possible values. Therefore, another design criterion is that the lateral
control system must function over a wide range of parameter changes.

In addition to providing performance over a wide range of parameter changes, the lateral
control system must also ensure that the driver is comfortable under automatic control. This
is usually translated into minimizing the lateral acceleration and jerk that is experienced
under automatic control. Finally, the lateral control system must exhibit some robustness
to sensor, actuator, and controller faults which results in a graceful degradation as systems
malfunction. The fact that the vehicle model is time-varying and subject to many variations
and uncertainties lends itself to the application of robust control techniques, which are

introduced in the next section.
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1.2 Robust Control

Robust control can be defined as the control of uncertain systems with fixed controllers [27].
Generally, the goal is to design a fixed compensator which guarantees stability, and hopefully
some performance, as the plant varies. The design of the robust controller is governed by
the model of the system uncertainty. The uncertainty is typically classified as structured
or unstructured, depending on the amount of information available. The uncertainty can
be expressed in the time domain via a state-space model, or in the frequency domain with
a transfer function model. This leads to the following four common classifications for the

modeling of the system uncertainty.

time-domain, unstructured uncertainty

time-domain, structured uncertainty

frequency-domain, unstructured uncertainty

frequency-domain, structured uncertainty

Frequency-domain, unstructured uncertainty can be further broken down into addi-
tive perturbation, input-multiplicative perturbation, and output-multiplicative perturba-
tion. Examples of each are shown in (1.1 -1.3), where Gy(s) represents the transfer function

of the nominal plant.

Additive perturbation G(s) = Go(s) + 6G(s) (1.1)
Input multiplicative perturbation G(s) = Go(s)(I + R(s)) (1.2)

Output multiplicative perturbation G(s) = (I + L(s))Go(s) (1.3)
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This dissertation deals with the application of robust control to the lateral control prob-
lem using frequency-domain additive unstructured uncertainty to model the unknown and
time-varying parameters. Although this approach is not specifically designed to accommo-
date time-varying systems, the assumption that the variations will occur slowly allows time
variations to be included. Robust control is an attractive technique to deal with the lateral
control problem for several reasons. First, a fixed controller can be used, which eliminates
the need for any gain-scheduling or adaptation algorithms. A robust controller also theo-
retically guarantees stability over a wide range of parameter changes. Finally, because the
vehicle model and uncertainty are treated in the frequency domain, actual test data on the
vehicle response can be gathered by injecting sinusoids of different frequencies. The only
drawback of this approach is that a solution is not guaranteed to exist, but this is discussed

in more detail in Chapter 3. The next section presents the contributions of this thesis.

1.3 Contributions of the Thesis

The contributions of this thesis are made in two areas. The first contribution is in robust
control of systems with frequency-domain unstructured additive perturbations. The second
contribution is in applying this theory to the lateral control of automobiles and comparing
it to several other techniques. This includes field testing of the robust control algorithm on
an experimental vehicle.

Robust control of systems with additive unstructured perturbations was first presented
by Kimura in [46]. This thesis extends the results of Kimura by allowing multiplicity

of unstable poles, as well as poles on the jw axis. These extensions are based on new
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interpolation techniques for handling interpolation points on the jw axis and points with
multiplicity. One technique for handling poles on the jw axis was developed by Li in [48],
but handling a multiplicity of poles on the jw axis was not discussed. The interpolation
techniques presented in this thesis are also applicable to other types of robust control theory.

The motivation for extending the work of Kimura was to allow the application of this
type of robust control theory to the lateral control of highway vehicles. This thesis also
presents experimental results from the implementation of the robust control algorithm on
a testbed vehicle. The performance of the robust control algorithm is compared to a
proportional-integral-derivative (PID) controller. In addition, several other control tech-
niques applicable to the lateral control problem are discussed. These include simultaneous
stabilization, as well as minimizing the sensitivity and the derivative of the control sensi-

tivity to improve driver ride comfort.

1.4 Thesis Outline

An outline of the remaining chapters is as follows:

e In Chapter 2, a more detailed review of previous lateral control research is provided.

e In Chapter 3, Robust control theory for plants with unstructured additive pertur-
bations is reviewed. This includes a discussion of interpolation theory, which is the
basic tool used to arrive at the robustly stabilizing controller. The limitations of in-
terpolation theory are discussed, and techniques which overcome these limitations are

proposed.
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e In Chapter 4, the results presented in Chapter 3 are used to design a robustly stabi-

lizing compensator for the lateral control system.

e In Chapter 5, the control system designed in Chapter 4 is implemented on a test
vehicle. The performance of the robust controller is compared to a proportional-

integral-derivative (PID) controller during field testing.

e In Chapter 6, several other promising control techniques for lateral control are dis-
cussed. These include minimum-phase simultaneous stabilization, and minimizing the

complimentary sensitivity function and its derivative to improve ride comfort.

e In Chapter 7, our conclusions and recommendations for future work are presented.

e Appendix A describes the testbed vehicle in more detail.

e Appendix B contains MATLAB programs developed for vehicle control simulations.

e Appendix C contains vehicle control software used in the field testing.



Chapter 2

Review of Lateral Vehicle Control

Research

One of the fundamental goals of ITS (Intelligent Transportation Systems) is to develop
automated highways, where vehicles are capable of automatic operation. The most popular
concept is platoons of 10-15 vehicles, separated by 1 meter, traveling down the hichway in a
special lane at normal highway speeds. Automatic operation of highway vehicles is usually
broken down into lateral and longitudinal control. At a higher level, lateral and longitu-
dinal control must be coordinated to perform maneuvers like a lane change. Lateral and
longitudinal dynamics are also related — lateral models are a function of longitudinal veloc-
ity, and lateral steering causes torque disturbances in the engine and powertrain. However,
lateral and longitudinal control are usually treated separately in the literature, especially
when the necessary low-level control systems are addressed. While other survey papers have

mentioned vehicle control topics [34, 68, 51], this chapter reviews the different approaches
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to lateral control system design taken over the last 40 years. The chapter is organized in a
roughly chronological order, but some discussions are kept together and out of order when

they are performed by the same researcher or organization.

2.1 Early Research

The automated highway system concept (AHS) was first introduced in the General Motors
Pavilion at the 1939 World’s Fair [34]. Initial research efforts were conducted by RCA
Laboratories in the 1950’s [84]. Lateral control was achieved by following an electrified cable
buried in the center of the lane. The sensing system consisted of two coils at the front of the
vehicle which detected the magnetic field caused by the alternating current flowing through
the wire. The control algorithm used in the early tests is summarized by “In a dynamic
situation with properly stabilized servo controls the car will proceed down the cable with
no wavering” [84]. A 300 foot section of highway near Lincoln, Nebraska was used for a full-
scale working demonstration in September of 1957 [84]. Other demonstrated technologies
included loop vehicle detectors, and a radio warning system for following vehicles controlled
by the detectors [84].

RCA and General Motors demonstrated an automated highway system at an electronic
test track developed by RCA in the late 1950’s [39]. The same concept of following a buried
wire for lateral control was applied. The control algorithm developed was a function of
velocity, otherwise “the car could operate successfully at only one speed” [39].

Extensive research efforts in vehicle control were conducted at the Ohio State University

(OSU) from 1964 until 1980 [34]. In 1961, Barrick used the transfer function shown in
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equation (2.1) to model the lateral dynamics of a vehicle [12].

67(s) 52 @1)
where:
E¢(s) = lateral deviation from lane center of the front center of the vehicle,
6¢(s) = the front-wheel angle,
V, = the vehicle forward speed,
K(V,) and a(V,) = velocity dependent parameters.

After further tests at OSU, this model was determined to be inaccurate and more suitable
models were developed. One of the simplest models for the lateral motion of a vehicle is a
two degree-of-freedom bicycle model. This is shown in Figure 2.1 and described by equations

(2.2) and (2.3) [79].

20, Cof — 212@1 0 {QCaf +2C,,

mVy + {mvx +

} V= Carbs(t)  (2.3)

Lo+ [2112@#‘; 2122%7«] o {211Caf‘; 25C o
x x

The quantities shown in Figure 2.1 and equations (2.2) and (2.3) are described in Table

2.1. Rearranging equations (2.2) and (2.3) yields the following state-space system:

& = Az + Bu (2.4)

a;l a1z by Vy
where A = , B= ,u =0, and x =

a2 by Q.
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Figure 2.1: Simplified Bicycle Model for the Car
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Parameter | Description

m Vehicle mass (kg)

Ve Longitudinal velocity (vehicle coordinates) (m/s)
Vy Lateral velocity (vehicle coordinates) (m/s)

I1, 1o Distance from front and rear axles to c.g. (m)
Q. Yaw-rate about the c.g. (rad/s)

o¢ Front steering angle (rads)

Cy, Cy Front and rear tire cornering stiffness (Kn/rad)

L Inertia about the z-axis (kg - m?)
I* Distance from the lateral sensor to the c.g. (m)

Table 2.1: Summary of Coefficients in Bicycle Model

11
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_  _ | 20,420 _ 210, ¢ —205C,
a — af ar a — 1 af 20 xr
1 [ Vem ‘| 12 Va + Vem ‘|
4y — — | 21Cay—21Car Gy — — | 21%Cas+205°Car (2.5)
Vil Vel
20, 2404y
bl - Tm bg = T,

The two state variables are the yaw-rate €}, and the lateral velocity V. The lateral path
error E., of the center of gravity (c.g.) is a function of the lateral velocity V,,, the heading

©, and the longitudinal velocity V. This relation is shown in equations (2.6) and (2.7).

Eeg=Vy +V,0 (2.6)

-0, (2.7)

If the lateral error is sensed at the front of the vehicle a distance {* from the c.g., then
equation (2.6) must be changed as shown in (2.8). The augmented state-space model is

shown in equation (2.9). Ey is the path error sensed at the front of the vehicle.

Ep =V, + V0 +1*Q, (2.8)
Vy allr ai2 0 0 % b1
Q. az; aze 0 0 Q, by
= + o5 (1) (2.9)
o 0 1 0 O o 0
Ef 1 0 V. 0| E 0

The bicycle model for lateral motion described by (2.9) has four eigenvalues, with two

located at the origin. The remaining two eigenvalues, describing the lateral dynamics of
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the vehicle, are usually a stable complex pair. For constant velocities and the lateral error
as the only output (C' = [0001]), the state-space model described by (2.9) takes the form of
(2.10) when expressed as a transfer function,

E 2
1(s) st qestgs (2.10)

6¢(s)  s2(qas? + g5 + q6)

The origin of the ”bicycle” model is apparently unknown [34]. A modified version of the
bicycle model was used at OSU for lateral controller designs in the 1970’s [34]. The OSU

model is described by equation (2.11).

Q.(s) + (2.11)

2+ a1(Vy)s + a2(Vz) 6f($)  Ky(V,) s+ as(Vy)

Ef(s) - Kl(vx) SQA(S) <2

(v e L0 ) gy S Lol

where:

A(s) = %+ ag(Vi)s + ag(Vy)

Q.(s) = yaw-rate command

Fy(s) = disturbance input

F.(s) = road elevation input
K;(Vy) = velocity dependent gains (i=1,2,....9)
a;(Vy) = velocity dependent parameters and/or a collection of parameters (j = 1,2,...,9).

Equation (2.11) is basically a two degree-of-freedom bicycle model plus a roll-steer cor-
rection term [36]. The K;(V;) and a;(V;) parameters were identified by field tests and

from manufacturer-supplied data for a 1965 Plymouth sedan [36, 55]. Note that the four
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poles of the OSU model correspond to the four poles of the simple bicycle model described
by equation (2.11). The additional terms in the OSU model correspond to a commanded
yaw-rate term, a disturbance term, and a superelevation term (road elevation angle causes
roll steering).

An early wire-following system developed at OSU in 1967 used two buried wires to
overcome some of the problems associated with a single cable and relied on mechanically
moving the sensor coils as a linear function of the front wheel angle to improve system
damping. This did not yield satisfactory results at velocities greater than 30 mph, so a
lead-compensator was tried. The lateral transient response, with and without the moving
coils, was improved at higher velocities by this lead-compensator [33]. A phase-lead filter
was then used in experiments between 1967 and 1969 [55].

Work in the early 1970’s at OSU used the model described by (2.11), and classical control
theory to design lateral controllers [36]. Both single-loop (lateral-error (Ey) feedback)
and dual-loop (lateral error (Ef) and yaw-rate (€2,) feedback) controllers were examined.
The single-loop compensator was designed using a settling time criterion, and limits on
E¢ for maximum disturbance conditions. In order to meet these requirements, a lead-lag
compensator was employed. Root locus techniques were used to analyze the compensator
at two different speeds [36]. The performance of the dual-loop compensator was evaluated
experimentally, and gave good results at lower speeds. However, a satisfactory means of
obtaining the yaw-rate (), was not available. Both controllers were implemented on-board
the vehicle with an analog computer containing 20 op-amps.

The fixed-gain compensator designed at OSU performed satisfactorily at lower speeds,

but encountered difficulties at higher speeds. Problems included decreased damping with
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increased speed, and large errors for large yaw-rate inputs associated with small radius
turns at higher speeds [36]. In order to overcome these problems, velocity-dependent com-
pensators were designed [18, 35].

The velocity-dependent compensator consisted of a G,(s) term added to the lead-lag
compensator shown in (2.12). The goal of adding G,(s) was to cancel out the velocity-

dependent poles and zeros of the system.

Gule) = i) | 5] [ (2.12)

The lag compensator was used to reduce the steady-state tracking error. The lead
compensator was used to overcome the destabilizing affect of the phase lag [18]. The car
model used is shown in equation (2.13).

(2 + 81.65¢ + 17.95)
Ej(s) = 114.5 -

5(s) (2.13)
2 (52 +156.15 + 606317 + 26.93) !

The transfer function G,(s) chosen to cancel out the velocity-dependent modes of the

vehicle is shown in (2.14).

2 49 2 42\ [s2+156.1- + 6063-L5 + 29.63
Go(s) = <S e 5 = (2.14)

s2+81.65%+17.95 s24+2hs+h%2 4+ k2

Gc(s) is then called a velocity-adaptive controller. A lag compensator was also tried
(without lead compensation). Root locus techniques and analog computer simulations,
along with field tests, were used to evaluate the performance of the velocity-adaptive con-

trollers. Note however, the use of the Laplace Transform in (2.13) and (2.14) is not valid



CHAPTER 2. REVIEW OF LATERAL VEHICLE CONTROL RESEARCH 16

because the system is time varying. Therefore, although the system worked in practice, all
theoretical guarantees of stability are lost when such an approach is taken.

A digital version of the velocity-adaptive controller was later implemented using an
Intel 8086 microprocessor. The same compensator described by (2.12) and (2.14) was
implemented in digital form, using a bilinear transformation [37, 53].

2z—-1

e T =120 2.15
T ms (2.15)

5 —
The performance of the digital controller very closely matched the performance of the analog
controller, which was expected.

A two-frequency radar which sensed the distance to a barrier was later tried at OSU
as an alternative to the wire-following approach [51]. However, the only mention of the
controller is that the velocity-adaptive one designed in [18] was used.

While the early efforts were being conducted at OSU, similar wire-following experiments
were also being conducted in Japan and England [45, 16]. In Japan, automatic control of
the steering, brake and throttle was demonstrated with a wire-following system [45]. One
wire, excited at 1200 Hz was used as the lateral reference system. The on-board sensors
measured the signal amplitude to determine the vehicle’s lateral position. A proportional-
derivative (PD) control law was used in the lateral control system. In order to improve

performance on curved sections, a nonlinear gain was applied to increase the gain as the

lateral error increased. The shape of this gain is shown in Figure 2.2.
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Output Voltage

Input Voltage

Figure 2.2: Nonlinear Gain Curve

2.2 Modern Control Theory

Modern control theory, including state-space approaches and optimal control, was applied
to vehicle control as early as 1971 [57]. However, inadequate sensor technology did not
allow practical implementations until much later. Therefore, frequency-domain and clas-
sical control techniques, which are more oriented towards input-output transfer function
analysis, remained prevalent in the early hardware implementations. This section reviews
the application of modern control theory to lateral control of highway vehicles.

Pasternack in 1971 discussed the observability and controllability of the linearized lateral
dynamics of a rubber-tired vehicle [57]. He also discussed the application of optimal control
to the lateral control problem. In 1974, Bonderson proposed using optimal control with a
quadratic performance index that penalizes the lateral displacement, lateral acceleration,
and yaw acceleration [13].

In the mid-1980’s an optimal controller was developed at OSU [31]. The optimal control



CHAPTER 2. REVIEW OF LATERAL VEHICLE CONTROL RESEARCH 18

design involved choosing a weighting matrix for the cost function, and solving the algebraic
Riccati equation (ARE). The vehicle dynamics are described by (2.13). The steering actu-
ator dynamics were also modeled, yielding a bth-order state-space model. In order to take
care of the velocity dependence of the model, the ARE was solved at different velocities so
that K = K(V,) (gain-scheduling). The velocity increment AV, used for gain-scheduling
was 1 m/s, and gains were calculated as V,, varied from 10 m/s to 35 m/s. Since all 5 states
were not, available, a reduced-order observer was designed to estimate the states. The poles
of the observer were placed at the roots of (s + 6.2)%(s 4+ 29)2 . The design was carried
out for a continuous-time system, and then discretized using the bilinear transformation for
computer implementation. A sampling period of 7" = 120ms was chosen, which is faster
than ten times the closed-loop bandwidth (ten times closed-loop bandwidth ~ 256ms). The
optimal controller was implemented on an Intel 8086 microprocessor, and simulated on an
analog computer representing the vehicle dynamics. Although an optimal controller was
implemented (Linear Quadratic Regulator - LQR. design), a traditional observer was used
to estimate the states. If a Kalman Filter had been used in conjunction with Loop Transfer
Recovery (LTR), some robustness properties could have been added to the system at fixed
velocities. However, no robustness properties can be guaranteed for the optimal approach
taken.

Research on Automated Guideway Transit Vehicles conducted in the 1970’s was very
much concerned with the lateral control of rubber-tired vehicles. Automated Guideway
Transit (AGT) was a class of proposed urban transportation systems in which vehicles op-
erated under automatic longitudinal and lateral control on exclusive guideways [69]. Several

lateral control strategies were presented in [67]. These included an optimal Wiener filter, an
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LQR design, and a suboptimal reduced-state-feedback controller. A two degree-of-freedom
bicycle model was used to design and evaluate the different control strategies. The perfor-
mance index for the Wiener filter consisted of mean-square acceleration and mean-square
tracking error at a given point on the vehicle. A fourth-order compensator was designed
which cancels unwanted vehicle poles and zeros to yield the optimal desired transfer func-
tion. The high-order of the compensator and pole-zero cancellation made the Wiener filter
implementation unattractive at the time.

A full-state-feedback Linear Quadratic Regulator (LQR) design was also presented in
[69], with the detailed calculations appearing in [67]. Although the LQR design and Wiener
filter are very similar, the LQR. approach does not rely on pole-zero cancellations to yield
the desired transfer function. However, the LQR design does rely on full-state feedback. A
Kalman filter was proposed for cases when full-state feedback was not available. Because of
the added complexity of a Kalman filter design, a reduced-state feedback controller which
used only lateral position and yaw angle error was designed to evaluate the performance of
a relatively simple controller.

The reduced-state-feedback proposed in [69] can be implemented with one or two sensors,

depending on the sensor location, with the following control law:

by = —Ky(y — wo) — Kot (2.16)

where 0 represents the yaw angle and (y —yo) is the lateral path error. K, is the gain which
multiplies the path error, while Ky is the gain which multiplies the yaw angle error. As
noted in [69], if the lateral error sensor is located a distance [* in front of the vehicle center

of mass, the error sensed is a function of the vehicle lateral position error as measured at
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the center of mass, (y — yo), and of the yaw angle, 0, for non-zero [*.

Ep=(y+1"0) — o (2.17)

Taking advantage of (2.17), the simple steering controller described by (2.18) was examined
in [69]. The gain K. represents the overall controller gain, which multiplies the lateral error

and the yaw angle estimate [*6.

bop = —Ke[(y +170) — yol (2.18)

The performance of the simple controller described by (2.18) was compared to the perfor-
mance of the baseline Wiener optimal design. The results indicated that the performance
of the simple controller closely matched the optimum design, and the loading of the vehicle
did not significantly affect performance. Much of this was attributed to the design of the
vehicle — well-damped open-loop dynamics and nearly neutral-steer.

The effects of steering actuator dynamics on vehicle performance were also examined
in [69]. The steering actuator dynamics were modeled by a first-order lag. For all of the
conditions studied, vehicle dynamics were unaffected by actuators with responses flat up
to 16 Hz. With the simple proportional controller studied, actuator time-constants greater
than about 0.025 seconds caused instability. Other results discussed in [69] include the
effects of vehicle speed on controller performance and occupant comfort. The ISO (Inter-
national Organization for Standardization) passenger comfort specifications were used to
evaluate root-mean-square (rms) lateral acceleration data. The performance of the sim-
ple proportional controller was found to degrade quickly with increasing speed, while the
full-state-feedback controller was more robust with respect to velocity changes. This is rea-

sonable because LQR designs with full state feedback have inherent robustness properties,
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(0.5, 00) gain margin and (+60°, —60°) phase margin [47].

In the mid 1970’s, Daimler-Benz conducted research on automatic lateral control of
buses [17, 19]. State-space design methods were applied. The stability limitations of a
simple proportional controller with output feedback (front error, front and rear error) were
discussed. Based on the limitations of proportional control, an optimal LQR approach was
suggested. An attempt was made to find a fixed optimal controller which performed well
over a wide range of varying parameters. A fixed optimal controller with low parameters
sensitivity was not found, so efforts shifted to designing a pole-placement controller. An
observer was designed to estimate the states. Although the observer had a fixed gain while
parameters were varying, the performance of the observer was fairly robust to parameter
changes, especially when compared to a simple differentiating filter for state estimation.

The largest AHS effort is currently being undertaken at PATH (Program for Advanced
Technology for the Highway) in California. The PATH approach to automatic lateral control
relies on sensing the location of buried magnets spaced 1 meter apart. In addition to
providing lateral position error data, the magnets are also coded using polarity changes to
provide road curvature information to the vehicle lateral control system. The use of preview
control was deemed necessary to improve performance on sharp curves, especially at high
speeds [56]. The magnetic reference system is described in great detail in [83].

The overall lateral controller designed at PATH consists of a feedback and a feedforward
component. The feedback component of the control system was designed using frequency-
shaped linear quadratic (FSLQ) control theory, while the feedforward controller was de-
signed to generate a preview steering command based on the road curvature information

[63]. A six degree-of-freedom complex model was used for simulations, while a simplified
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two degree-of-freedom model was used for the controller design. Open-loop simulations
were conducted to verify that the simplified and complex models performed similarly under
typical operating conditions.

FSLQ control theory was chosen for lateral vehicle control at PATH because frequency-
dependent weighting factors can be placed on the tracking error, lateral acceleration, and
control effort [63]. In addition, weighting factors on the tracking error terms can be shaped
in the frequency-domain to increase the robustness of the plant to high frequency noise and
unmodeled dynamics. The weighting factor on the acceleration term can also be weighted
in the frequency domain to ensure good ride quality in the frequency range sensitive to
passengers [63].

FSLQ theory is an extension of linear-quadratic gaussian methods [40]. Traditional
linear quadratic regulator (LQR) designs are based on the linear model (2.19) and the

quadratic performance index (2.20).

& = Az + Bu, 2(0) = zo, (0 <t <ty) (2.19)

ly
J = /0 (27 Qz + uT Ru) dt + 27 (t;) Ma(ts) (2.20)

The dynamics of the plant are described by (A, B), and the design objective is to
minimize the cost index J , with @ positive semidefinite () > 0), R positive definite
(R > 0), and M positive semidefinite (M > 0). If the standard LQR cost function is
written in the frequency domain using Parseval’s theorem with the weighting matrices @)

and R functions of frequency, and with no weighting on the final state, the result is (2.21)
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140).

J = % 1 ;OO 2" (jw)Qw)a(jw) + u (jw) R(jw)u(jw)| dw (2.21)

Q(jw) and R(jw) must be Hermitian ! at all frequencies, and a solution is guaranteed
if R(jw) is positive definite and Q(jw) is positive semidefinite at all but a finite number of
discrete frequencies [40]. The dynamic equation (2.19) and the cost function (2.21) may be
written in terms of an extended state vector. The control law is then obtained by solving
a modified algebraic Riccati equation [40)].

Experimental results for the FSLQ controller approach are described in [62]. Sensitivity
reduction was used to lessen the effects of perturbations in velocity and cornering stiffness.
Open-loop tests were conducted to determine tire model parameters, steering actuator pa-
rameters, and overall vehicle response. The magnetic sensor system was calibrated using
a video stripe sensing system. A proportional-integral-derivative (PID) controller was also
tested for comparison purposes. Test speeds were relatively slow, 20 — 50 kmph (12-30
mph), and the control system could not keep the vehicle within the range of the magnetic
marker system (425 em) in the high speed tests of 50 kmph. In subsequent testing, the
performance was improved at higher speeds, and the maximum velocity was increased to
60 kmph [43].

Other lateral control research conducted by PATH researchers has analyzed the use of
lateral velocity and yaw-rate as two independent control inputs [50]. This approach requires

an extra input in addition to front steering angle, which might consist of rear independent

Ydef. of Hermitian is A (jw) = A(jw) Yw where A™ is the complex conjugate transpose of A
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steering, front differential torque, or rear differential torque [50]. These combinations would
allow independent control of lateral and yaw motions. The range of steady-state lateral
velocity and yaw-rate were analyzed for three different cases: conventional front-wheel
steering, front-wheel steering and front-differential force, and front and rear independent
steering. The case of independent front and rear wheel steering allowed widest range of
reachable steady-state yaw-rate and lateral velocity. An optimal controller was developed
for the front and rear independent steering system, and was evaluated using simulations as
well as experiments on a small model car. An estimator was also designed to estimate the
cornering stiffness of the tires for use in the control algorithm. Gain-scheduling was used to
account for varying velocities and cornering stiffness [50]. The control law also incorporated
a feedforward term to compensate for centrifugal force. In the actual experiments, yaw-rate
was measured by an angular velocity sensor, and lateral velocity was obtained by integrating
data from an accelerometer [68]. The use of gain-scheduling and sub-optimal estimation
without loop transfer recovery results in the loss of any inherent robustness properties in
the optimal controller design.

A topic related to lateral control, robust fault detection in lateral control systems, was
also analyzed as part of the PATH program [59]. The approach taken involves designing
three observers, each of which uses two out of the three available sensor measurements.
Should one of the sensors fail, only one observer would be affected. The observer was

designed by writing the system dynamics in the form:

&= Az + Bu + Ed (2.22)

y=Cx+ Du+ fs (2.23)
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where the F/ matrix accounts for the parameter uncertainties, d is the disturbance input,

and f, represents the sensor fault vector. Defining an observer as:

i = Ai+Bu+K(y—79) (2.24)

g = CZ+ Du (2.25)
The observer error dynamics become:
é=(A-—KQe+ FEd+Kfs, F=(A—-KC) (2.26)

Defining the residue r as r = He , yields the following transfer function from uncertainty d
to r:

Gra(s) = H(sI — F)'E (2.27)
where F' = (A — KC)

For the residue to be insensitive to uncertainties, G4 should be zero, as shown in (2.28).
Gra(s) = H(sl — F) *E=WC(sl — F) 'E =0 (2.28)

The K and W matrices are then chosen using eigenstructure assignment as described in
[59, 58.

Simulation and experimental results of the sensor fault detection algorithm are discussed
in [59]. The same model car used in [50] was used for testing the fault detecting observer
scheme. As in [50], noisy acceleration data was a problem, and lateral acceleration sensor
faults were not easily detected.

A nonlinear combined lateral and longitudinal controller for lateral control proposed

by PATH researchers is described in [66]. A nonlinear model, which takes into account
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engine dynamics, steering actuator dynamics, and lateral dynamics was used. The proposed
nonlinear control law is very similar to computed-torque control laws in robotics. This

approach is outlined by equations (2.29-2.30).

Mg+ N(q) + kq = u(t) (2.29)

u(t) = N(q) + L(q) (2.30)

If the dynamics of a system are described by (2.29), where N(gq) is a known nonlinearity, a
feedback law of the form of (2.30) can be used to cancel the nonlinearity and place the poles
of the remaining linear system. However, the robustness of the system is affected by inexact
cancellation of the nonlinearities. This approach is taken in [66], but approximations of the
sine and cosine terms are made in order to arrive at the control law. The control law was
simulated for a platoon of 5 vehicles accelerating on a curved road section. The control
system performed well in simulation, and further work will address the robustness of the
controller to measurement noise and communication delays between vehicles [66].

Fuzzy logic has also been applied to the lateral control problem by researchers at PATH
[43]. Fuzzy logic was used to develop feedback, preview, and gain scheduling rule bases.
The fuzzy logic controller was then tested on a Toyota Celica, developed by IMRA America.
Testing was performed at 30 kmph, 40 kmph, 50 kmph, and 60 kmph. The fuzzy logic
controller was capable of maintaining lateral errors of less than 10 c¢m at speeds up to
50 kmph. The experimental performance of the fuzzy logic controller was comparable to
the PID and FSLQ controllers previously tested by PATH.

Robust control techniques applied to vehicle lateral control are described in [3, 6, 5, 2, 1].

In [3], a gain-scheduled controller for four-wheel steering that yields velocity-independent
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yaw eigenvalues is presented. The bicycle model is used to model vehicle lateral dynamics.
A result presented in [1], which states that a feedback compensator H¢(s) = % for the front
wheel steering angle decouples the yaw mode from the lateral mode of the front axle, is used
in [3]. Using this compensator, the yaw-rate and front steering angle are unobservable from
the acceleration of the front axle, and the acceleration of the front axle is not controllable
from the rear steering angle [3]. A controller described by (2.31) is then proposed for the

rear steering which results in robust yaw damping by yaw-rate feedback.

o= (7= ko ) (wr = 2) (2.31)

where:

o, = rear wheel steering angle
[ = wheelbase
V., = longitudinal velocity
kp = controller parameter adjusted to obtain the desired damping
w, = commanded rear yaw-rate
), = vehicle yaw-rate

Note that the controller described by (2.31) requires gain-scheduling for the velocity
term. The controller does however eliminate the velocity dependence of the characteristic
polynomial of the closed-loop system [3]. Decoupling feedback (H(s) = 1) yields a velocity-
independent natural frequency, but low damping. Adding rear-wheel steering with the yaw-
rate feedback shown in (2.31) yields velocity independent eigenvalues and better damping,

comparable to the eigenvalue region of a conventional car [3].
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In [6], yaw-rate feedback in conjunction with simultaneous pole region assignment for
four extremal plants is applied to improve the robustness of a bus lateral control system.
The four extremal plants consist of combinations of the maximum/minimum velocity and
mass: (m*,v7), (m*,v"), (m ,v"), (m ,v"). A hyperbola was chosen as the stability
boundary. The closed-loop poles of the system were placed to the left of the hyperbola for
the four extremal plants. Simulation results showed that the robust controller designed with
vaw-rate feedback performed better than a feedback system which only uses lateral error.
The improvements included reduced maximal displacements, reduced oscillatory tendencies,
and more uniform responses over the range of operation conditions (m,v) [6].

In [2], sliding mode control is applied to the lateral control problem. A bicycle model was
used for the controller design, but the simulations were conducted with an extended nonlin-
ear two-track model. Two different approaches were taken for the sliding mode controller
design. The first assumed lateral displacement and steering angle as the two measurable
states. The second approach assumed that lateral displacement and yaw-rate were the two
measurable states. The robustness of this approach comes from the application of sliding
mode control, but the controller parameters were hand-tuned to obtain a suitable trade-off
between tracking performance and ride quality [2].

Research on passenger ride comfort during lane changes has been studied by Mitsubishi
[41]. Experimental tests were conducted to determine the profile of typical and emergency
lane changes. Based on the lateral acceleration and jerk profile of a typical lane change,
a lateral controller and trajectory generator were designed. The trajectory generator com-
mands the steering actuator position and velocity to obtain the symmetric acceleration and

jerk trajectories seen in the test data. The steering position control is only used during
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lane changes, not during normal lateral control, and involves the use of a feedforward term
to the steering actuator. Both simulations and field tests were used to evaluate the control
system performance.

The application of model-reference adaptive control (MRAC) to the lateral control prob-
lem is described in [14]. Adaptive control is promising because it allows for adaptation as
parameters change (velocity, cornering stiffness, mass, etc.). Although model-reference
adaptive control guarantees stability and performance after adaptation, performance is not
guaranteed during adaptation. There are also several limitations to practical implementa-
tion. These include instability caused by steering actuator saturation during adaptation,
and a tradeoff between control amplitude and frequency content during adaptation. These
two issues require further research before model-reference adaptive control is suitable for
lateral control of vehicles. One possible approach for handling actuator saturation is de-
scribed in [71, 80]. This involves using the sum of several saturation functions to obtain the
control input.

There has also been a significant amount of research conducted on vision-based lateral
and longitudinal control of vehicles [49, 52, 65, 78, 21, 20, 24, 75, 76, 22, 9, 10, 74, 61, 25].
Much of this work has focused on the vision aspects, and little attention has been paid to the
actual control algorithm. In other cases, the lateral control algorithm is “hidden” in a neural
network vision algorithm and is difficult to analyze [61]. Much of the vision-based navigation
work done in the 1980’s was part of the Autonomous Land Vehicle (ALV) project [49, 52,
65, 78, 21, 20, 24, 75, 76, 22, 9]. The most successful vision-based road following research is
currently being conducted at Carnegie Mellon University (CMU) and in Germany [61, 25].

The CMU approach uses neural networks while the Germans are using more classical vision
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techniques (line and stripe following, edge detection). Both have demonstrated successful
lateral control at highway speeds (55 mph plus). The National Institute of Standards (NIST)
has also conducted some vision-based road following research, including experimental work

with a High Mobility Multipurpose Wheeled Vehicle (HMMWYV — the Army jeep).

2.3 Summary and Conclusions

A summary of the history of lateral control research appears in Table 2.3. Many of the
concepts popular today, optimal control and velocity gain-scheduling, have their origins in
the early research. This is somewhat driven by the requirements and problems encountered
when designing a lateral control system. Table 2.2 summarizes the basic requirements and
problems.

As seen in Table 2.2, there are many unsolved problems. These include dealing with
nonlinearities and time varying parameters. Although gain-scheduling is often used to solve
the velocity dependent problems, there are no guarantees of stability. Therefore extensive
simulation and field testing must be conducted to ensure the stability of a gain-scheduling
control system. Adaptive control can be applied to solve some of the time varying issues,
but there are no performance guarantees while the system is adapting. This can lead to
oscillations, and in the case of saturation of the steering actuator, instability. Robust control
techniques can guarantee stability for a wide range of parameter changes, but performance
may vary greatly. In summary, although there has been a significant amount of research
on lateral control over the last 40 years, the “ideal” solution still does not exist. Therefore,

this dissertation makes a contribution by exploring the merits of robust controllers which
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Design Requirements

e minimize lateral error
e function over a wide range of parameter changes (velocity, cornering stiffness, mass, etc.)
e good ride comfort

e graceful degradation and robustness to sensor, actuator, and controller faults

Difficulties

e developing a suitable model is tough, most controller designs are performed using a lin-
earized two DOF bicycle model. Higher order, nonlinear models are used for simulation
purposes. These include terms for roll steering and tire models. Still, these models are
not valid for all modes of operation. The nonlinearities are also difficult to deal with using
modern control techniques.

e system is time varying (parameters like velocity, cornering stiffness, mass, etc.).

e some parameters are not easily measured, like cornering stiffness and lateral velocity, re-

quiring some sort of estimation.

Table 2.2: Summary of Controller Design Requirements and Difficulties
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can overcome many of the problems associated with other controllers, while still using a

fixed control law.

The next chapter discusses robust control of plants with unstructured additive pertur-

bations in the frequency-domain.



CHAPTER 2. REVIEW OF LATERAL VEHICLE CONTROL RESEARCH

33

Program & | YEAR Sim/HW Control Theory Used

Researcher

RCA 1957 HwW not, available

GM & | late 1950’s HW velocity dependent controller

RCA,Gardels

Japan 1973 HwW PD lateral control, non-linear gain curve to
handle curves

Britain, Giles mid 1960’s HW not available

S. Pasternak 1971 controllability, observability, optimal control.

Bonderson 1974 optimal control, performance index penalizes
lateral displacement, lateral acceleration, and
yaw acceleration

OSU, Fenton 1967-69 HwW lead compensator, bicycle model + roll steer
term

OSU, Fenton early 1970’s HwW single and dual loop compensators, root locus
techniques

OSU, Fenton late 1970’s HW & Sim velocity-dependent controller, lead-lag com-
pensator, root locus techniques, digital ver-
sion later implemented (discretized analog
version), analog computer simulations

OSU, Fenton mid 1980’s Sim optimal (LQR) controller with
gain-scheduling, traditional observer

Daimler-Benz mid 1970’s Sim & HW lateral control of a bus, investigated pro-

AG/H. Christ portional control (lateral error - both front
& rear), discuss LQR (too difficult to im-
plement), implement pole placement with
observer

MIT, Shladover 1976-78 Sim Wiener optimal filter, optimal LQR, reduced
state feedback, bicycle model, AGT research

PATH, Peng & | 1989- present Sim & HW frequency-shaped linear quadratic, sensi-

Tomizuka tivity reduction, feedforward preview con-
trol (road curvature), PID for comparison
purposes

PATH, 1990 Sim & HW lateral velocity & yaw-rate as control inputs,

Matsumoto & 4 wheel steering, optimal control w/gain-

Tomizuka scheduling, feedforward term for centrifugal

force
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Program & | YEAR Sim/HW Control Theory Used

Researcher

PATH, Patward- | 1992 Sim & HW sensor fault detection with observers

han & Tomizuka

PATH, 1992 Sim nonlinear controller, similar to computed

Sheikhoslam & torque control

Desoer

PATH, Hessburg | 1994 Sim & HW Fuzzy Logic

& Tomizuka

J. Ackermann 1990 Sim decoupling yaw and lateral acceleration
modes at front axle with yaw-rate feedback,
bicycle model

J. Ackermann 1990 Sim simultaneous pole placement for extremal
plants, bicycle model

J. Ackermann 1992 Sim velocity independent yaw eigenvalues via
gain-scheduling feedback to rear wheels

J. Ackermann 1994 Sim sliding mode control

Mitsubishi, 1990 Sim & HW trajectory generator (steering angle and ve-

Hayafune locity) for lane changes which ensures good
passenger ride comfort

CMU, 1990-present Sim & HW vision-based neural networks, implemented

Pommerlau on HMMWV

E.D. Dickmann 1990- present Sim & HW vision-based road following using classical
vision techniques (edge detection, stripe
following)

NIST 1992- present Sim & HW vision-based neural networks, implemented
on HMMWV

Sandia, Byrne 1993 Sim model-reference adaptive control

Table 2.3: Summary of Lateral Control Techniques
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Chapter 3

Robust Control

This chapter deals with the design of robust controllers in the face of frequency-domain
additive unstructured uncertainty. However, many of the techniques involving interpolation
for additive perturbations may also be applied to systems with multiplicative perturbations.
The limitations of the current theory are discussed, and methods to extend it are presented.
New methods are presented for handling plants with poles on the jw axis and plants with
unstable poles with multiplicity greater than 1. The next section reviews the basic theory

of robust control given unstructured additive perturbations in the frequency-domain.

3.1 The Robust Stability Condition

Consider the class of single-input single-output (SISO) plants, in the simple closed-loop
system shown in Figure 3.1. The transfer function of the controller is denoted by ¢(s) while
the transfer function of the SISO plant is denoted by p(s). If the uncertainty of the plant

is modeled as unstructured additive perturbations, the following definition is a natural way

35
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r(s) ,O c(s) p(s) - y(s)

Controller Plant

Figure 3.1: Closed-Loop System

to describe the variations of the frequency response of the system.

Definition 3.1 [46]: A transfer function p(s) is said to be in the class C'(po(s),r(s)) if

1. p(s) has the same number of unstable poles as that of py(s),

2. [p(jw) —po(iw)| < [r(Gw)l, [r(jw)| > 0, Vw € R

In definition 3.1, pg(s) represents the model of the nominal plant dynamics, while p(s)
denotes the actual plant dynamics. Therefore, r(s) characterizes the uncertainty of the
nominal plant model. Tt is assumed that r(s) is a stable proper rational function. Given a
compensator ¢(s) which stabilizes po(s), the conditions for ¢(s) to be a robust stabilizer for
all the plants in the class C(po(s), r(s)) can be derived. The first step is to define the plant

as the sum of the nominal plant and a perturbation ép(s).

p(s) = po(s) +op(s); [op(jw)| < |r(jw)| Yw € R (3.1)
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From the assumption that ¢(s) stabilizes pg(s), one can write

po(jw)e(jw) +1 #0Vw € R (3.2)

Because the closed-loop system is stable, the Nyquist stability criterion states that ¢(s)po(s)
has the correct encirclements of the -1 point. If pp(s) and p(s) have the same number of

unstable poles and thus the same number of encirclements, then

1+ p(jw)e(jw) (3-3)

can be written as
1+ [po(jw) + bp(jw)] c(jw) (3.4)
1+ po(jw)e(jw) + ép(jw)e(jw) (35)

Factoring out the term (1 + po(jw)c(jw)) yields

(14 po(jw)e(uw)] [T+ (1 + p(jw)e(jw) e(jw)s(jw)] (36)

From the small gain theorem [30], one is guaranteed that the number of encirclements of

the -1 point will not change with the perturbed plant as long as

sup (L4 po(jw)e(er)) ' eljup(iu)| < 1 (3.7)
where sup is the supremum for all w
w

A sufficient condition for robust stability is then described by (3.8).

|11+ po()e(s)] " e(spr(s)| <1 (3.8)

where [|[F(s)[ = sup |[F(jw)|
w
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uz(s)
e1(s) + ea(s)
u1(s) JEO c(s) va - p(s) - y(s)

Figure 3.2: General closed-loop system

If the g parameterization, originally described in [82], is introduced, where

c(s)

§) = ———F—— 3.9
) = T ) (39

The robust stability condition can be written as
la(s)r(s)llo <1 (3.10)

In addition to the robust stability condition described by (3.10), it is also desirable to
guarantee internal stability described next.
The standard feedback configuration of a general closed-loop system is shown in Figure

3.2. The transfer matrix between the two inputs and two outputs is shown below.

e1(s) [1+p(s)e(s)] " —p(s) [1+p(s)e(s)] u(s)
= (3.11)

e2(s) o(s)[Ltp(s)e(s)] ™ [L4pls)e(s)] ua(s)
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The closed-loop system is internally stable if all of the transfer functions in (3.11) are
bounded-input bounded-output stable (BIBO stable < H> functions). This assures that
any bounded signal injected at u1(s) or ug(s) leads to a bounded response at any other
point in the system. Applying the ¢ parameterization to (3.11) yields

e1(s) 1 —p(s)q(s) —p(s)[1—p(s)q(s)] uy(s)
— (3.12)

e2(s) q(s) 1= p(s)q(s) ua(s)

Based on (3.12), the conditions on ¢(s) for the internal stability of the system are:

1. q(s) € H®

2. q(s) must have zeros at the poles of p(s) in the right-half-plane (RHP)

3. p(s)q(s) must interpolate to 1 at the poles of p(s) in the RHP

The first two conditions can be easily met by introducing the Blaschke product B(s),

where

Q; — S

a; + 8

B(s) ﬁ( >7|B(jw)| — 1w, i —1,.m (3.13)

For this application, the «; are the poles of p(s) in Re s > 0. Also assume that all the
unstable poles are simple, and p(s) has no poles on the jw axis. Both these assumptions

will be relaxed later. Defining g(s) as
q(s) = q(s)B(s) where ¢(s) € H* (3.14)

ensures that the first two conditions are met.

If p(s) is defined as

p(s) = po(s)B(s) (3.15)
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then
po(s)a(s) = Po(s)q(s) (3.16)

To ensure that condition 3 for internal stability is met, §(s) must satisfy the interpolation

conditions

(i) = ol (3.17)

Because the magnitude of B(s) is equal to 1 for all w, the robust stability condition (3.10)

can be written as
1(s)rm()lloe <1 (3.18)
where r,,(s) is a minimum phase H > function such that

rm (jw)| = [r(jw)] (3.19)

Introduce the function
u(s) = G(s)rm(s) (3.20)
and the robust stability condition can be written as

[u(s)]loe <1 (3.21)

Equation (3.21) can only be satisfied if u(s) is a strictly bounded real (SBR) function. The

interpolation conditions on u(s) are

ufon) = glas)rm(as) = —— (3.22)

The robust stability problem for additive unstructured perturbations reduces to an equiv-
alent interpolation problem of finding a strictly bounded real (SBR) function which inter-

polates at the unstable poles of the nominal plant in the RHP. This interpolation problem
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is often referred to as the Nevanlinna-Pick interpolation problem, and is discussed in great
detail in the next section.

The interpolation conditions described by equation (3.22) are for the case with no multi-
plicity. For interpolation conditions with multiplicity m, constraints are put on the deriva-

tives of u(s) at ;. These constraints are derived below:

L= (s )in(s) — (s - a5 (3.29)

The first (m — 1) derivatives of equation (3.23) are equal to zero at s = «;. Therefore,

equation (3.23) may be written as

L ()po(s)

o =0 where i =1,2,3,....,(m —1) (3.24)

s=awy;

Reorganizing equation (3.24) yields

j—; [G(s)] o = % {ﬁots)} o where ¢ =1,2,3,...,(m — 1) (3.25)
u(s) is defined as
u(s) = q(s)rm(s) (3.26)
Therefore,
d! d . )
o [u(s)] - =3 [G(s)rm(s)] - where i = 1,2,3,....,(m — 1) (3.27)

Using equation (3.25), equation (3.27) may be written as

d [u(s)]‘ di |:T~rn(5):|

dst T dst Po(s)

where i = 1,2,3,....,(m — 1) (3.28)

=y s=awy;

Equation (3.28) is important because it allows the calculation of the desired derivatives of

u(s) at the interpolation point from known information (g(s) has not been constructed yet).
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In addition to the interpolation conditions placed on the SBR function wu(s), constraints
may also be placed on the relative degree of u(s) to make the compensator proper. From

(3.9), the controller can be expressed in terms of ¢(s).

q(s)

c(s) = —————— 3.29
) = T (3:29)
The controller is proper only if g(s) is proper. From (3.14) and (3.20),
B(s)u(s)
= — 3.30
i) - 2 (330

In order for g(s) to be proper, the relative degree of u(s) must be greater than or equal
to the relative degree of r,,(s). The Nevanlinna-Pick interpolation discussed in the next
section generally yields a function with relative degree 0. Therefore, if the relative degree
of rpy(s) is greater than 0, interpolation conditions at co are required for u(s) to have a
relative degree greater than or equal to the relative degree of r,,(s). These interpolation

conditions at oo ensure that g(s) is proper.

3.2 Interpolation Theory

Interpolation theory is used to generate a function wu(s) which meets the interpolation
conditions u(a;) = f3; for i = 1...m. Examples include Lagrange interpolation of rational
transfer functions [38], interpolation of positive real functions [70, 81], and interpolation of
rational Schur functions — the classical Nevanlinna-Pick problem [23, 54, 60]. Applications
of the Nevanlinna-Pick interpolation problem in circuit and system theory are described in
[23]. The robust control problem presented in the previous section requires interpolation

with SBR, functions. When the interpolation points are on the real axis, the Nevanlinna-
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Pick approach yields SBR, functions. Otherwise, equation (3.31) may be used to obtain

bounded real functions from Schur functions.

1

UJBR(S) = 5 [wSchur(S) + wSchur(g)] (331)

A modified version of the Nevanlinna-Pick algorithm which directly gives bounded real
functions is described in [28].

The interpolation of functions analytic in the unit circle with a modulus not greater
than M is described in great detail in [77]. From [77], interpolation in the unit circle is
reduced from the problem of finding a function w(z) that takes on m given values, to finding
a function wy(2) that takes on m — 1 given values using the mapping below. The variable
z will be used for functions analytic in the unit circle, while the variable s will be used for

functions analytic in the right-half-plane.

) 2 wl(cO) - UJ%O) (1 — Qqay
)

wi(ag) =w, ' =M IEEEONG >7 k=2,3,...,m (3.32)
— Wy Wy

Qp — O]

(0)

where wo(o;) = w;

This gives a recurrent method for the general solution to the problem shown by (3.33) and

(3.34).

W) _ w1 — Y (1 Gz

wy) = wy(ay) = M? — >7kv+17v+27...7m (3.33)
g ° M2 — @ 1)wv,l(z)

Z — Qy

wy(2) = M?

wy-1(2) — UJQ(JUDZ) (1 - O‘“Z> , wo(z) = w(z) (3.34)

M2 — U’Jq(jvfl)wv,l( Z— ay

Equation (3.33) is used to reduce the interpolation problem recursively until there is only
one interpolation point. Then equation (3.34) is used to back out to the solution, w(z).

Equations (3.32), (3.33), and (3.34) are concerned with interpolation of functions analytic
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and with modulus not greater than M inside the unit circle. In order to generate bounded

real functions analytic in the right-half-plane, the bilinear mapping

s—1
= 3.35
2= (3.35)

may be used to map the unit circle into the right-half-plane. Also, the bound M in equations
(3.32), (3.33), and (3.34) equals 1.

Using (3.35) to modify (3.32) changes the analytic region to the right-half-plane and
yields (3.36).

(0)

— g 1
ui(s) = “(’(S)(O) hal (5+0‘1> (O‘l + > s—op, k=23, ...m (3.36)

1 —a; up(s) \8— X ay +1

or
_ (0 - .
ui(s) = UO(S)(O) il (S +a1> A s=ap, k=2,3,...m (3.37)
1 —ay up(s) \8— 1
1 Im o

where § — 2tan~

1+Re o
The /¢ does not affect the magnitude of u;(s). Therefore, (3.37) may be written as (3.38)

while still guaranteeing that w;(s) is a Schur function.

uy(s) = ug(s) — uf’” (S + Oél> (3.38)

1- ﬂgo)u(s) s—m

The simpler form of equation (3.38) is typically used. The equations that characterize the
general solution which is analytic inside the unit circle, (3.33) and (3.34), map to equations

(3.39) and (3.40) for the general solution which is analytic in the right-half-plane.

(v—1) _
uU*l(S) — Uy S+O&U o
P (s—av>‘ yk=v+4+1L,v+2,...,m  (3.39)

“l(cv) = uy(s)] = - w1 (5)
v v—1 s=ay

S=Qy

S —
ul’ly g (s) (ﬁ)
uy(s) =

= _ s—a
1y, <—5 T @Zﬁ) Uy11(8)

(3.40)
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oy o e Qo
ul” =ug(an) = pr uy) =uolaz) = fo - uly) = uo(am) = fo | uo(s)
ugl) = Ul(ag) B U%) = Ul(am) ul(s)
ult ™ = 1 (0m) | 1 ()

Figure 3.3: Fenyves Array

The interpolation problem bookkeeping is simplified by using the so called “Fenyves array”
shown in Figure 3.3 [46].
Lemma 3.1 [27] There is a strictly bounded real (SBR) solution to the Nevanlinna-Pick

problem if and only if all the elements of the Fenyves array are strictly less than one, i.e.

‘u](:j) <1 (3.41)

Lemma 3.2 [27] If an element of the Fenyves array is equal to one, then a bounded

real (BR) solution exists only if the whole row of the Fenyves array has terms equal to one.

An equivalent method for determining the existence of a solution to the Nevanlinna-Pick

problem is to look at the Pick matrix P, shown below [7].

1-B1681 ... 1=B1Bm
a1 +aq a]+Qam
P = S : (3.42)
17ﬁm51 e 1*ﬁm5m
L Qm +ae A+ 0m _
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Lemma 3.3 [7] The Nevanlinna-Pick problem is solvable for SBR. functions, if and only

if the matrix P is positive definite.

An application of the Nevanlinna-Pick interpolation theory applied to the robust control
problem is described in Example 3.1.
Example 3.1 — Robust Control of Plant with Relative Degree 0

Given the following unstable plant,

po(s) = o= (3.43)

(3.44)

Find the robustly stabilizing compensator.
Step 1 — Compute r,(s), po(s), and B(s). Looking at (3.43), the unstable poles are a;; = 2

and ag = 3, therefore B(s) can be written
B(s) = 2=5)B=5) (3.45)
Given B(s), po(s) can be written

Po(s) = po(s)B(s) = [CERATE Y (3.46)

Since r(s) is a stable minimum phase proper transfer function, ry,(s) = r(s).

Step 2 — Find an SBR function u(s) such that u(w;) = 5 = % where «; are the poles

of po(s) in the RHP. Solve the Nevanlinna-Pick problem. First calculate u(a;) and then
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041:2 042:3

0.5 0.5 | wuo(s)

0 u1(s)

Figure 3.4: Fenyves Array for Example 3.1

construct the Fenyves array.

u(oy) = 05 (3.47)

Note that u(«;) is a constant for this case because of the choice of 7, (s). The corresponding
Fenyves array constructed using (3.39) is shown in Figure 3.4. The SBR function u;(s) must

interpolate to 0 at s = 3. Therefore, a suitable, yet arbitrary, choice of u(s) is

s—3
- 3.48
n(s) = 5= (3.49
Using (3.40), ug(s) is
—s2 4+ 16s—4
— - - 3.49
ws) =) = F 10 (3.49)

Another possible solution for ug(s) which meets all of the interpolation conditions is ug(s) =
0.5. This choice is obtained if u1(s) = 0 is used in the Fenyves Array, or by inspection. This
solution however yields an infinite gain compensator, which stabilizes the nominal plant,
but is impractical to implement.

Step 3 — Compute g(s).

o(s) — B(syu(s) (2= 5)(3 ) <;25++171865+—1:) (3.50)

Step 4 — Compute c(s).

(—s% + 165 — 4)
(1+s)(5+s)

2
= (3.51)
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The characteristic polynomial of the nominal closed-loop system is s? + 17s + 10, which is

Hurwitz, as expected.

In the previous example, the relative degree of r,(s) was equal to 0. Therefore, no
interpolation points at infinity were required. The case requiring an interpolation point at
infinity is shown in Example 3.2.

Example 3.2 — Robust Control with Relative Degree of r,,,(s) = 1

Given the following unstable plant,

(1+s)
= 3.52
po(S) (2_5)(3_5) ( )
with the uncertainty of the plant given by
1
r(s) = 05— t8) (3.53)

(24 5)(3+ s)

Find the robustly stabilizing compensator.
Step 1 — Compute r,(s), Po(s), and B(s). Looking at (3.52), the unstable poles are a; = 2,

ap = 3, therefore B(s) can be written
2—s)(3—
Bs)~ 2=2)B=9) (3.54)
Given B(s), po(s) can be written

)~ (B 1+ ) (3.5%)

21 5)(3 1 9)

Since r(s) is a stable minimum phase proper transfer function, rn,(s) = r(s). Note that the

relative degree of rp,(s) is 1, which adds an additional interpolation condition at infinity.
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041:2 042:3 g — O

0.5 0.5 0 up(s)
0 —0.5 | ui(s)
—0.5 | ug(s)

Figure 3.5: Fenyves Array for Example 3.2

Step 2 — Find an SBR function u(s) such that u(w;) = 5 = % where «; are the poles

of po(s) in the RHP. Solve the Nevanlinna-Pick problem. First calculate u(a;) and then

construct the Fenyves array.

u(oy) = L 05 (3.56)

Note that u(a;) is a constant for this case because of the choice of 7, (s). Also, because r,,(s)
has relative degree 1, there is an additional interpolation point at infinity. The corresponding
Fenyves array is shown in Figure 3.5. The SBR function ug(s) must interpolate to -0.5 at

infinity. Therefore, a suitable, yet arbitrary, choice of ug(s) is

—s—1

uas) = o (3.57)

Using (3.40), u;(s) is
i (s) = % (3.58)

Using (3.40), ug(s) is
u(s) — u(s) 21s% + 255+ 6 (3.59)

353 1 3052 + 53s + 30
Note that the relative degree of ug(s) is 1 which is a result of the interpolation condition at

infinity, ensuring that ¢(s) is proper.
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Step 3 — Compute g(s).

_ _ 9
a(s) 353 1 3052 1 53s + 30

B(s)u(s) (2 —15)(3—23) 2152 + 255+ 6
Rl ) ow

Step 4 — Compute c(s).

q(s) _ 2(215* + 255 1 6) (3.61)

C(S):l—po(s)q(s) 3 (1 +s)(11s)

The characteristic polynomial of the nominal closed-loop system is 35 + 30s% + 53s + 30,

which is Hurwitz, as expected.

The previous two examples have shown how Nevanlinna-Pick interpolation can be used
to solve the robust control problem with unstructured additive perturbations. Limitations
of the approach include not being able to handle poles on the jw axis and poles with
multiplicity. An approach for handling one type of pole on the jw axis, specifically a single
integrator, is outlined in [46]. This involves dividing the integrator out of the nominal
plant and the plant uncertainty, and adding an interpolation point at the origin. The
interpolation point at the origin must be handled like the point at infinity in Example 3.2.
The interpolation points at zero and infinity must be in the last two columns of the Fenyves

array so that the last function, u,_o(s), can be crafted using the equation below.

6s + A
s+1

Uy 2(s) = (3.62)

By selecting 6 and A, the interpolation conditions for u, o at zero and infinity can be met,
provided there is a solution to the Nevanlinna-Pick problem.
One approach for handling interpolation points on the jw axis is described in [48]. This

involves using a mapping which interpolates positive-real functions on the jw axis. Then
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the positive real function is mapped to a bounded real function. A method for handling
interpolation points with multiplicity on the jw axis was not discussed.

A general approach for handling interpolation points on the jw axis is outlined in the
next section. This approach is also able to deal with multiplicity, which is described in a

subsequent section.

3.3 Interpolation Points on the jw Axis

The classical solution of the Nevanlinna-Pick interpolation problem is concerned with in-
terpolating functions analytic (having no poles) in the unit circle or the right-half-plane.
Functions analytic in the unit circle are useful in discrete-time problems, while functions an-
alytic in the right-half-plane are useful for continuous-time problems. The bilinear mapping

below is typically used to map the unit circle into the right-half-plane.

(3.63)

From the previous section, the mapping used for interpolation of functions analytic in the

right-half-plane is given by (3.64).

uy(s) — up(s) _ugo) <S+Oél> (3.64)

1 ﬂgo)uo(s) s—aq

Although this mapping is very useful, it has several shortcomings. It cannot be used to
interpolate points with multiplicity without modification. It also cannot be used to in-
terpolate on the jw axis. Finally, although the functions generated are analytic in the

right-half-plane, it is sometimes desirable to generate functions that are analytic in a region

other than the right-half-plane. Based on this motivation, a modified mapping is proposed
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to overcome these shortcomings. Instead of mapping the unit circle into the right-half-plane,
a modified version of (3.63) is used to map the unit circle into a region D which includes

the right-half-plane. This involves modifying the bilinear mapping (3.63) as shown below.
7 )
z = (3.65)

Applying (3.65) to (3.64) yields

(0) =
up(s) —u s+ aq + 2
u(s) = D=1 ( i > (3.66)
1 —a; up(s) s —o
Lemma 3.4 If up(s) is a Schur function and ug(ey) = u§0)7 then u1(s) is a Schur

function.

Proof of Lemma 3.4 Because of the Maximum Modulus Theorem [64], the maximum
value of the function occurs on the boundary of the analytic region. This occurs at s = jw—e

for (3.66). Therefore, it is necessary to define a new norm, the H>° norm, as shown below

lu(s)ll5 = suplu(s)], s = jw —€ Vw (3.67)

[e o]

Because of the Maximum Modulus Theorem, the following relationship between the H>°
norm and the standard H° norm exists for functions analytic in the region D (see Figure
3.6).

lu(9)llo < lluls)ll5 (3.68)

The use of the H>° norm makes the robust stability condition more conservative as € grows
in magnitude. By increasing e, the likelihood of a solution existing is decreased.

ui(s) is a Schur function if and only if
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1. ui(s) € H®

2. 1—ai(s)ui(s) >0, s = jw—e; Yw € R

By assumption |ﬂ§0)| < 1 and |ug(s)| < 1. Therefore, 1 — ﬂgo)uo(s) # 0 for s = jw — ¢,
and Vw. The pole s = a; in the RHP is canceled by the interpolation condition at ;. This
proves u1(s) € H™.

Next, for s = jw — ¢, 1 — 41(s)ui(s) can be written as

(1=1a{1%) (1 = Juo(s)P?)

1 — i (s)ui(s) = o 5 (3.69)
‘1 — uo(s)‘
because
g 2
shontze =1 when s = jw —¢; Vw € R (3.70)
S —

Equation (3.69) is nonnegative since by assumption |u§0)| < 1 and |up(s)] < 1.

O
The inverse mapping is given by (3.71)
(0) s —«

i’ +ans) (57 5% 2) 571)

uoS:1+ (),(0)< S — Qv )
WS\ ST T 2¢
Lemma 3.5 If w1 (s) is a Schur function, then ug(s) is also a Schur function. In addition,
o

uplay) = independently of wu(s).

Proof of Lemma 3.5 ug(s) is a Shur function if and only if:
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RegionD ——

Figure 3.6: Analytic Region D

1. up(s) € H®
2. 1 —ap(s)up(s) >0, s = jw—e; Yw € R
From the fact that w;(s) is Schur, |ﬂ§0)| < 1, and the Maximum Modulus Theorem,

_(0 s — .

Therefore, ug(s) € H.

Next, for s = jw — ¢, 1 — 1g(s)up(s) can be written

_ ﬂ§0> 2 g (s)[?
1 — ap(s)uo(s) = <1 il )(1 | ‘2( )

- ,s=Jjw—¢ YweR (3.73)
‘1 +ﬂg )ul(s)

which is nonnegative because |u§0)| < 1 and ui(s) <1 by assumption.

An application of the mapping described by (3.66) to the robust control problem is
shown in Example 3.3. By using this mapping, it is now possible to handle poles on the jw

axis.
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Example 3.3 — Robust Control of a Plant with Poles on the jw Axis

Given the following plant,

(s+3)(s+4)(s+5)

po(s) = 3.74
o(s) (s2+1)(s+2) ( )
with the uncertainty of the plant given by
+1 +3 +4 +5
r(s) = (S )(S )(S )(S ) (3.75)

(s2+1D)(s+2)(s+2)
Find the robustly stabilizing compensator. It is assumed that the pole on the jw axis is

preserved under perturbations.

Step 1 — Compute 7,,(s), po(s), and B(s). Write

orpls) (s D) (s+3)(s +4)(s+5)
S e e % BT (R 1Y) (3.76)

(s 1) (s 3)(s +A)(s 4 5)
rm(s) = G126 12 (3:77)

where 7/ (s) is a minimum phase function. Then, po(s) can be written

(s+3)(s+4)(s+5)
(s +2)

Po(s) = (s* + Lpo(s) = (3.78)

Because the plant has no poles in the open RHP, B(s) = 1.
Step 2 — Find an SBR function u(s) such that u(o;) = §; = %g% where «; are the poles
of po(s) in the closed RHP. Solve the Nevanlinna-Pick problem.

For this example, there are no interpolation points in the open RHP because the plant
has no poles in the open RHP. However, there are two interpolation points on the jw axis,

a1 =j and ag = —7.

u(ay) = (3.79)
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a;=j ag=—j
344 34
=t T | wo(s)
10(e—j
17(;7‘%) ui(s)

Figure 3.7: Fenyves Array for Example 3.3

evaluating (3.79), one obtains

u() = 2wy =222 (3.80)

Using (3.80) and (3.66), the corresponding Fenyves array is shown in Figure 3.7. In order
for a solution to exist, all the elements of the Fenyves array must be less than or equal to

1 in magnitude. This puts the following constraint on the size of e.

3
< = 3.81
€<y (3.81)
Solving for w3 (s) in terms of €, one obtains
45 4 50e — 515 90e — 545 — 15 4 520
u(s) — ug(s) — S+ 50 = 15| 4190 — +j20c] (3.82)

575 4 30e — j10¢] + [160e — j75 + j30¢]
Using (3.81), one can safely choose an ¢ = 0.1 and be guaranteed that a solution to the

Nevanlinna-Pick interpolation problem exists. This yields the following wu(s).

[50 — j15] + [—6 — j43]
s[78 — j] + [16 — 572

u(s) = 2 (3.83)

Because u(s) is a Schur function, equation (3.31) must be used to generate an SBR function.

This yields

~3915s% 4 14555 + 3000
608552 + 26405 + 5440

up(s) (3.84)
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Step 3 — Compute ¢(s) using equation (3.85).

B(s)u(s) (391552 + 14555 + 3000)(s? 4 1)(s + 2)?

905) = =5 (608552 1 26405 + 5440)(s T 1) (5 £3)(s + (s 1 ) (3.:85)

Step 4 — Compute c(s). The compensator is shown in equation (3.86).

391552 + 14555 + 3000 2)2
q(s) (391587 + 5+ )(s +2) (3.86)

O T @) @170s —560)(s 1 3)(s 1 (s 1 5)

Note that the stabilizing compensator is unstable, due to the pole located at s = 0.258.
However, if one checks the four transfer functions in (3.11), the system will still be internally
stable as expected. The poles of the closed-loop nominal system are at —1 and —0.2169 £+

50.9203.

The next section presents an approach for handling plants with a multiplicity of poles

in the right-half-plane.

3.4 Interpolation Points with Multiplicity

For the case where the «;’s are distinct, equations (3.36) and (3.37) are easily applied.
However, for the case where the «;’s are not distinct, equations (3.36) and (3.37) may not
be used. The case of multiplicity equal to two is described by Walsh in [77]. When the
«; are not distinct, constraints are forced on the derivatives of u(s). A simple approach to
handle points with multiplicity using a modified Fenyves array, is described by Theorem
3.1.

Theorem 3.1 The solution to the Nevanlinna-Pick interpolation problem with multi-

plicity m is obtained by constructing a modified Fenyves array shown in Figure 3.8 whose
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terms are given by equation (3.87).

(a1 + oq) /

T 1(a1)|2uk,1(a1)7 k=1,2,3,...m—1 (3.87)

u(a) =

where u},_;(a;) represents the first derivative of uy_1(s) evaluated at o.
Once the Fenyves array is constructed, the desired function u(s) is obtained in the usual

manner.

Note: Although (3.87) gives the formula for constructing the modified Fenyves Array,
the functions ug(s) are not constructed until after the Fenyves Array. However, (3.87)
may be evaluated by applying the mapping (3.39) and differentiating. Interpolation with
multiplicity m requires matching the first m — 1 derivatives of ug(s) with the derivatives of
the function that wug(s) will multiply. In other words, each additional interpolation point
with multiplicity places constraints on the next higher order derivative of ug(s).

Proof of Theorem 3.1: Two different methods may be used for the proof by induction.
The first approach involves assuming that the interpolation points are separated by a small
increment €, and then taking the limit as € approaches zero. The second approach involves
applying [.’Hopital’s Rule to evaluate terms in the Fenyves Array. The proof by induction
using the limit approach is outlined in Figure 3.8, and is discussed next.

The mapping typically used to construct the Fenyves array is

()], — ty_1(8) — ulr (S + av)‘ (3.88)

I ﬂq(fvil)uvfl(s) 5T A s=0y

Assume that the «; are separated by a small increment ¢, so that

ajpr—aj=¢ 7=12..,(m—1) (3.89)
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ay .. Q Q41 s 877
Uo(Oq) UO(am) UO(S)
Ujfl(Oéj) Ujfl(Oéj + 6) Ujfl(s)
uj(a; +é) uj(s)
Um—1(00m) | Um-1(s)

where aj 1] —a; = e and @, = a; + (m —1)e

Figure 3.8: Modified Fenyves Array

(7-1)

Then, any diagonal element of the Fenyves array, u; , can be evaluated using equation

(3.88),
i 1) — uj1(oyte)—uja(oy) (a5 t+eta (3.90)
Y 1 —uja(og)u;1(a; +e) \ oy +e—ay '
wi(as ) — uj—1(aj +e) —uj1(ay) a; teta; (3.91)
Y ¢ 1 — ;1 (aj)uja(a; +€) '

Taking the limit as € approaches zero in equation (3.91) and noting that all «; = vy yields

a1 + ag ,
) - ) 3.92
wj(oy) N |u‘7-,1(041)|2u‘771(a1) ( )

which is the same result stated by equation (3.87).

It should be noted that this approach can only applied when the derivatives of ug(s)

have meaning, i.e. are finite. Because ug(s) is analytic in the RHP, this should never be a
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problem. The case where a derivative is zero is easily handled. This case yields a row of
the modified Fenyves Array where all of the terms are zero. A bounded real function with
a multiplicity of zeros at the same point can be constructed by inspection. This is shown
in example 3.4.

Example 3.4 — Robust Control with Unstructured Uncertainty, m = 3

Given the following unstable plant,

B (s +3)(s+2)?
po(s) = B P (3.93)

with the uncertainty of the plant given by

1(s+3)(s+2)2 1.
r(s) = §W = 5]90(5)

(3.94)
Find the robustly stabilizing compensator.

Step 1 — Compute r,(s), Po(s), and B(s). Looking at (3.93), the unstable poles are a; = 1,

ap =1, and ag = 1. Therefore, B(s) can be written

B(s) = (2:)3 (3.95)

Given B(s), po(s) can be written

. (s +3)(s+2)?

Po(s) = PESIE (3.96)

Since r(s) is a minimum phase proper transfer function, rp,(s) = r(s).
Step 2 — Find an SBR function u(s) such that u(e;) = %%)l where «; are the poles of

po(s) in the RHP. Solve the Nevanlinna-Pick problem. First calculate u(w;), v'(a;), and

u”(a;). Then construct the Fenyves Array.

uoy) = 05 (3.97)



CHAPTER 3. ROBUST CONTROL 61

041:1 042:1 Oégil

0.5 0.5 0.5 | uo(s)

0 0 u1(s)

Figure 3.9: Fenyves Array for Example 3.4
o' () = 0,u" (e;) =0 (3.98)
The corresponding Fenyves Array constructed using (3.97) is shown in Figure 3.9.
Looking at the Fenyves array in Figure 3.9, there are two possible solutions. First,
by inspection, ug(s) = 0.5 satisfies the interpolation conditions and the constraints on
the first and second derivatives of u(s). However, this choice of wu(s) yields an infinite
gain compensator. In theory, this stabilizes the plant, but such a controller is difficult
to implement. The second possible solution may be obtained from the second row of the
modified Fenyves Array. If one were to continue the array to the third row, the last term in
the array would also be zero. Using equation (3.87), the constraint on the first derivative
of ui(s) at s = ay is

u)(a1) =0 (3.99)

Therefore, u1(s) may be constructed by inspection, any bounded real function with two

zeros at 1 will suffice. For this example, the u;(s) below will be chosen.

(3.100)

It should be noted that if the Fenyves Array is completed to the third row, the inverse
mapping yields the constant solution u(s) = 0.5. To get the other solution with the case of

zero derivatives, the construction of the Fenyves Array must be stopped at the first row of
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all zeros, where the derivative constraints can be easily incorporated into a rational function
by inspection. Using (3.100), ug(s) is

158 — 0552 4 75+ 1
- 1.5s3+3.5524+9.55+ 3.5

up(s) (3.101)

Step 3 — Compute g(s).

B —1\*({ 155305524 7s+1 2
q(s) = ()uls) _ (S > i cilnnilins _ (3.102)
rm(s) s+1 1.583 +3.552 + 9.55 + 3.5 | pp(s)

Step 4 — Compute c(s).

_ q(s) - —4(1.55® — 0.55% 4+ 7s 4 1)
-~ T—po(s)a(s) 3(s + 3)(s + 2)2 (3.103)

c(s)

The poles of the nominal closed-loop system are located at —0.9556 £ 72.1479 and —0.4222.

The case of non-zero derivatives in the interpolation conditions is examined in the next
example.
Example 3.5 — Interpolation with Non-zero Derivatives

Given the following unstable plant,

pols) = b+ 2)((Ssj13))3(5 4 (3.104)

with the uncertainty of the plant given by

(s+3)(s+4)

8 = S

(3.105)

Find the robustly stabilizing compensator.
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Step 1 — Compute r,,(s), po(s), and B(s). Looking at (3.104), the unstable poles are

a1 =1, ag = 1, and az = 1. Therefore, B(s) can be written

B(s) = (2:)3 (3.106)

Given B(s), po(s) can be written

(s +2)(s+3)(s+4)
(s +1)°

Po(s) = (3.107)

Since r(s) is a minimum phase proper transfer function, rp,(s) = r(s).

Step 2 — Find an SBR function u(s) such that u(o;) = §; = %%i% where «; are the poles
of po(s) in the RHP. Solve the Nevanlinna-Pick problem. First calculate u(c;). Because
of the multiplicity, the first two derivatives of u(s) must also match. These interpolation
conditions are met when the modified Fenyves Array is constructed using (3.87). The

Fenyves Array is shown in Figure 3.10. Using (3.87), the calculations required to construct

the Fenyves array are outlined below.

u(on) = S (o) = gty 0 (e) = — iy (3.108)
up(l) =35 up(l) = 5 uf(l) = —5 (3.109)

Using (3.87),
un(on) = — () (3.110)

() — 1 <i> (3.111)

Once again, applying (3.87) yields

uz(ay) (1) (3.112)



CHAPTER 3. ROBUST CONTROL 64

However, u)(a;) must be expressed in terms of ug(c;). This is obtained by differentiating

the mapping (3.39), which yields

B l s+ o uf(s) (s 4 a)?
uals) = <2> 1 — |u(oq)? [1 — [uo(a1)]? (a1 + @1)+ (3.113)

uy(s) n QUO(al)U%(S)(Oﬂ + 041)]

2

s+ ay (s+ @1)?

s=ay

Substituting s = oy into (3.113) yields

ug(ar) = 5+ (3.114)

Using the inverse mapping, and arbitrarily choosing ua(s) = 21—17 gives the following solution

for up(s).

32s% + 365 + 16
_ 3115
uols) = 57 T 1245 7 61 (3.115)

Step 3 — Compute g(s).

B(s)u(s) 3254 36s + 16 2(s —1)3
L S IR 7= W Y Frarc s pT Yy (3.116)

Step 4 — Compute c(s).

o(s)

q(s) B (2) (3252 + 365 + 16) (3.117)

T l-po(s)a(s)  \3) (s+3)(s+4)
The poles of the closed-loop system with the nominal plant po(s) are located at —1 and
—0.9254 £ 70.2327. Although this approach can be applied for cases of higher multiplicity,
the algebra required to determine the terms of the Fenyves Array becomes rather tedious

for m > 3.
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ar=1  ag=1 az =1
up(l) =3 uo(s) =3 wo(l) =3 |uo(s)
u(l) =g w(l) =g |u(s)
up(1) = g7 | uz(s)

Figure 3.10: Fenyves Array for Example 3.5

3.5 Summary and Conclusion

This chapter has reviewed the basic theory of robust control using interpolation for plants
with additive unstructured perturbations. There are limitations to the current theory.
Plants with poles on the jw axis and unstable poles with multiplicity greater than 1 cannot
be handled, with the exception of a single pole at the origin. This chapter extended the
theory by allowing the approach to include plants with poles on the jw axis as well as plants
with a multiplicity of unstable poles.

Poles on the jw axis are handled by using a slightly modified mapping. The classical
Nevanlinna-Pick algorithm relies on a mapping which produces SBR functions analytic in
the right-half-plane. Because the jw axis lies on the boundary of the analytic region, the
mapping cannot be used with poles on the jw axis. The mapping introduced in this chapter
modifies the analytic region of the mapping to include some of the left-half-plane, which
allows interpolation on the jw axis.

The case of unstable poles with multiplicity is handled by using a modified Fenyves
array. Interpolation at poles with multiplicity places constraints on the derivatives of u(s).

These are incorporated in the modified Fenyves array. Once the modified Fenyves array is
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constructed, the function u(s) is obtained in the usual manner.

In summary, this chapter has presented the current theory for robust control of systems
with additive unstructured perturbations, and extended the theory to include plants with
a multiplicity of unstable poles and poles on the jw axis. The next chapter applies these

techniques to the lateral control problem.



Chapter 4

The Lateral Control Problem

This chapter applies the robust control techniques developed in the previous chapter to
the lateral control of highway vehicles. A bound on the plant uncertainty is obtained by
simulating the car model as the velocity and cornering stiffness are varied. The 2 DOF
linearized bicycle model is used to represent the lateral dynamics of the test vehicle, a
GMC S-15 Blager. From Chapter 2, the linearized model has a relative degree of 2, with
two poles at the origin. The two poles at the origin may be handled using the interpolation
techniques developed in the previous chapter. However, the relative degree of the plant will
require two interpolation conditions at oco. An approach for handling the two interpolation
points at infinity is outlined in this chapter. The next section describes the process used to

determine the bound on the plant uncertainty.

67
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Parameter | Nominal Value Range
m 1590 kg constant
Ve 8m/s (28.8 kmph) | 5 — 10 m/s (18 — 36 kmph)
li,ls 1.17m,1.42 m constant
Cr, Cy 42000 Kn/rad 0.85 to 1.15
1, 3200 kg - m? constant
* 2m constant

Table 4.1: Estimated Parameters for S-15 Blazer

4.1 Vehicle Modeling and Uncertainty

The two degree-of-freedom linearized bicycle model for a vehicle’s lateral dynamics presented
in Chapter 2 will be used in this section to model the test vehicle, a GMC S-15 Blazer. The
estimated nominal parameters for the Blazer and the expected range of values are listed
in Table 4.1. The nominal speed of 8 m/s corresponds to 28.8 kmph, while the extreme
speeds correspond to 18 kmph and 36 kmph respectively. These values were chosen because
the initial field testing will be conducted at relatively low speeds. Simulation results for
highway speeds appear in [15].

Using the values in Table 4.1, the nominal car model is given by equation (4.1).

Ey(s)  114.2552(s% +13.4391s + 31.4366)

_ 4.1
5(s) s2(s2 + 24.3156s + 151.9179) (1)

A MATLAB® program (see Appendix B) was written to determine the bound on the

frequency-domain uncertainty of the nominal plant as the velocity and cornering stiffness
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Plant Uncertainty
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Figure 4.1: Simulation of Plant Uncertainty

vary over the ranges in Table 4.1. The program finds the magnitude of

[op(jw)| = [po(jw) — p(jw)] (4.2)

where po(s) is the transfer function of the nominal plant and p(s) is the transfer function

of the actual plant as the parameters are varied. The results of the computer simulation

are shown in Figure 4.1. The results are plotted as the ratio |2§ 8%; |. This format of data

presentation was chosen because it facilitates the choice of r(s) as a function of pg(s). This

simplifies the calculations required to arrive at the robust controller in the next section.
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4.2 Controller Design

Using the data in Figure 4.1, a conservative bound on the plant uncertainty can be expressed

r(s) = 0.6po(s) (4.3)

With this bound, a robustly stabilizing controller can be designed if there exists an SBR
solution to the interpolation problem. It should be noted that this choice of uncertainty is
equivalent to the uncertain gain problem, whose solution is described in [72, 73|. However,
a less conservative gain could be chosen which would require the use of the techniques
described in Chapter 3.

The nominal plant described by equation (4.1) has two poles at the origin and a relative
degree of 2. Therefore, the uncertainty bound also has a relative degree of 2. The two
poles at the origin can be handled by using the techniques outlined in Chapter 3. The
two interpolation points at infinity must be handled differently. One interpolation point at
infinity will be handled using the approach described in Chapter 3. The second interpolation
point at infinity will be added using equation (4.4). An alternate method to handle the
multiple interpolation points at infinity would be to map the problem to the z-domain where

zeros at infinity are represented as z = 1.
u*(s) = u(s)Qs) (4.4)

By properly choosing €(s), the second interpolation point at infinity can be achieved, while

still keeping u*(s) SBR.
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Step 1 — Compute 7,,(s), po(s), and B(s). Define

po(s) = (4.5)

Using equation (4.1), Po(s) may be written

114.2552(s2 1 13.4391s | 31.4366)

~ _ 4.6
Po(s) (s +24.3156s + 151.9179) (46)

Similarly, define

m(8)
_ 4.7
r(s) 52 4.0
where

rh (s) = 0.6p0(s) (4.8)

B(s) = 1 because the nominal plant has no poles in the open right-half-plane.
Step 2 — Find an SBR function u(s) such that u(o;) = §; = %%% where «; are the poles
of po(s) in the closed RHP. Solve the Nevanlinna-Pick interpolation problem.

For the car problem, there are no interpolation points in the open RHP because the
plant has no poles in the RHP. However, there are two interpolation points on the jw axis,

a1 = 0 and ayp = 0. There is also one interpolation point at infinity (the other one will be

handled later). Because of the choice of 7}, u(«;) is a constant, shown in equation (4.9).
uw(ai) = 0.6, v/(c;) =0 (4.9)

Using the results from the previous chapter, the modified Fenyves array for the car problem
is shown in Figure 4.2.
Note that for this particular case, the elements of the Modified Fenyves array are not a

function of e. A suitable, yet arbitrary, choice for uy(s) is given in equation (4.10).

uz(s) = —0.6 (4.10)
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041:0 042:0 g — O

0.6 0.6 0 up(s)
0 —0.6 | ui(s)
—0.6 | ug(s)

Figure 4.2: Modified Fenyves Array for Car Problem

Using the modified mapping, from Chapter 3, u1(s) is shown in equation (4.11).

0.6s
ui(s) = Py (4.11)

Finally, ug(s) is given in equation (4.12).

0.6(4es + 4€?)
. 419
() = 5602 T des T 432 (4.12)

Note that wup(s) has a relative degree of 1, as expected. In order to obtain the second

interpolation point at infinity, the £(s) in equation (4.13) will be chosen of the form,

(s +a)

R PP

(4.13)

The coefficients a, b, and ¢ must be chosen to ensure that u*(s) is SBR, and that the
interpolation conditions at the origin are still met. One possible choice of £(s) is shown in

equation (4.14).

(s +0.25)
Ofs) = 4.14
This yields the following u*(s).
0.6(4es + 4€ 0.25
ut(s) = (des +4e7)(s +025) (4.15)

(0.64s2 + 4es + 4e?)(s 4 0.5)2
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The choice of € in equation (4.15) affects the natural frequency wy of the closed-loop nominal
system. Therefore, ¢ = 0.5 results in a natural frequency of approximately 1.25 rad/sec.

Substituting € = 0.5 in equation (4.15) yields equation (4.16).

. 0.6(2s + 1)(s + 0.25)
W) = GBI T 25t (s 1 0572 (1.16)

Step 3 — Compute g(s). ¢(s) can be found using equation (4.17).

_ B(s)u*(s) (2s 4+ 1)(s+ 0.25)
108) = = 06121 251 (s 0520 (5) (4.17)

Step 4 — Compute c(s). The compensator is shown in equation (4.18).

B (25% 4 1.5s 4 0.25)(s? + 24.31565 + 151.9179)
 114.2552(0.6452 + 2.64s + 1.16)(s2 + 13.4391s + 31.4366)

c(s)

(4.18)

The poles of the nominal-closed loop system are —2.5, —0.625, and —0.5. These are the
poles of u*(s). The step response of the closed-loop system is shown in Figure 4.3.

The lane change trajectory shown in Figure 4.4 was used to simulate the family of
plants as the cornering stiffness and velocity were varied. The lane change performance of
the family of plants is shown if Figure 4.5. The lane change response for the family of plants
varies as the model changes, but all responses are stable and slightly underdamped. The
maximum percent overshoot is approximately 20 percent. Modifications in the response of

the system may be made by choosing a different ug(s), and by choosing a different e.

4.3 Summary and Conclusions

This chapter has presented the design of a robust lateral control system which guarantees

stability as the cornering stiffness and velocity vary over a prescribed range. The car lateral
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Closed-Loop Step Response for Nominal Plant
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Figure 4.3: Step Response of Closed-Loop System with the Nominal Plant
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Lane Change Trajectory

1.5

Lateral Position - Meters

O 1 1 1 1 1 1
0 2 4 6 8 10 12 14

Time - Secs
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Lane Change Response for Family of Plants
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control problem becomes an interpolation problem with two interpolation points at the
origin and two interpolation points at infinity. The techniques developed in Chapter 3 are
used to handle the two interpolation points at the origin and one interpolation point at
infinity. The second interpolation point at infinity is achieved by multiplying the function
u(s) by another function €2(s) which results in the correct relative degree.

Simulation results are presented for the family of plants as the cornering stiffness and
velocity are varied. The performance of the closed-loop system varies as the plant parame-
ters change, but all of the responses are stable for the fixed controller. Performance of the
closed-loop system may be modified by changing the poles of u(s), or by varying e. The

next chapter discusses the implementation of this control algorithm on a test vehicle.



Chapter 5

System Implementation and

Experimental Results

This chapter presents experimental results from the field testing of the robust lateral control
algorithm designed in the previous chapter. An overview of the test vehicle, a 1989 GMC
Jimmy 4x4, is also provided. The motivation for implementing the robust controller was to
determine the performance of the controller on the actual system, and determine deficiencies
of this robust control approach which might require further research. The continuous-time
robust controller was discretized using the bilinear transformation for computer implementa-
tion. A proportional-integral-derivative (PID) was also tested for comparison to the robust

controller. The next section provides an overview of the testbed vehicle.

78
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5.1 Testbed System Overview

The test vehicle used to verify the robust control algorithm is a 1989 GMC Jimmy. A sketch
of the vehicle is shown in Figure 5.1. For the purposes of this research, the Jimmy has been
modified for drive-by-wire operation, where there are no mechanical linkages between the
driver’s steering command and the motion of the wheels. A hydraulic control system is
used to move the wheels under electronic control. A block diagram of the vehicle system
is shown in Figure 5.2. Two parallel valves are used to control the steering actuator. This
provides some redundancy in case of a valve failure. A hydraulic accumulator, charged to
approximately 1000 psi, stores energy in case of a pump failure. An analog back-up system
was included to allow steering in the event of a computer failure. The analog back-up
system is shown in Figure 5.3.

A proportional-integral (PI) control law was used for the low-level steering actuator
control. The sampling period for the steering actuator control was chosen to be 10 ms. This
was the fastest periodic interrupt available from the real-time clock on the control computer,
and is 5 times faster than the 20 Hz bandwidth of the hydraulic valves. The PI controller
was empirically tuned using step functions to examine the response of the steering actuator
system. The response of the closed-loop steering actuator with the controller described by

equation (5.1) is shown in Figure 5.4.

0.01

T (5.1)

Csteering(z) =6+

The output of the low-level steering controller was bounded to limit the speed of the

hydraulic actuator. It also should be noted that there is approximately 1 degree of backlash
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Figure 5.1: Test Vehicle (Reprinted with Permission from General Motors Corp.)
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Valve 1

'O Control D/A Steering '
+ Computer Actuator

Valve 2

Steering Angle

A/D

Figure 5.2: Jimmy Steering Block Diagram

in the steering actuator. Because of the actuator design, the actuator can move very small
amounts before the wheels actually begin to turn. This is caused by movement of the
actuator mounting plate, as well as by movement of the actuator attachment point to the tie
rod. This will result in a slight modification of the robust controller design implementation
in the next section.

The vehicle control experiments were conducted on an instrumented 1 mile track. A 16
gauge, teflon coated wire was placed in a 3/8 inch deep slot located in the center of the
outside lane. The wire was then covered with hot asphalt sealer to prevent damage to the
track. A 9.6 kH=z signal in the wire is sensed at the front of the test vehicle to determine
the lateral position. A more detailed description of the wire reference system and sensing

electronics appears in Appendix A.
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Steering Actuator Closed-Loop Performance
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Figure 5.4: Steering Actuator Closed-Loop Response
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5.2 Algorithm Implementation

From the previous chapter, the robustly stabilizing compensator is given by

B (25% 4 1.5s 4 0.25)(s? + 24.31565 + 151.9179)
 114.2552(0.6452 + 2.64s + 1.16)(s2 + 13.4391s + 31.4366)

(s) (5.2)

The compensator was implemented on a single board computer with a 286-compatible
processor. The sampling period T" = 100 ms was chosen because it is approximately 10 times
faster than the closed-loop bandwidth of the system. Using the bilinear transformation

2z—1
Tz+1’

T = 100 ms (5.3)

The discretized version of the robust controller is

67(z)  0.0321 —0.09392 1 4 0.1000z % — 0.04622 % 4 0.00792*
E(z) 1 —2.8973271 +3.203422 — 1.61892 3 + 0.31642 4

(5.4)

The units of 6;(z) are radians, while the units of Ey(z) are meters. The computer imple-
mentation requires a scale factor to changes the units to A/D and D/A counts. This is
calculated below.
( radians> ( 180 deg > (54.115 counts> ( 1 meter > ( 1 volt > ~ 55)
meters 3.14159 rad 1 deg 4.94291 volts 204.8 counts / '
D/A counts>
A/D counts

3.06286 (

Using equation (5.5), the robust controller, expressed in terms of D/A and A/D counts is
given by

67(z)  0.09845 —0.2877z 71 + 0.3064z 2 — 0.141523 + 0.024352*
Ei(z)  1-2.8973271 13203422 — 1.618923 + 0.31642*

(5.6)

Writing equation (5.6) as a difference equation yields

5p(k) = 2.89736(k — 1) — 3.20346(k — 2) + 1.61896 ¢ (k — 3) — (5.7)
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0.31646 ¢ (k — 4) 4 0.09845 E4 (k) — 0.2877E;(k — 1) +

0.3064E(k — 2) — 0.1415 7 (k — 3) -+ 0.02435E(k — 4)

The controller described by equation (5.7) outputs steering commands on the order
of 1 degree when simulated with typical error signals. Because the steering actuator has
approximately 1 degree of backlash, the controller’s output was multiplied by 2 in the actual
implementation to overcome some of the effects of the backlash. The controller described by
equation (5.7) also does not have any integration action for zeroing out steady-state errors.
Sources of such errors include steering offsets and road superelevation. Therefore, the robust
controller was modified to include a small integration term to reduce the steady state-error.
A decaying integration term was used to reduce the chances of creating instability. The

integration term is described by equation (5.8).

](Z) - K[
Ei(z) 1-0.95z"1"

K = 0.001 (5.8)

The actual robust controller implemented on the test vehicle is then given by equation

(5.9).

bp(k) = 2[2.897367(k —1) —3.20346¢(k —2) +1.6189 ¢(k — 3) — (5.9)
0.31646(k —4) + 0.09845E ¢ (k) — 0.2877E(k — 1) +
0.3064E¢(k — 2) — 0.1415E¢(k — 3) + 0.02435E;(k — 4)] +
(k)
The robust controller described by equation (5.9) was tested on a track instrumented

with a wire reference system. All test runs were conducted on a straight section of the test
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Robust Controller, V = 20 kmph
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Figure 5.5: Robust Controller, V, = 20 kmph

track. The test results for 20 kmph, 30 kmph, and 40 kmph test runs are shown in Figures
5.5 - 5.7.
A proportional-integral-derivative (PID) control algorithm was also implemented for

comparison to the robust controller. The PID control algorithm is described by equation

(5.10).
P(2) =035 B(2), 1) = S0P pey 6 - nEE) (.10)
U(z) = P(z) + I(2) + D(2) (5.11)

The performance of the PID algorithm at the same three speeds is shown in Figures 5.8 -

5.10. A summary of the rms error for each test run appears in Table 5.1.
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Figure 5.6: Robust Controller, V, = 30 kmph

Speed | Robust Controller | PID Controller

(kmph) rms error rms error
20 0.1085 m 0.0857 m
30 0.0751 m 0.0858 m
40 0.0953 m 0.0779 m

Table 5.1: RMS Error for PID and Robust Controllers
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Figure 5.11: Human Driving Sample

5.3 Discussion of Test Results

Looking at the test results in the previous section, and at the rms error summarized in
Table 5.1, both controllers performed satisfactorily at the speeds tested. To allow a fair
comparison of the automatic controllers, a sample of human driving is provided in Figure
5.11. This data was taken as the speed varied between 30 kmph and 60 kmph. The human
driving sample shows that the performance of the automatic control systems is equal to or
better than the human driving.

It should be noted that the performance measurement, rms error, was not incorporated
into the controller design (robust or PID). However, it is customary to speak about the rms

error (or maximum error), when discussing test results. The U-Parameter design would be
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one way to incorporate an rms error specification into the robust controller design [48]. This
approach was not pursued because of difficulty parameterizing the free parameter U(s) with
the interpolation conditions at the origin.

The rms error for the PID controller is better at 20 kmph and 40 kmph. The nominal
plant for the robust control design was at 28.8 kmph, so it would seem reasonable that
the best performance of the robust controller would be at 30 kmph. At this speed, the
performance of the robust controller was slightly better than the PID controller. There are
several difficulties with the robust controller implementation however. The robust controller
was very sensitive to the accuracy of the center steering position as well as to the initial
orientation of the vehicle. The test data presented for the robust controller was obtained
with the vehicle starting centered and headed in the proper direction. If the vehicle was
started in a different orientation, headed slightly to the left or right, the robust controller
had difficulty correcting. In addition, adding an offset to the center steering position will
cause the robust controller to have difficulty keeping the vehicle centered in the lane. Both
of these difficulties represent unmodeled dynamics that were not taken into account in the
robust controller design and uncertainty modeling. Therefore, it is reasonable that the
robust controller should have difficulty with these conditions, even with the addition of a
small integration term.

Comparing the robust controller to the PID controller, the robust controller results in
less oscillations. The performance of the PID controller could almost be described as steady
state, slow oscillation. The period of the oscillations is very large, and is almost impercepti-
ble by the driver. The higher gain and integration term in the PID controller contribute to

the oscillations, but also help the controller overcome some of the unmodeled disturbances
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like steering angle offsets and actuator backlash. Because of this, the PID controller is able
to handle deviations in initial orientation much better than the robust controller. The PID
controller also operates successfully up to 60 kmph while the maximum speed of the robust
controller is approximately 40 kmph. One of the most useful results of the hardware im-
plementation is the identification of steering actuator backlash, center steering offsets, and
road disturbances as problematic areas for control system implementation. These items, in
addition to parameter variations, must also be considered when designing a truly robust

control system.

5.4 Summary and Conclusions

This section has described the hardware implementation of the robust controller designed
in the previous chapter. Test results for the robust controller and a PID controller were
presented for three test speeds: 20 kmph, 30 kmph, and 40 kmph. The performance of
both controllers was satisfactory. The PID controller performed better at 20 kmph and
40 kmph, but resulted in steady-state slow oscillations at all three speeds. The robust
controller exhibited the best performance at 30 kmph, which was reasonable considering
the nominal robust design was performed for a speed of 28.8 kmph. The robust controller
did not exhibit oscillations at any velocity.

Several deficiencies in the robust controller design were revealed in the hardware imple-
mentation. These included difficulty handling steady state error, caused by center steering
offsets and road superelevation. In addition, the robust controller had difficulty with back-

lash in the steering actuator, which in effect neglected the small steering corrections from
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the robust controller. This was remedied by increasing the gain of the robust controller by a
factor of two. The steady state error was improved by adding a small integration term to the
robust controller. Incorporating the steering center offset uncertainty and steering actuator
backlash in the uncertainty modeling will probably result in better controller performance.

The next chapter discusses several recent control techniques that can be applied to the

lateral control problem.



Chapter 6

Simultaneous Stabilization &

Sensitivity Minimization

This chapter explores two additional robust control techniques that may be useful for the
lateral control problem. The first is simultaneous stabilization of a family of plants, which
uses the results described in [11]. Rather than describing the plant uncertainty in the
frequency domain, this technique applies Kharitonov’s Theorem to analyze stability as
the coeflicients of the transfer function model are varied. The second approach described
involves minimizing the sensitivity function S(s) and the derivative of the control sensitivity
R(s) in order to improve the performance of the lateral control system. Minimizing S(s)
improves the disturbance rejection, while minimizing the derivative of R(s) minimizes the

frequency content of the steering commands from the control system.
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6.1 Simultaneous Stabilization

Given the family of plants described by equation 6.1, simultaneous stabilization can be

guaranteed when the following assumptions are met [11].

m(q)
> hig)s" 0
NP(S7 Q)

n(q) - Dy (s, q)
sm(@) - Za NG

P(s,q) = (6.1)

Assumptions:
1. For each fixed q € Q, P(s,q) is strictly proper. m(q) < n(q).
2. There exists some positive integer 1,4, < 00 such that n(q) < Nypg,e for all g € Q.
3. For all allowable values of the subscript i, a;(q) and b;(q) are continuous over Q.
4. () is a compact subset of IRP.

5. Let Mgy = maxgeq m(q) and npg, = maxgeg n(g). Then for each k < mpaq,l <

Nmaz, the set

Qe ={q € Q:m(q) = k,n(q) =1}
6. For each fixed g € @), P(s,q) is minimum phase.

7. The sign of the high frequency gain by(g) is invariant over Q.

The coefficients of the transfer function model of a car’s lateral dynamics may be de-
scribed by
Ei(s) @5+ @stas

— 6.2
505 (@ T aos T ) 6.2
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coeflicient max min
q 131.3935 | 97.1169
G2 3249.1 | 887.514
qs3 4750.1 | 2595.1
G4 1 1
qs 44.7406 | 16.5346
q6 499.6620 | 72.7904

Table 6.1: Summary of Coefficient Changes

Equation (6.2) meets all of the assumptions required for simultaneous stabilization of the
family of plants as the parameters vary.

A MATLAB program was written to determine the minimum and maximum values of
the coefficients in the transfer function model as the velocity and cornering stiffness vary.
The values in Table 4.1, describing the parameters for the GMC Blazer, were used in the
simulations. The MATLAB program appears in Appendix B. The results of the simulation
are summarized in Table 6.1.

Using the results described in [11], a compensator of the form

o158 + g

C(s) = ———: 6 0 6.3
(5) €052 - €18 Lep - (6.3)

can be constructed to stabilize the family of plants as the parameters vary. In order to

ensure that N,(s) is Hurwitz, we will choose 69 = 61 = 1. This yields



CHAPTER 6. SIMULTANEQOUS STABILIZATION & SENSITIVITY MINIMIZATION99

Ne(s)=s+1 (6.4)

The next step in constructing the compensator to stabilize the family of plants is to construct

Do(s,q) = Ne(s)Np(s, q) (6.5)

Equation (6.5) must always be Hurwitz for a simultaneously stabilizing controller to
exist. The coefficients ¢; — g3 are always positive, ensuring that Ay is always stable. In
order to determine the coefficients of the simultaneously stabilizing controller, the following
equations must be iteratively solved, making sure that each is always Hurwitz for the

expected parameter changes. In [11], the existence of a stable A;(s, q) is guaranteed.

Ai(s,q) = Do(s,q) +eoDy(s, q) (6.6)
No(s,q) = Ai(s,q) +e1sDy(s, q) (6.7)
As(s,q) = Do(s,q) + e25*Dy(s,q) (6.8)

One way of proving that a Hurwitz solution to equations (6.6-6.8) exists is to write the

equations in the following form.
Ai+1(57 q) - Ai(& Q) + EiSiDp(S7 q) (69)

Let ¢; = 7. Then equation(6.9) can be written

KiNiv1(s,q)

SlDP(S7Q)

"s' Dy(s)

(6.10)

Taking the limit as K; approaches oo, the zeros of A;11(s,q) approach the zeros of A;(s, q),

which is stable by construction. One zero of A;yi(s,q) approaches —oo, which is also
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A‘i(SH)
s'Dp(s)

stable, because the relative degree of is equal to 1. Therefore, as ¢; approaches zero,
a Hurwitz A\, 1 is always guaranteed to exist.
The task of ensuring that equations (6.6-6.8) are Hurwitz is greatly simplified by apply-

ing Kharitonov’s Theorem [11, 4]. Kharitonov’s Theorem is stated below.

Theorem 6.1 [4] The polynomial family

P(s, A) ={p(s,a) =ap + a1s + ... + aps"|a € A},an, >0 (6.11)

is stable if and only if the following polynomials are stable:

pT(s) = af tastays®tais®ta;stt. .. (6.12)
pT(s) = af tajstays®tazs® fagsti. .. (6.13)
p T(s) = ag tajstags®tazs® fagsti... (6.14)
p(s) = ay ta;stags®tals® tastt... (6.15)

O

The polynomials (6.12-6.15) are called Kharitonov polynomials. The superscripts on a
indicate the upper and lower bounds on the coefficients.
A MATLAB program was written to verify Kharitonov stability as the controller was

constructed iteratively using equations (6.6-6.8). The following values for ¢; were chosen:
g = 1, €1 = 0.05, ex = 0.00001 (6.16)

eg was selected to arrive at a dc gain of 1. € and e were chosen to guarantee Kharitonov

stability. The simultaneously stabilizing controller is shown in equation (6.17).

B s+1
~0.00001s2 +0.05s + 1

c(s) (6.17)
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Figure 6.1: Bode Plot of Simultaneously Stabilizing Controller

A Bode plot of the simultaneously stabilizing controller appears in Figure 6.1. The robust
controller is basically a lead compensator, ignoring the higher frequency roll-off. The lane
change response for the family of plants with this robust controller in shown in Figure
6.2. Note that the lane change response for the family of plants is significantly better than
for the robust controller designed in Chapter 4. There is an interesting synergy between
the simultaneous stabilization approach and classical frequency domain methods. It is
possible to design a lead compensator using classical methods, taking into account the
performance of the nominal closed-loop system, while still guaranteeing stability for the
family of plants. This would be an iterative trial and error process though, involving the
design of the lead compensator for nominal plant performance, and then the construction

of a similar compensator using the simultaneous stabilization approach.
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Lane Change Response for Family of Plants
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Figure 6.2: Lane Change Response for Family of Plants



CHAPTER 6. SIMULTANEOUS STABILIZATION & SENSITIVITY MINIMIZATION103
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Figure 6.3: Feedback System with Weighting

6.2 Sensitivity Minimization

This section explores the application of multiobjective design to the lateral control problem.
Given the feedback system with weightings W1 — W5 shown in Figure 6.3, it is possible to

design a stabilizing compensator which also minimizes the following H,., norm.

Wi(s)S(s)

Wa(s)R(s) | <1 (6.18)

Ws(s)T(s)
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where

1
S = —————— Sensitivit 6.19
(s) T COPE) ensitivity (6.19)
R(s) — (s Control Sensitivit (6.20)
s TP ontrol Sensitivity :
C(s)P
T(s) = T (;28)(;28) Complementary Sensitivity (6.21)

The weighting function Wi(s) is a mirror image of the desired sensitivity function S(s).
It is desirable to have the magnitude of S(s) small at low frequencies, and large at high
frequencies to obtain good disturbance rejection [8]. The actuator weight Wa(s) is used
to penalize actuator signals. An appropriate Ws(s) should have a small magnitude at low
frequencies and a large magnitude at high frequencies to cost for saturation [8]. Wa(s) may
also contain a constant component to reflect the costs of constant actuation. It is desirable
to penalize the complementary sensitivity at high frequencies to minimize the influence of
high frequency measurement noise. This yields a high pass filter shape for W5(s). The
closed-loop bandwidth can also be limited by W3(s), since the cut-off frequency of Ws(s)
limits the system bandwidth [8].

A solution to the robust minimization problem described by equation (6.18) can be
obtained by using an augmented plant (shown in Figures 6.3-6.4) and solving two Riccati

equations [29]. The equations describing the augmented system are given by:

T = Azt Biuy -+ us (6.22)
y1 = Ciz+ Dyuy + Digus (6.23)

y2 = Chx+ Dojuy + Dagus (6.24)
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3l - Y1
Poug(s)
U2 Y2
F(s)
Figure 6.4: Augmented Model
where the augmented plant Py, (s) is
Wy | =W P
0 Wo
Paug(s) = (625)
0 | WP
1 —-P
with the state-space realization
A| B Bs
P(s):=| ¢, | D11 Do (6.26)
| C2 | Dar Doz |

The MATLAB command hinf was used to solve the multiobjective minimization problem

with the following weighting matrices. Once again, the nominal car model described by the
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Step Response of Nominal Plant
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Figure 6.5: Nominal Plant Step Response

parameters in Table 4.1 was used.

(s/15+1)(s/15+ 1)

Wis) = 8500(5/0.1+1)(5/0.1+1) (6:27)
Wa(s) = o.oo1m (6.28)
Wi(s) = 0 (6.29)

The simulation results for the robustly stabilizing controller appear in Figure 6.5. The
performance of the controller is acceptable, but the controller has two zeros very close to

the origin which might cause problems in an actual implementation.
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6.3 Summary and Conclusions

This chapter has explored two additional robust control techniques which are applicable
to the lateral control problem. The first approach, simultaneous stabilization of a family
of plants, is possible because the system model meets the minimum phase requirement.
This approach is potentially very useful, because the structure of the controller is known in
advance. This allows tweaking the controller with frequency-domain trial-and-error methods
to obtain the desired performance of the nominal plant, as well as stability for the family
of plants.

The second approach described in this chapter is a multiobjective design where the
sensitivity S(s) and the control sensitivity R(s) are minimized. Minimizing the sensitivity
reduces the affects of disturbances while minimizing the derivative of the control sensitivity
reduces the frequency content of the control effort. The simulated step response for the
nominal plant with the robust controller was satisfactory. However, the controller obtained
by solving 2 Riccati equations contains two zeros very close to the origin. These might

cause difficulties in a practical implementation.



Chapter 7

Summary and Conclusions

This chapter provides a summary and recommendations for future research.

7.1 Summary

The main focus of this dissertation has been the automatic lateral control of highway vehi-
cles, and the application of robust control techniques to this problem. In Chapter 2, a review
of lateral control research was presented. Many of the control techniques being applied to
the lateral control problem today, like optimal control and gain-scheduling, have their ori-
gins in the early research. The largest automated highway research effort is currently being
conducted at PATH. Recent results have included field testing of frequency-shaped-linear-
quadratic optimal controllers, PID controllers, and fuzzy logic controllers. Test speeds are
relatively slow, ranging from 20 kmph to 60 kmph. Parametric robust control techniques
have also been proposed by J. Ackermann in several recent publications.

The robust control approach used in this dissertation models the plant uncertainty as

108
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unstructured additive perturbations in the frequency-domain. Chapter 3 contains a review
of robust control in the face of additive unstructured perturbations in the frequency-domain.
There are several limitations to the current theory. These include problems with handling
poles on the jw axis and unstable poles with a multiplicity greater than 1. The model for
the lateral dynamics of an automobile contains 2 poles located at the origin. In Chapter 3,
the current theory was extended to allow dealing with poles on the jw axis and unstable
poles with a multiplicity greater than 1.

Using the interpolation techniques developed in Chapter 3, a robust lateral controller
was designed in Chapter 4. The uncertainty was characterized by simulating a linearized
bicycle model of the lateral dynamics as the velocity and cornering stiffness were varied.
The uncertainty was then expressed as a fraction of the nominal plant transfer function.
The robust lateral controller designed in Chapter 3 was implemented on a test vehicle,
and the test results are summarized in Chapter 5. A PID controller was also tested for
comparison purposes. Both controllers performed satisfactorily, but several difficulties were
found with the robust control approach employed. The test results were very comparable
to the results being obtained at PATH [66].

The robust controller had difficulty zeroing out steady state-error because of a lack of
integration action. Steady-state errors were caused by center steering offsets, backlash in
the steering actuator, and road disturbances. These types of uncertainties were not included
in the robust controller design, so therefore it is reasonable that the controller would have
difficulty handling them. In addition, the uncertainty bound used for the robust controller
design was rather conservative. This conservative modeling of parameter uncertainties

(velocity and cornering stiffness) reduced the gain of the robust controller, which led to the
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difficulty in handling other types of uncertainties, nonlinearities, and disturbances.

In Chapter 6, two other robust control techniques were applied to the lateral control
problem. The first, simultaneous stabilization of a family of plants, used Kharitonov’s Theo-
rem to help construct a stabilizing compensator. This approach yielded a lead compensator,
which could be tweaked using classical frequency-domain techniques. The simulated per-
formance of the simultaneously stabilizing controller was better than the robust controller
described in Chapter 4. The second controller designed in Chapter 6 involved a multiobjec-
tive design. The sensitivity function S(s) was minimized to improve disturbance rejection,
while the derivative of the control sensitivity R(s) was minimized to reduce the frequency
content of the steering actuator. Although this approach used a conservative bound, the
simulation results were also acceptable.

The contributions of this dissertation are made in two areas. First, Kimura’s robust
control approach for systems with additive unstructured perturbations in the frequency
domain was extended to include unstable poles with multiplicity, and poles on the jw
axis. A modified mapping for the Nevanlinna-Pick interpolation algorithm was developed to
handle poles on the jw axis. A technique for handling interpolation points with multiplicity
was also presented. These new interpolation techniques are applicable to other robust
control approaches involving interpolation. The second contribution of this dissertation is
the exploration of implementation issues with this robust control approach applied to the
lateral control of highway vehicles.

The next section makes recommendations for future research.
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7.2 Recommendations for Future Research

The motivation for applying robust control techniques to the lateral control problem was
the nature of the control problem. Parameters were subject to change, and there was some
uncertainty to the parameter changes. In addition, using a linearized model for the lateral
dynamics added more uncertainty to the system modeling. From previous experience with
adaptive controllers [14], there was also some concern about the magnitude of the steering
command causing saturation, as well as driver discomfort. These concerns are not isolated
to the lateral control of highway vehicles. Modeling uncertainty, nonlinearities, parameter
changes, and saturation appear when almost every theoretical algorithm is used on a physical
system.

Some of these difficulties are embodied in Ackermann’s “Three Basic Rules of Robust

Control’ shown below [4].

e Rule 1 - Require robustness of a control system only for physically motivated param-
eter values and not with respect to arbitrarily assumed uncertainties of the mathe-

matical model.

e Rule 2 - When you close a loop with actuator constraints, leave a slow system slow

and leave a fast system fast.

e Rule 3 - Be pessimistic in analysis, then you can afford to be an optimist in the

design.

Modeling the system uncertainty in the frequency-domain as unstructured additive per-

turbations as the velocity and cornering stiffness varied obeyed Rules 1 and 3. The robust-
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ness was motivated by physical parameter changes, the velocity of a car changes, as does
the cornering stiffness. The uncertainty bound chosen was also very conservative. Rule
2 was also followed in that we kept a slow system slow, therefore avoiding any actuator
saturation problems. Even though Ackermann’s Basic Rules of Robust control were not
violated, the performance of the robust controller still left some room for improvement
when implemented on the physical system. The problems with the robust controller arose
from actuator backlash (a nonlinearity), center steering offsets (a modeling error), and road
disturbances. For the most part, nonlinearities like backlash are not a frequency-domain
phenomenon. Therefore, one area requiring more research is how to incorporate nonlineari-
ties like backlash into a frequency-domain design. One method for handling nonlinearities is
to use Quantitative Feedback Theory (QFT), but this approach relies on finding an “equiv-
alent linear time-invariant” plant set whose responses follow the nonlinear system [44].

For the lateral control problem, road disturbances, center steering offsets, and actuator
backlash are structured uncertainty now that they have been identified as problematic.
These disturbances are shown in Figure 7.1. The performance deficiencies of the robust
controller designed in Chapter 4 can probably be eliminated by using a less conservative
description of the plant uncertainty incorporating some knowledge of the structure of the
uncertainty into the design. This is another area requiring further research.

The simultaneous stabilization technique used in Chapter 6 could be developed into
a powerful design tool for a limited class of minimum phase systems. The structure of
the controller is known at the start of the design, so it is possible to incorporate other
design criteria into the controller design. For example, the lead compensator designed for

the lateral control problem could be tweaked using frequency-domain techniques looking at
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dq
+ o
r—(— @ ——O n(s) -y

where dq represents center steering offsets, actuator backlash, and measurement noise,

ds represents road disturbances, and n represents measurement noise

Figure 7.1: Lateral Control System Model
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the phase margin of the nominal plant, while still guaranteeing stability for the family of
plants. Although this would be an iterative trial and error process, many control engineers
are already familiar with performance constraints related to frequency-domain information.
By incorporating the simultaneous stabilization approach into the design, more robustness
properties of the control system could be incorporated (or known in advance).

One topic that was highlighted while preparing this dissertation is the difference be-
tween analytic feedback design approaches (i.e., interpolation) and trial-and-error design
approaches (i.e., Nyquist stability criterion). Analytic design techniques are attractive be-
cause they include the following two elements: conditions for existence of a solution, and
an algorithm which is guaranteed to find the solution when it exists [26]. However, when
implementing a control algorithm on a physical system (or even in simulation), the first cut
at a controller rarely meets all of the design requirements. Therefore, some modification
or tweaking is required. For trial-and-error methods, this is relatively easy because the
original design was reached by trial-and-error. For some analytic designs though, it some-
times is not intuitively obvious what to change to try and improve the performance. This
is especially true for interpolation techniques. On the other hand, linear-quadratic theory
is an example of an analytic approach where is it relatively straightforward and intuitive
to tweak the controller by changing the weighting matrices. Therefore, more research is
needed on the “what to do next” step in tweaking analytic design methods, especially those
involving interpolation, to improve system performance.

Based on the results of this research, several recommendations for further study of the

lateral control problem are outlined below:

e Develop better analytical methods to include both performance and robustness in the
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controller design.

e Include nonlinearities like steering actuator backlash in the design to improve robust-

ness.

e Use more knowledge of the plant uncertainty in the controller design to improve system

performance.

e Although a fixed controller for all velocities and operating conditions is probably
impossible, the use of several fixed controllers for the various operating conditions
might be preferable to gain-scheduling as a function of many parameters. This would

reduce the sensor requirements for the gain-scheduling.

e More research is needed to investigate the tradeoffs between increased system com-
plexity (i.e., more sensors) for improved performance, and the increased chances of

failure from greater system complexity.
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% M-FILE FOR CAR BODE PLOTS / ROBUST DESIGN
% PROGRAM DETERMINES PLANT UNCERTAINTY BOUND
% Define Nominal Values

L1=1.17; % does not change

L2=1.42; % does not change

LS=2; % distance to sensor from cg

V=8; % 5 m/s to 10 m/s, 18 kmph to 36 kmph
C=42000; % 0.85 to 1.15

M=1590; % constant

I=3200; % constant

all=—(4xC) /V/M;
al2=—(V+(2xC*x(L1-L2) /V/M));
a21=—(2xC* (L1-12) /V/I);
a22=—(2*C* (L1"2+L2"2) /V/1);
b1=2%C/M;

b2=2%L1%C/1;

A=[al1 al2 0 0; a21 a22 0 0; 0 1 0 0; 1 LS V O] ;
B=[b1;b2;0;0];

C=[0 0 0 11;

D=0;

r=zeros(31,1);

phase=zeros(31,1);

ratio=zeros(31,1);

pause;

w=logspace(-1,2,31);
Gnom=freqresp(A,B,C,D,1,sqrt (-1)*w);

Ci=35700:1260:48300;
Vx=5:0.5:10;

for i=1:11,

1,

for x=1:11,
C=Ci(i);
I=1;

M=M;
V=vVx(x);

all=—(4xC) /V/M;
al2=—(V+(2xC*x(L1-L2) /V/M));
a21=—(2xC* (L1-12) /V/I);
a22=—(2*C* (L1"2+L2"2) /V/1I);
b1=2%C/M;

b2=2%L1%C/1;

A=[al1 al2 0 0; a21 a22 0 0; 0 1 0 0; 1 LS V O] ;
B=[b1;b2;0;0];

c=[0 0 0 11;

G=freqresp(A,B,C,D,1,sqrt(-1)*w);

for y=1:31,

if abs(G(y)-Gnom(y))>r(y),

temp = G(y)-Gnom(y);

r(y)=abs(temp) ;

ratio(y)=r(y)/abs(Gnom(y));

phase (y)=(180/pi)*atan2 (imag (temp) ,real (temp));

end, % if
end, % v loop
end % x loop

end % i loop
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% M-FILE FOR CAR BODE PLOTS / ROBUST DESIGN
% PROGRAM PLOTS FAMILY OF LANE CHANGE RESPONSES
% Define Nominal Values

L1=1.17;
L2=1.42;
LS=2;

all=—(4xC) /V/M;
al2=—(V+(2xC*x(L1-L2) /V/M));
a21=—(2xC* (L1-12) /V/I);
a22=—(2*C* (L1"2+L2"2) /V/1);
b1=2%C/M;
b2=2%L1%C/1;

A=[ail al2 0 0; a21 a22 0 0; 0 1 0 0; 1 LS V 0];
B=[b1;b2;0;0];
C=[0 0 0 11;

D=0;

t=(0:0.1:20) ?;
u=1.5%(1.+tanh(t-5));

plot(t,w);

pause;

A

does not change

does not change

distance to sensor from cg

5 m/s to 10 m/s, 18 kmph to 36 mph
0.85 to 1.15

constant

constant

numc=conv([2 1.5 .25],[1 12.9683 47.9080]);

denc=114.2552+conv([0.5644 2.5644 1.1411],[1 7.1675 31.4366]);

[num,den]=ss2tf(A,B,C,D);
num=[num(3) num(4) num(5)];

[numsys,densys] =cloop(conv(num,numc) ,conv(den,denc),-1);

[y,x]=1sim(numsys,densys,u,t);
plot(t,y);

hold on

Ci=35700:1260:48300;
Vx=5:0.5:10;

for i=1:
i,

for x=1:
C=Ci(i);
I=1;
M=M;
V=vVx(x);

11,
11,

all=—(4xC) /V/M;
al2=—(V+(2xC*x(L1-L2) /V/M));
a21=—(2xC* (L1-12) /V/I);
a22=—(2*C* (L1"2+L2"2) /V/1);
b1=2%C/M;
b2=2%L1%C/1;

A=[al1 al2 0 0; a21 a22 0 0; 0 1 0 0; 1 LS V O] ;
B=[b1;b2;0;0];
C=[0 0 0 11;
[num,den]=ss2tf(A,B,C,D);
nun=[num(3) num(4) num(5)];

[numsys,densys] =cloop(conv(num,numc) ,conv(den,denc),-1);

[y,x]=1sim(numsys,densys,u,t);

plot(t,y);
end % x loop
end % i loop
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hold off
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#m-file to determine coefficents of simultaneously stabilizing
%controller using Kharitonov Test

Y%coefficient variations

ql = [ 131.3935 97.1169 1;
g2 = [ 3249.1 887.514 1;
g3 = [4750.1 2695.1 1;

qd = [ 111;

gb = [ 44.7406 16.5346 1];
g6 = [ 499.662 72.7904 1;
plus=1;

minus=2;

e0=10;

e1=0.05;

e2=0.001;

%check e0
dipm=[e0 (ql(plus)+e0*q5(plus)) (ql(minus)+q2(minus)-+e0*q6 (minus))
(q2(minus)+q3(minusg)) q3(plus) ]

dipp=[e0 (ql(minus)+e0*qb5(minus)) (ql(minus)+q2(minus)+e0*q6 (minus))
(q2(plus)+q3(plus)) q3(plus) ]

dimp=[e0 (q1(minus)+e0*q5(minus)) (ql(plus)+q2(plus)+e0*q6(plus))
(q2(plus)+q3(plus)) q3(minus) ]

dimm=[e0 (ql(plus)+e0*q5(plus)) (ql(plus)+q2(plus)-+e0*q6(plus))
(q2(minus)+q3(minus)) g3(minus) ]

roots(dipm)

roots(dipp)

roots(dimp)

roots (dimm)

%check el

d2pm=[e1*q4 (minus) (eO+el*qb(plus)) (ql(plus)+eO*qg5(plus))
(q1(minus)+q2(minus)+e0*q6 (minus)) (q2(minus)+q3(minus)) g3(plus) ]

d2pp=[e1*q4 (plus) (eO+elxqb(plus)) (ql(minus)+eO0*qb(minus))
(q1(minus)+q2(minus)+e0*q6 (minus)) (q2(plus)+q3(plus)) g3(plus) ]

d2mp=[e1*q4 (plus) (eO+el*qb(minus)) (ql(minus)-+e0*q5 (minus))
(q1(plus)+q2(plus)+e0*q6 (plus)) (gq2(plus)+q3(plus)) g3(minus) ]

d2mm=[e1*q4 (minus) (eO+el*qb(minusg)) (ql(plus)+e0*g5(plus))
(q1(plus)+q2(plus)+e0*q6 (plus)) (q2(minus)+q3(minus)) g3(minus) ]

roots(d2pm)

roots(d2pp)

roots(d2mp)

roots(d2mm)

%check e2

d3pm=[e2 (el*q4(minus)+e2*qb(minus)) (eO+el*qb(plus)+e2*q6(plus))
(q1(plus)+e0*gb(plus)) (ql(minus)+q2(minus)+e0*q6(minus))
(q2(minus)+q3(minusg)) q3(plus) ]

d3pp=[e2 (el*q4(plus)+e2xq5(plus)) (eO+el*qb(plus)+e2*q6(plus))
(q1(minus)+e0*q5 (minus)) (ql(minus)+q2(minus)+e0*q6(minus))
(q2(plus)+q3(plus)) q3(plus) ]

d3mp=[e2 (el*q4(plus)+e2*qb(plus)) (eO+el*qb(minus)+e2*q6(minus))
(q1(minus)+e0*q5 (minus)) (ql(plus)+q2(plus)+eO*qg6(plus))
(q2(plus)+q3(plus)) q3(minus) ]

d3mm=[e2 (el*q4(minus)+e2*qb(minus)) (eO+el*qb(minus)+e2xq6(minus))
(q1(plus)+e0*gb(plus)) (ql(plus)+q2(plus)+e0*qg6(plus))

(g2 (minus)+q3(minus)) g3(minus) ]

roots(d3pm)
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roots(d3pp)
roots(d3mp)
roots (d3mm)
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A AR KRR KRR KK KRR KRR KR KRRk kK ok K
/* JIMMY data acquisistion/control program */

/* started 10/10/94 */
/* last modified 12/16/94 */
/* written by: Ray Byrne, 9616 */

/ ok sk ok seskok ok sk sk sk okak s ok s ook sk sk ok sk ok seskok sk s kok ok ok ok k /

/ FAok ok ko kokkkokkokkok TNCLUDES ok sk sk sk ook sk ok s ok ok sk ok s ok ok /
#include <stdio.h>

#include <conio.h>

#include <dos.h>
#include <io.h>

/Fkkskskskskokokokokokokokokokok ok ok DEFTINES stttk sk s sk sk ok sksk skokokokokoks s s sk sk /

/* MATRIX A/D BOARD */
#define AD_CH_SELECT 0xFEOB

#define AD_DATA 0xFEOC
/* RTC defines */

#define MAIN_STATUS 0xFDCO
#define INTERRUPT_O 0xFDC3

#define Periodic_Flag  OxFDC3

/* control defines */

#define valve_max_p 2298

#define valve_max_n 1798

/ F Aok ko ko kokkkokokokkok GLOBAL VARTABLES  skskokskokok skoskok s ok sk ok s ok ok /

FILE *data_file;

unsigned char Flag = O,
dummy ;

unsigned int i,
count = 0O,

countl = 0,

data = O,

raw_sensor = 2048,
prev_sensor = 2048,
prev_prev_sensor = 2048,
raw_joystick = 2048,
raw_pressure,
prev_joystick,
raw_steering = 2048,
prev_steering = 2048,
center_steer,
prev_steering;

int steer_error,
downcount = O,
sensor,

joystick,
comm_steering = 2048,
steering,

road_error,

error_hist[5],

valve_out;

long int steer_integral = 0;

float valve_out_fp,

comm_steering fp,

road_prop,

road_deriv,

road_integral,

sensor_hist[4],

output_hist [5],

filt_sensor[100]; /* array of filtered sensor data */

[ Fkkskskskskokokokkokkokokokok ok ok ok FUNCTION PROTOTYPES  skskskskokokokokokok s sk s sk /

void interrupt (*old_RTC_vector) ();
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void
void
void
void
void
void

interrupt RTC_service (void);
initVectors (void);
restoreVectors (void);
Init_RTC (void);

create_files (void);
close_files (void);

/Fkkskskskskokokokokokokokokokok ok ok FUNCTTIONS  shokskoskskskok s sk sk ok sk sk skokokokokoks s s s ok /

void

disable();

initVectors (void)

01d_RTC_vector = getvect (0xOF);
setvect (0xOF, RTC_service);

dummy = inportb (0x21);
outportb (0x21, (dummy & O0x7f));

enable(); /* enable interrupts */
return;

} /* end of initVectors() */

void restoreVectors (void)

disable(); /* disable interrupts */

setvect (0xOF, old_RTC_vector);
dummy = inportb (0x21);
outportb (0x21, (dummy | 0x80));

outportb (0xFDCO, 0x44) ;
outportb (0xFDC3, 0);
outportb (0xFDCO, 0x44) ;

enable();

return;

}
void

{
Flag

outportb (MAIN_STATUS, 0x04);

/* end of restoreVectors */

interrupt RTC_service (void)

= 1;

dummy = inportb(Periodic_Flag);

outportb (AD_CH_SELECT, 0x00);

do
{

raw_sensor = inport (AD_DATA);

}

outportb (AD_CH_SELECT, 0x02);

do
{

while (raw_sensor >= 0x8000);

raw_steering = inport (AD_DATA);

}

while (raw_steering >= 0x8000) ;

/* disable interrupts */

/* enable interrupts */

/* unmask IR 7 */

/* get interrupt mask */
/* mask out RTC IR 7 %/

/* select Int O Register */
/* clear timer interupts */
/* clear interupt in main register */

/* set bit 6 = 0, bit 7 = 0 */

/* select CH 0 */

/* select CH 2 */

if (abs(raw_steering - prev_steering) > 300)
raw_steering = prev_steering;

road_

error = 2200 - filt_sensor[0];

road_integral = 0.9b*road_integral + road_error;

downcount++;
if (downcount > 9)

error_hist[4] = error_hist[3];
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error_hist[2];
error_hist[1];
error_hist[0];

error_hist [3]
error_hist[2]
error_hist[1]

error_hist [0]

output_hist[4] = output_hist[3];
output_hist [3] output_hist[2];
output_hist[2] = output_hist[1];
output_hist[1] = output_hist[0];

road_error;

output_hist [0] 2.6971*output_hist[1] - 2.6226%output_hist[2] +
1.076xoutput_hist[3] — 0.1532*output_hist[4] +
0.10646*error_hist[0] - 0.2b6*error_hist[1] +
0.203b*xerror_hist[2] - 0.060158*error_hist[3] +
0.006241*error_hist[4];

downcount = 0;
} /* end of 0.1 sec loop */

comn_steering = 2140 + 2*output_hist[0] + 0.001l*road_integral;

steer_error = raw_steering - comm_steering;
steer_integral = steer_integral + steer_error;
valve_out_fp = 6 * steer_error + 0.01 * steer_integral;
valve_out = (valve_out_fp + 2048);

if (valve_out > valve_max_p) valve_out = valve_max_p; /* limit speed */
if (valve_out < valve_max_n) valve_out = valve_max_n; /* of steering */

outportb (0xfelO, (valve_out & Oxff));
outportb (Oxfell, (valve_out >> 8));

outportb (0x1f8, Oxff);
outportb (0x1f8, 0x00); /+* toggle watchdog */

prev_steering = raw_steering;

outportb (0x20, 0x20); /#* non-specific EOI */
return;

} /* end of interrupt service routine */

\{roid Init_RTC (void)

outportb (MAIN_STATUS, 0x00); /* set bit 6 = 0, bit 7 = 0 */
dummy=inportb (Periodic_Flag); /* read clears flag register */
outportb (MAIN_STATUS, 0x44); /* set bit 6 = 1, bit 7 = 0 */
outportb (INTERRUPT_O, 0x10); /* generate interrupt @ 0.01 sec */
return;

} /* end of Init_RTC(Q) */

void create_files (void)

data_file = fopen("r:data.m", "a");
return;

} /* end of create_files() */

void close_files (void)
fclose (data_file);
return;

} /* end of close_files() */
/ Hkskekokokokokkokokkokokckkook. MATN PROGRAM stk sk skt s sk s s e ke s e ok /
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void main()

create_files();

Init_RTCQ); /* initialize real time clock */
initVectors(); /* initialize ISR and IR mask */
for (i=0;i<100;i++) filt_sensor[i] = 2048; /% init filter */

for (i=0;i<6;i++) error_hist[i] = 0;
for (i=0;i<6;i++) output_hist[il= 0;

outportb (AD_CH_SELECT, 0x02); /* select CH O */
do

{

center_steer = inport (AD_DATA);

} while (center_steer >= 0x8000);

ghile ('kbhit )
if (Flag == 1)
count++;

Flag = 0;
for(i=1;i<100;i++)

filt_sensor[100-i]l=filt_sensor[99-i];
} /* end of for loop */

filt_sensor[0] = (7.064076e-4)*(raw_sensor + 2*prev_sensor
+ prev_prev_sensor)

+ 1.907232*%filt_sensor[1] -

0.9100573*filt_sensor([2];

prev_prev_sensor = pPrev_sSensor;
prev_sensor = raw_sSensor;

fprintf(data_file,"%d %d %d %f %f \n",

raw_sensor, road_error, raw_steering, output_hist[0],
filt_sensor[0]);

} /* end of if statement */

} /* end of while loop */

FINISH:
restoreVectors();

close_files();

} /* end of main */
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