
The Inverse Kinetics Method
and PID Compensation of the

Annular Core Research Reactor

by

Benjamin Garnas

B.S. General Engineering, New Mexico Highlands University, 2003

THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Electrical Engineering

The University of New Mexico

Albuquerque, New Mexico

December, 2007

c©2007, Benjamin Garnas

iii

Dedication

To my brother, Matthew Garnas, whose untimely death first catalyzed my desire to

pursue an advanced degree, to my parents, Gil and Vicki, for their love, support,

and encouragement even when it seems Matt and I would never amount to

anything, and to God who has been with me every step of the way throughout my

life even in the most troubling of times.

iv

Acknowledgments

First and foremost I thank my employer, Sandia National Labs, for funding and the
opportunity to further my education. I thank Ray Troughbridge for first helping me
contact the ACRR group. I thank Robert Zaring, Lonie Martin, and Ron Farmer
for the opportunity develop a controller for their ACRR. Many thanks to Dr. Ed
Parma and Dr. Ron Knief, for the time spent working with me to understand the
nuclear reactor theory. Additional thanks to Dr. Parma for all the time spent helping
me to first developing an ACRR model. I would like to thank my present and
past managers Bob Boney, Mary Gonzales, and Rich Kreutzfield for their continued
support, flexibility, and patience while I pursued my educational goals. Finally I
would like thank Ernie Wilson for covering for my responsibilities at work so that I
was able to concentrate full-time on finishing this thesis.

v

The Inverse Kinetics Method

and PID Compensation of the
Annular Core Research Reactor

by

Benjamin Garnas

ABSTRACT OF THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Electrical Engineering

The University of New Mexico

Albuquerque, New Mexico

December, 2007

The Inverse Kinetics Method

and PID Compensation of the
Annular Core Research Reactor

by

Benjamin Garnas

B.S. General Engineering, New Mexico Highlands University, 2003

M.S., Electrical Engineering, University of New Mexico, 2007

Abstract

This thesis explores the development of a model describing the Annular Core Re-

search Reactor (ACRR), the application of the inverse kinetics method to calculate

the current reactivity level within the ACRR model, and the development of a PID

compensator to automatically control the reactivity level within the model and thus

controlling the power level.

vii

Contents

List of Figures xii

List of Tables xv

1 Introduction 1

1.1 Background . 1

1.2 Overview of ACRR . 3

1.2.1 Detailed Description of ACRR 4

1.3 Thesis Contribution . 7

1.4 Organization of Thesis . 7

2 Theory 8

2.1 Overview . 8

2.2 Nuclear Reaction Theory . 8

2.2.1 Nuclear Fission . 9

2.2.2 Neutron Population . 10

viii

Contents

2.2.3 Delayed Neutrons . 12

2.2.4 Neutron Lifetime and Mean Neutron Generation Time 13

2.3 The Point Reactor Kinetics Equation 14

2.3.1 Derivation of the Inhour Equation 16

2.3.2 Stable Reactor Period . 18

2.3.3 The Dollar . 19

2.4 The Inverse Kinetics Method . 20

2.5 Concluding Remarks . 21

3 Reactor Model 22

3.1 Overview . 22

3.2 Solving the Kinetics Equation . 23

3.2.1 Validation . 24

3.3 Temperature Feedback . 26

3.4 Sorting Data . 29

3.5 Recreation . 30

3.6 Solving the Inverse Equation . 35

3.7 Concluding Remarks . 39

4 Controller 41

4.1 Overview . 41

ix

Contents

4.2 Overview of the Plant Model . 41

4.2.1 State-Space Representation 43

4.3 Using the Inverse Method . 46

4.4 Developing the PID compensator . 51

4.4.1 Creation of the Desired Power vs. Time Path 52

4.4.2 Creation of the Desired Reactivity Path 53

4.4.3 Development of the Plant Input 54

4.4.4 Management of the Power Output 55

4.4.5 Treatment of the Error Signal 55

4.4.6 Control Rod Adjustments . 56

4.4.7 Results . 56

4.5 Concluding Remarks . 70

5 Conclusions 71

5.1 Review . 71

5.2 Future Work . 72

Appendices 74

A Derivation of Numerical Integration Methods 75

A.1 Trapezoidal . 75

A.2 Parabolic . 77

x

Contents

B Matlab Script and Function Files 79

References 109

xi

List of Figures

1.1 Annular Core Research Reactor (ACRR). 2

1.2 ACRR Core and Central Irradiation Space. 5

1.3 Top of the ACRR Tank. 6

3.1 Power vs. Time for a $0.25 Reactivity Insertion. 24

3.2 Average ACRR Core Temperature vs. Steady-State Power Levels and

Resulting Curve Fit. 28

3.3 Average Control Rod Position vs. Time for Steady-State Run 8512

(80%). 30

3.4 Power vs. Time for Steady-State Run 8512 (80%). 32

3.5 Power vs. Time for Steady-State Run 8435 (40%). 33

3.6 Power vs. Time for Steady-State Run 8031. 34

3.7 Delay Kernel Value vs. Time. 36

3.8 Inverse Calculated and Actual Reactivity Values vs. Time. 38

3.9 Error Between Calculated and Actual Reactivity Values vs. Time. . 39

xii

List of Figures

4.1 Plant Block Diagram. 42

4.2 Power vs. Time for Steady-State Run 8512 (80%). 47

4.3 Actual and Simulation Effective Reactivity Input for Steady-State

Run 8512 (80%). 48

4.4 Actual and Recreated Power Levels for Steady-State Run 8512 (80%). 49

4.5 Percent Error between Actual and Recreated Power Levels vs. Time. 50

4.6 Plant and Controller Block Diagram. 51

4.7 Desired Power vs. Time. 52

4.8 Desired Reactivity vs. Time. 53

4.9 Predetermined Control Rod Input. 54

4.10 Desired Power Level for an 80% Test Run (1.92 MW). 57

4.11 Desired and Actual Reactivity Levels vs. Time for 80% Run (1.92MW).

58

4.12 Reactivity Error vs. Time for 80% Run (1.92 MW). 59

4.13 Desired and Actual Power Levels vs. Time. 60

4.14 Power Percent Error vs. Time. 61

4.15 Control Rod Adjustments vs. Time for an 80% Run (1.92 MW). . . 62

4.16 Desired Power Trajectory for a Sine Oscillation About the 50% Power

Level. 64

4.17 Desired and Actual Reactivity Levels vs. Time for Sine Run. 65

4.18 Reactivity Error vs. Time. 66

xiii

List of Figures

4.19 Desired and Actual Power Levels vs. Time. 67

4.20 Power Percent Error vs. Time. 68

4.21 Control Rod Adjustments vs. Time for the Sine Wave Run. 69

A.1 Trapezoidal Integration. 76

A.2 Parabolic Integration. 77

xiv

List of Tables

2.1 ACRR Values for λi’s, βi’s, and l . 15

3.1 Average Temperature Values at Selected Steady-State Power Levels 27

xv

Chapter 1

Introduction

1.1 Background

The Annular Core Research Reactor (ACRR), shown in Figure 1.1, is a pool-type

research reactor located at Sandia National Laboratories/New Mexico. It is able to

operate in a pulse power or steady-state power mode. The majority of the exper-

iments performed within the ACRR are done with the reactor in the pulse power

mode, but there are instances when the reactor is required to operate in the steady-

state power mode [1].

The current/previous steady-state controller, “Auto-Mode”, performs so poorly

that the majority of the time the reactor is operating in the steady-state configura-

tion, the power level must be controlled manually by the operator. To this end, due

to the infrequency of use, relative ease of manual operation in steady-state mode, and

lack of time and resources, the need for a more improved “Auto-Mode” controller

was not very high.

The new and improved “Auto-Mode” controller should be able to automatically

1

Chapter 1. Introduction

regulate the ACRR power level to various steady-state power levels within the op-

eration power range of 1 kW to 2.4 MW. In addition, the controller should be able

to respond to various ramp rates while still remaining within the physical limits of

Figure 1.1: Annular Core Research Reactor (ACRR).

2

Chapter 1. Introduction

the system. It should also have the capability to compensate for power fluctuations

within the ACRR due to the negative impact of temperature.

1.2 Overview of ACRR

The ACRR is a water-moderated low-power research reactor using an enriched driver

fuel of cylindrical uranium dioxide-beryllium oxide (UO2 − BeO). The ACRR con-

tains a large dry central irradiation cavity at the center of the core that extends

to the pool surface. Along with the central dry irradiation cavity the facility has

additional experimental cavities, experiment setup areas, and storage locations [1].

The primary mission of the ACRR is to provide a means to subject various

components or systems to pulse and steady-state neutron irradiation environments.

The types of components and systems irradiated within the ACRR include:

• electronic circuit boards

• passive neutron and/or gamma dosimetry devices

• active neutron and/or gamma dosimetry devices

• arming, fusing and firing systems and their components

• explosive components

• radioactive materials

• experiment holding/positioning fixtures

• neutron spectrum modifying fixtures

The ACRR was designed to produce a high yield of high-energy neutrons in the

central irradiation dry cavity and other experimental facilities over a very short-time

3

Chapter 1. Introduction

pulse. The dry central cavity is centrally located within the core to allow for the

irradiation of such components [1].

1.2.1 Detailed Description of ACRR

The ACRR open-pool-type system utilizes light water as the moderator and coolant,

with cylindrical fuel elements arranged in a triangular-pitch grid structure about the

centrally located circular irradiation space. The fuel elements are cooled by natural

convection and the pool water is cooled using a heat rejection system. The fuel

elements consist of cylindrical uranium dioxide-beryllium oxide (UO2 − BeO) fuel

clad in stainless steel. The UO2 − BeO fuel, shown in Figure 1.2, is in the form of

annular slotted disks stacked within the fluted, niobium fuel cups. The niobium fuel

cups are then stacked within the fuel element stainless steel cladding. A BeO plug

is located at each end of the fuel region and the overall length of the fuel element is

73 cm (28.7 in) [1].

In Figure 1.2, we also see the most prominent feature of the ACRR; the 233

mm (9.19 in) inside diameter central irradiation space, located at the center of the

core. The annular core is formed by individual single fuel elements, having their

longitudinal axes oriented vertically, in a hexagonal grid, around the central cavity.

The core nominally consists of 200-250 fuel elements, with six fuel-followed control

rods and two fuel-followed safety rods. The outer row of fuel elements are surrounded

by nickel reflector elements. The high-heat-capacity UO2 −BeO fuel elements, take

up approximately six rings of the hexagonal grid. Each of the fuel elements are

individually positioned within the core by a pair of holes, one hole in an upper grid

plate and the other hole in a lower grid plate. The core grid plates contains over

300 locations for fuel elements; however, only a maximum of 251 fuel elements are

available for use within the ACRR [1].

4

Chapter 1. Introduction

When the ACRR is in the pulse-mode configuration, it uses 236 fuel elements

and the three transient poison elements that are withdrawn pneumatically or by the

use of high-speed stepper motors. In the steady-state mode, the six control rods are

driven by six individual stepper motors. Each of the control rods may be driven or

positioned independently, but they are typically driven together as bank controlling

Figure 1.2: ACRR Core and Central Irradiation Space.

5

Chapter 1. Introduction

the ACRR reactivity levels [1].

The ACRR core is located near the bottom of a stainless-steel cylindrical vessel

known as the ACRR tank. The upper portion of the tank and reactor bridge is shown

in Figure 1.3. The ACRR tank is 3.05 m (10 ft) in diameter and 8.54 m (28 ft 0.25 in)

in depth. The tank extends 0.91m (3 ft) above the ACRR High Bay floor. The top

of the core upper grid plate is 6.89 m (22 ft 7.25 in) below the tank lip. The depth of

the water between the top of the core upper grid plate and the surface of the pool is

approximately 6.1 m (20 ft). At this depth, the saturated water temperature at the

core exit is approximately 111oC. The water also provides radiation shielding [1].

Figure 1.3: Top of the ACRR Tank.

6

Chapter 1. Introduction

1.3 Thesis Contribution

This thesis presents a theoretical model of the ACRR. This model of the ACRR

is capable of recreating real-world power runs when subjected to similar reactivity

inputs. The main assumption for this model is that the position of the control rods

is the only controllable input.

The inverse kinetics method is applied to the power histories of the ACRR model.

By comparing the reactivity levels over time, the method is shown to be valid. Then

by utilizing the inverse kinetics method to calculate the reactivity levels over time

from a desired power trajectory, we are given a desired reactivity trajectory. A PID

compensator is then constructed to automatically control the ACRR reactivity levels

such that it follows the desired reactivity trajectory.

1.4 Organization of Thesis

The relevant concepts of the theory of nuclear engineering are presented in chapter

2. The point reactor kinetics equations, the inhour equation, and the inverse kinetics

method are also introduced in this chapter as well. The development of a reactor

model representing the ACRR and the application of the inverse kinetics method are

introduced in chapter 3. Chapter 4 covers the development of a state-space represen-

tation of the ACRR for the purpose of a more efficient model. Chapter 4 also covers

the introduction and management of a pure time delay within the ACRR system that

results in the adjustment of control rods every 0.5 seconds. Chapter 4 concludes with

the creation and simulation results of a PID compensator to automatically adjust

the position of the control rods at every 0.5 second interval. Chapter 5 contains the

concluding remarks and future areas of study.

7

Chapter 2

Theory

2.1 Overview

This chapter gives a brief introduction in basic reactor theory that includes nuclear

fission and neutron population. The point reactor kinetics equations and the inhour

equation are introduced along with the discussion of the reactivity unit of measure

“the dollar” and the concept of the stable reactor period. The chapter concludes

with the introduction of the inverse method and the importance of this method when

applied to the calculation of reactivity.

2.2 Nuclear Reaction Theory

A nuclear reaction is a process in which two nuclear particles collide to produce prod-

ucts different from the initial particles. Nuclear fission is the process of splitting the

nucleus of an atom into smaller, lighter nuclei, along with the release of free neutrons,

gamma rays, and other subatomic particles. The fission of heavier elements produces

8

Chapter 2. Theory

a large amount of energy and more tightly bounded fission fragments (nuclei).

2.2.1 Nuclear Fission

We begin with the model of an atom, introduced by Niels Bohr in 1913. It consists

of a heavy central nucleus surrounded by orbital electrons. The nucleus consists of

two types of particles: protons and neutrons which are often referred to as nucleons.

The proton and electron are of exactly opposite charge and the neutron is electrically

neutral. Since protons and neutrons have roughly the same mass, the nucleus itself

has a mass that is nearly proportional to the atomic mass number, defined as the

total number of protons and neutrons [2].

According to the concept of the the equivalence of mass and energy, given in [3],

the mass defect of an atom is a measure of the energy that would have to be supplied

to break apart the nucleus. Therefore, the energy counterpart of the mass defect is

known as the binding energy of the nucleus. In the nuclear physics and related fields,

energy is often measured in terms of the electron volt, represented by eV; this is the

energy acquired by a unit (electronic) charge which has been accelerated through a

potential of 1 volt. Since one electronic charge is equal to 1.60 x 10−19 coulomb, it

follows that 1 eV is equal to 1.60 x 10−19 joule, and 1 million electron volts (or 1

MeV) is equal to 1.60 x 10−13 joule [3].

As Duderstadt and Hamilton state in [4], “the binding energy per nucleon in the

atomic nuclei reaches a maximum of 8.7 MeV for nuclei with a mass numbers of

about 50”. Therefore, we are able to produce more tightly bound nuclei and release

energy, by causing a heavy nucleus to fission into two nuclei of intermediate mass

numbers. For heavy nuclei, there exists a stability against spontaneous fission due to

the short-range nuclear forces that are present within the nucleus. These forces act

as a potential energy barrier that must be overcome before the nucleus will fission.

9

Chapter 2. Theory

The range of this barrier occurs between 6-9 MeV in most heavy nuclei of interest.

Therefore, if we wish to cause one of the heavier atomic nuclei to fission, we must

add an ample amount of energy, to overcome the fission barrier [4].

This can be done in a number of different ways. One option is to allow the heavy

nucleus to capture a neutron. Then the binding energy of the added neutron is

enough to exceed the fission barrier and induce fission. Nuclides that can be induced

to fission with the capture of a neutron of almost zero kinetic energy, or thermal

neutrons which have small kinetic energies when compared to nuclear energies, are

called fissile nuclides [4].

Of course with many heavy nuclides, the additional binding energy due to the

capture of a neutron is still not enough to cause the heavy nucleus to break through

the fission barrier. If this occurs we can add a little extra energy to the neutron by

giving it a kinetic energy of one MeV or so, which is enough to push the nucleus

through the barrier and cause fission. Nuclides that are fissioned with these “fast”

neutrons are called fissionable nuclides. Since heavy nuclei are likely to induce fission

by the capture of either low energy neutrons or “fast” neutrons, the probability that

such a neutron will induce the heavy nuclei into fissioning (fission cross section) relies

heavily on the neutron population within the nuclear reactor [4].

2.2.2 Neutron Population

For a reactor, we can describe the neutron population by the following equation given

by Knief in [2] as:

Accumulation = production− absorption− leakage. (2.1)

This equation dictates that neutrons, just like mass and energy, must be conserved [2].

10

Chapter 2. Theory

If the neutron population within a reactor is at a nonzero steady-state level and

the fission chain reaction within the reactor is self-sustaining, the reactor is said to

be critical. Criticality may occur at any fission rate (or power level) just as long as

neutron losses are equal to the neutron production [2].

If the neutron production within a reactor is greater than the neutron losses, the

reactor is said to be supercritical and is characterized by increasing power levels. If a

reactor is subcritical, the reactor has neutron losses that are greater than production

and, thus, a decrease in power level occurs [2].

The multiplication factor, k, describes the tendency of the neutron population to

change and is defined as:

k =
neutron production

neutron losses
, (2.2)

where the losses result from both absorption and leakage. Thus, the value of k is

used to describe the state of the reactor where:

k = 1 the reactor is critical

k > 1 the reactor is supercritical

k < 1 the reactor is subcritical.

The multiplication factor may be regulated by changing the production, absorption,

and/or leakage of the neutron population [2].

We may now introduce the concept of reactivity, represented by ρ, defined as:

ρ(t) ≡ k(t)− 1

k(t)
. (2.3)

This quantity measures the deviation of the multiplication factor from its critical

value k = 1 [4].

11

Chapter 2. Theory

2.2.3 Delayed Neutrons

The fact that several neutrons are produced in a fission reaction is just as significant

as the energy released in the reaction. These neutrons may be used to create or

sustain a fission chain reaction. As Duderstadt and Hamilton state in [4], “the

majority of these fission neutrons appear essentially instantaneously (within 10−14

sec) of the fission event.” The neutrons that appear almost instantaneously are called

prompt neutrons. Of course a small number of neutrons, less than 1%, appear with a

noticeable time delay from the decay of the radioactive fission products. Even though

a small fraction of the fission neutrons are delayed, it is these delayed neutrons that

allow us to effectively control the fission chain reaction [4].

The number of neutrons (both prompt and delayed) released in a fission reaction

vary from reaction to reaction. Of course, in most nuclear applications we are only

concerned with the average number of neutrons released per fission. The average

depends on both the nuclear isotope involved and the energy of the neutron causing

the fission reaction [4].

By way of example, let us consider a fission product decay scheme leading to the

emission of a delayed neutron given first by the beta decay of 87Br to 87Kr*, followed

by the subsequent decay of 87Kr* to 86Kr via neutron emission.1 The time delay of

this process is regulated by the half life of the beta-decay, which is around 55 sec.

A fission fragment whose beta-decay yields a daughter nucleus which subsequently

decays via delayed neutron emission is know as a delayed neutron precursor. At

least 45 different delayed neutron precursor isotopes may be produced in a fission

chain reaction. In reactor analysis the precursors are often grouped into six classes

characterized by approximate half-lives of 55, 22, 6, 2, 0.5, and 0.2 sec, respectively,

1beta decay corresponds to the conversion of a neutron in the nucleus into a proton,
generally accompanied by the emission of an electron and a neutrino. An asterisk is used
to denote a nucleus in an excited state

12

Chapter 2. Theory

where each precursor group contains a number of different isotopes [4].

Due to the fact that the relative isotopic yield per fission varies for different

fuel isotopes, the detailed characteristics of the precursor groups are also isotope

dependent. Therefore, we define:

• λi = Decay constant (beta-decay) of the ith precursor group

• βi = Fraction of delayed neutrons emitted per fission that appear from the ith

precursor group

• β =
∑
i βi = Total fraction of fission neutrons which are delayed.

In our case, we will take the number of precursor groups to be six, i.e. i = 6. In

addition, the energy range of the delayed fission neutrons is significantly lower than

prompt fission neutrons and also depends highly on both the delayed neutron group

and fissioning isotope [4].

2.2.4 Neutron Lifetime and Mean Neutron Generation Time

Earlier we defined the multiplication factor, k, as:

k(t) =
neutron production

neutron losses
=

P(t)

L(t)
, (2.4)

where P(t) represents the amount of neutron production within the reactor at time t

and L(t) represents the amount of neutron losses within the reactor at time t. Now,

we define the neutron lifetime, l, as:

l =
N(t)

L(t)
, (2.5)

where N(t) is the total neutron population within the reactor at time t [4].

13

Chapter 2. Theory

The mean neutron generation time, Λ, is defined as:

Λ ≡ l

k(t)
, (2.6)

where l is the mean lifetime of a neutron in the a reactor and k is the multiplication

factor. From equation (2.3) we can solve for k:

k(t) =
1

1− ρ(t)
. (2.7)

Using equation (2.7) we can rewrite equation (2.6) as:

Λ = l(1− ρ(t)). (2.8)

As we can see the mean neutron generation time will vary with time as the multipli-

cation factor or the reactivity within the reactor varies as well.

2.3 The Point Reactor Kinetics Equation

The base for a reactor model is a set of ordinary differential equations known as

the point reactor kinetics equations described in equations (2.9) and (2.10). These

equations are first order and linear, and essentially describe the change in the neutron

density within the reactor due to a change in reactivity, ρ(t). The equations are as

follows,

dn

dt
=
[
ρ(t)− β

Λ

]
n(t) +

6∑
i=1

λiCi(t) (2.9)

dCi
dt

=
βi
Λ
n(t)− λiCi(t), i = 1, . . . , 6 (2.10)

where:

14

Chapter 2. Theory

• n(t) - neutron density (total number of neutrons in the reactor at time t)

• Ci(t) - effective precursor concentration for group i (expected number of pre-

cursors of ith kind that always decay by emitting a delayed neutron)

• ρ(t) - reactivity

• Λ - mean neutron generation time

• β - total effective delayed neutron fraction (β =
∑6
i=1 βi)

• βi - effective delayed neutron fraction of group i

• λi - effective decay constant of group i

These seven coupled ordinary differential equations express the time-dependence

of the neutron population and the decay of the delay neutron precursors within a

reactor [4]. The values used for the variables λi’s, βi’s, and l are specific for each

reactor. The values for the ACRR are given in Table 2.1. Additionally the neutron

density within a reactor is proportional to neutron flux, fission rate, and reactor

power level [2].

Table 2.1: ACRR Values for λi’s, βi’s, and l

i βi λi l
1 2.66 x 10−4 1.27 x 10−2

2 1.492 x 10−3 3.17 x 10−2

3 1.317 x 10−3 0.115
4 2.851 x 10−3 0.311 24 x 10−6

5 8.97 x 10−4 1.40
6 1.82 x 10−4 3.87

total 0.0073 na

15

Chapter 2. Theory

2.3.1 Derivation of the Inhour Equation

To derive the inhour equation, let us consider a simple situation in which we imagine

a reactor operating at a initial neutron density level no prior to t = 0. Then, the

reactivity is changed to a nonzero value ρo. To make this example a little more

straightforward we will not attempt to solve the full set of point reactor kinetics

equations, but instead we consider the case where all delayed neutrons are represented

by one delayed group, characterized by a total yield fraction

β =
∑
i

βi (2.11)

and an averaged decay constant

λ =
[

1

β

∑
i

βi
λi

]−1

. (2.12)

For this simplified case the point reactor kinetics equations, (2.9) and (2.10), may

be rewritten as:

dn

dt
=
[
ρ(t)− β

Λ

]
n(t) + λC(t) (2.13)

dC

dt
=
β

Λ
n(t)− λC(t) t ≥ 0. (2.14)

Prior to t = 0 the reactor is at a steady-state neutron density level no. Thus, we find

that for t < 0 the following must hold:

dn

dt
=
dC

dt
= 0→ Co =

β

λΛ
no. (2.15)

The equations in (2.15) result in the initial conditions for equations (2.13) and (2.14):

n(0) = no, C(0) =
β

λΛ
no. (2.16)

16

Chapter 2. Theory

This initial value problem may be solved by seeking exponential solutions of the

form:

n(t) = netω, C(t) = Cetω, (2.17)

where n,C, and ω are to be determined. If we substitute the initial conditions into

equations (2.13) and (2.14) we arrive at following equations:

ωn = (
ρo − β

Λ
)n+ λC, ωC =

β

Λ
n− λC. (2.18)

These equations have a solution if and only if

[
ω − (

ρo − β
Λ

)
]
(ω + λ) = 0,

or

Λω2 + (λΛ + β − ρo)ω − ρoλ = 0 [4]. (2.19)

Equation (2.19) is the characteristic equation for the parameter ω. Using our defini-

tion of Λ in equation (2.8), we are able to write equation (2.19) as

ρo =
ωl

ωl + 1
+

1

ωl + 1
(
ωβ

ω + λ
). (2.20)

Using equation (2.20) we can determine the decay constants ω for any constant

reactivity ρo. Now let’s generalize equation (2.20), for six groups delayed of neutrons:

ρo =
ωl

ωl + 1
+

1

ωl + 1

6∑
i=1

ωβi
ω + λi

≡ ρ(ω). (2.21)

In reactor theory, equation (2.21) is known as the inhour equation. The roots of this

equation, yield the seven decay constants ωj that describe the time-behavior of the

neutron density as,

n(t) = A0e
tω0 + A1e

tω1 + . . .+ A6e
tω6 [4]. (2.22)

17

Chapter 2. Theory

2.3.2 Stable Reactor Period

If reactivity ρ is positive, then k > 1, and six of the time constants from equation

(2.22) are negative and one is positive. Therefore, in equation (2.22), we take ω0

to be the one positive time constant, and ω1, ω2, . . . , ω6 are the negative time con-

stants. The value of the six negative time constants are of the same order as one

of the six decay constants, λi, of the delayed-neutron precursors. As t increases,

the contributions of all negative time constants in equation (2.22) decrease rapidly

to zero. Therefore, these negative time constants make an initial contribution to

the neutron density, but soon become negligible compared to the first term, which

increases due to the positive time value of ω0. Therefore, after a short time, equation

(2.22) reduces to,

n(t) = A0e
tω0 [3]. (2.23)

The reactor period, T , or e-folding time, is the the amount of time required for

the neutron density to change by a factor e, so that

n = n0e
t/T . (2.24)

By setting A0 in equation (2.23) to be equal to n0, we can set equations (2.23) and

(2.24) equal to each other and solve for T . Therefore, we find that T is as follows,

T =
1

ω0

, (2.25)

and is the stable reactor period. The 1/ω1, 1/ω2, . . . , 1/ω6, values are sometimes

referred to as transient periods, but since they are negative, they have no physi-

cal meaning as reactor periods in the same sense that 1/ω0 does. Therefore, ω1,

ω2, . . . , ω6 are merely the values that satisfy equation (2.19). They each affect the

18

Chapter 2. Theory

rate of change in the neutron density, but only for a short amount time after the

reactivity level has been increased [3].

If ρ is negative, then all seven values of ω are negative. Therefore, equation (2.22)

consists of seven time constants, all with negative exponents and the magnitude of

each term decreases over time. The time constant with the smallest numerical value,

let’s call it ω0, decreases at a slower rate than the other six and yields a stable

negative period equal to 1/ω0 [3].

2.3.3 The Dollar

In nuclear engineering a unit commonly used to measure reactivity, is the dollar. The

dollar, is measured in units of the total delayed neutron fraction β, and is defined by

Reactivity in dollars ≡ ρ

β
. (2.26)

The reason for this unit of measure is due to the prompt critical condition that

occurs within the reactor when it is critical on prompt neutrons alone. The required

condition for prompt criticality can be obtained from equation (2.9). If the delayed-

neutron source term is ignored, so that only prompt fission neutrons are considered,

equation (2.9) becomes,

dn

dt
=
ρ− β

Λ
n. (2.27)

If a reactor is critical, then dn/dt is equal to zero; since n and Λ can not equal zero,

we see that the ρ = β condition results in a reactor being prompt critical [3]. If

ρ = β, then the amount of reactivity within the system measured in dollars, is $1.00,

one dollar.

If we pass the prompt-critical value of a reactor, the neutron density rapidly

increases and results in a reactor that is difficult to control. Therefore, special

19

Chapter 2. Theory

safety measures are taken to ensure that this condition does not occur during reactor

operation [3].

2.4 The Inverse Kinetics Method

If we are given a certain ρ(t) value, there are very few cases where it is possible to

calculate an exact solution for P (t). Actually it is more useful to invert the problem

and determine the ρ(t) that produces a desired P (t) behavior, since this is more in

line with the philosophy of reactor control [4].

In order to solve for ρ(t) in terms of P (t), let us derive yet another form of the

kinetics equations. Let us begin by solving equation (2.10) in terms of P (t):

Ci(t) =
∫ t

−∞

βi
Λ
P (t′)e−λi(t−t′)dt′ =

∫ ∞
0

βi
Λ
e−λiτP (t− τ)dτ, (2.28)

where we assume that Ci(t)e
λit → 0 as t → −∞ and then let τ = t − t′ to obtain

the second integral of equation (2.28). We now place equation (2.28) into equation

(2.9) and write

dP

dt
=
[
ρ(t)− β

Λ

]
P (t) +

∫ ∞
0

[6∑
i=1

λiβi
Λ

e−λiτ
]
P (t− τ)dτ. (2.29)

By defining the delayed neutron kernel D(τ) as:

D(τ) ≡
6∑
i=1

λiβi
β
e−λiτ , (2.30)

and substituting into equation (2.29), the result is an integro-differential form of the

kinetics equations,

dP

dt
=
[
ρ(t)− β

Λ

]
P (t) +

β

Λ

∫ ∞
0

D(τ)P (t− τ)dτ, (2.31)

20

Chapter 2. Theory

which describes the time-dependence of the power level of a reactor. If we rearrange

this equation such that ρ(t) is given in terms of P (t) we arrive at the inverse equation:

ρ(t) = β + Λ
d

dt
[lnP (t)]− β

∫ ∞
0

D(τ)
P (t− τ)

P (t)
dτ. (2.32)

This relationship is important since it can be used to calculate a specific reactivity

input such that it yields a desired power response and to provide information about

the feedback mechanism within the reactor [4].

2.5 Concluding Remarks

With the introduction of the point reactor kinetics equations and the inverse kinetics

method behind us we now move on to applying them to the development of an ACRR

model. In the next chapter, the kinetics equations is the cornerstone in creating such

a model. The measurement of the reactor model’s stable reactor period is used as

a measure for comparing its operation with that of the actual ACRR. Last but not

least, the inverse method is applied to calculating the reactivity levels from a power

run of the ACRR model.

21

Chapter 3

Reactor Model

3.1 Overview

This chapter reviews the steps taken to develop a model describing the neutron

population time-dependence of the ACRR by solving the point kinetics equations.

Second we review the temperature vs. power equation construction that is used to

determine the temperature feedback relationship. We present a discussion on the

management of the ACRR data and the data manipulation that is done to create

useful control rod inputs. Then by combining the model describing the neutron

population and the temperature feedback relationship a model describing the ACRR

is generated. Simulations recreating real world power runs are prepared by subjecting

the ACRR model to similar control rod inputs. Then the simulation power output

is compared to the real world power output to verify that the ACRR model does

in-fact perform similarly to the actual ACRR in response to similar inputs.

The chapter concludes with the development of the inverse kinetics method which

is used to determine the effective reactivity levels within the reactor. The validity

of the inverse kinetics method is determined by comparing the actual simulated

22

Chapter 3. Reactor Model

reactivity levels with those found by the inverse kinetics method.

3.2 Solving the Kinetics Equation

The point kinetics equation, as we know, describes both the time-dependence of the

neutron population within a reactor and the decay of the delayed neutron precursors.

Since the neutron population of a nuclear reactor is proportional to its power level,

we can rewrite equations (2.9) and (2.10) in terms of reactor power (P (t)) as,

dP

dt
=
[
ρ(t)− β

Λ

]
P (t) +

6∑
i=1

λiCi(t) (3.1)

dCi
dt

=
βi
Λ
P (t)− λiCi(t), i = 1, . . . , 6. (3.2)

To solve the kinetics equations, we use Euler’s method. To do this, we first have

to determine the initial conditions of the effective precursor concentration for each

group (the Ci’s) due to an initial steady-state power level. By assuming the reactor is

initially at a steady-state, i.e. dCi/dt = 0, we can easily solve for each of the effective

precursors at an initial steady-state power level by solving the following equations:

Ci(0) =
βi
λiΛ

P (0), i = 1, . . . , 6.

By using a relatively small time step (dt) of 0.001 seconds, in the script file

reactor1a.m, we are able to solve the kinetics equations and determine the reactor

power level at each time step due to a given input.1 Figure 3.1 is an example of the

reactor power level due to a positive $0.25 reactivity insertion. We also simulated

positive reactivity insertions of $0.05 and $0.50. In all cases the initial power level

was assumed to be 3 kW.

1The script file reactor1a.m is located in Appendix B

23

Chapter 3. Reactor Model

0 10 20 30 40 50 60 70 80 90 100
103

104

105

106

Time (sec.)

Po
we

r (
W

at
ts

)

Figure 3.1: Power vs. Time for a $0.25 Reactivity Insertion.

To clarify, the ACRR model at this point is at its simplest. The kinetics equations

are only describing the time-dependence of the power level for the ACRR model. So

far, there is no regulation of the power level. If a positive amount of reactivity, no

mater how small, is added to the ACRR model, the power level will grow without

bound. The power level, at first, will grow exponentially and then after some time

(once the transients die out), will continue to grow asymprotically as it reaches its

stable period.

3.2.1 Validation

From the calculated reactor power level vs. time we are be able to determine the

stable reactor period for a given reactivity insertion. By comparing the stable reactor

24

Chapter 3. Reactor Model

period to known stable period values for the ACRR, we obtain a measure on how

accurate a model of the time-dependence of the power level for the ACRR is.

In a reactor core, the growth or decay of the neutron population obeys an ex-

ponential law. Since the neutron population of a nuclear reactor is essentially pro-

portional to its power level, we may consider the time behavior of the reactor power

level as being exponential with a time constant (period) as well. Therefore, the power

within the reactor can be described by equation (3.3):

P (t) = Poe
t/T , (3.3)

where Po is the original power, t is time in seconds, and T is the instantaneous reactor

period. Since we want to determine the instantaneous reactor period all we need to

do is solve for T in equation (3.3). By doing so we end up with the expression,

T =
t

ln(P (t))− ln(Po)
. (3.4)

In practice, measuring the stable reactor period is one of the simplest types of

kinetic measurements used to determine the reactivity “worth”. It is done by making

a small positive perturbation in the core of a critical reactor. Here we are doing the

opposite by adding a small amount of reactivity and then measuring the resulting

reactor period.

In Figure 3.1 we can see that the power level after a positive $0.25 reactivity

insertion is growing exponentially, or linearly when plotted on a semi-log scale. After

running the simulation for a significant amount of time, to insure the reactor model

has reached its stable period, we calculate the period by the use of equation (3.4)

and find it to be 24.30 seconds.

The reactor period was calculated again 2 more times for the positive reactivity

insertions of $0.05 and $0.50. The stable periods were 217.58 seconds and 5.45

25

Chapter 3. Reactor Model

seconds respectively. These 3 stable period values were all very close to known

stable period values for the ACRR for the given positive reactivity insertions. With

these results sufficiently close to the known stable period values of the ACRR, we

are confident that the simulation is correctly modeling the time-dependence of the

power level for the ACRR.

3.3 Temperature Feedback

The temperature feedback in the ACRR is what makes it inherently stable. In order

to increase the power in the ACRR one must add positive reactivity. The increases in

power, in turn, increases the temperature in the ACRR. The increase in temperature

then causes the effective amount of reactivity to decrease and therefore the change

in power from one time step to the next decreases until a steady-state power level is

reached in which the effective amount of reactivity acting on the system is equal to

zero.

When combined with the kinetics equations the temperature feedback describes

how the reactor reacts dynamically. Once a temperature feedback relationship is

created we are able to take existing data from previous steady-state power runs of

the ACRR and attempt to recreate the power histories using our model.

There are two routes in developing a description of the temperature feedback for

the ACRR. The first is to develop a heat transfer model. Unfortunately this route

proved to be much to difficult and time consuming. The second is to take the data

collected from a safety analysis simulation and develop a temperature vs. power

equation. The average temperature results from the simulation at selected power

levels are shown in Table 3.1. The values given in Table 3.1 are then plotted against

each other and by the use of a curve fitting tool, we develop a temperature vs. power

equation by adding a trend line to the plot as shown in Figure 3.2. The resulting

26

Chapter 3. Reactor Model

Table 3.1: Average Temperature Values at Selected Steady-State Power Levels

Power T(Ave) ◦C
1 W 20.1
1 kW 21.2

10 kW 26.7
100 kW 78.9
500 kW 244.4

1 MW 392.8
2 MW 607.8
3 MW 789.9
4 MW 955.0

temperature vs. power equation is given in equation (3.5) as,

T = 2.64P (t)5 − 30.7P (t)4 + 138P (t)3 − 317P (t)2 + 577P (t) + 21.2. (3.5)

The temperature vs. power equation, (3.5), allows us to calculate the average

reactor temperature at a given power level. By then using a ratio of −$0.006/◦C, we

calculate the reactivity feedback due to the average temperature within the reactor.2

The ratio of reactivity per degree Celsius was provided by the group that oversees the

operation of the ACRR. It is a good estimate that is used to calculate the amount

of negative reactivity present within the reactor during steady-state runs.

2The −$0.006/◦C ratio is based on the U238/U235 ratio and is an inherent property for
the ACRR UO2 −BeO fuel

27

Chapter 3. Reactor Model

0 0.5 1 1.5 2 2.5 3 3.5 4
0

100

200

300

400

500

600

700

800

900

1000

Power (MW)

Te
m

pe
ra

tu
re

 (C
)

Average Core Tempurature vs. Power
 5th degree

Figure 3.2: Average ACRR Core Temperature vs. Steady-State Power Levels and
Resulting Curve Fit.

28

Chapter 3. Reactor Model

3.4 Sorting Data

First, we were given numerous EXCEL files containing the ACRR power level, control

rod position, core temperature levels, etc. vs. time for steady-state runs that occurred

from 2002 to 2006. The files were thoroughly sorted and only the steady-state runs

that include a large power increase were used. Large power increases describe a

steady-state run that included an increase in power above 20% of the reactor peak

power. The ACRR peak power or 100% power is 2.4 MW. So basically any steady-

state run that had the ACRR steady-state power at 20% or higher is used.

In order to save memory space, the data logs received from the steady state runs

had the data logged every 6 seconds. This threw a minor “kink” in validating the

model by re-creating the ACRR steady state runs, since the current model describing

the time-dependence of the ACRR power level needs a reactivity value every 0.001

seconds. Luckily, by using the MATLAB function spline we are able to essentially

fill in the gaps and have a reactivity value every 0.001 seconds.

The ACRR, when in steady-state power opertion, has 6 control rods to regulate

the amount of reactivity in the system. In the data logs the rod position vs. time

for each control rod is recorded in rod units. One rod unit is equal to 0.1 mm.

The position of all the control rods is averaged, since they often move together but

every once in a while a few might be off by a couple of rod units. The position of

the control rods is estimated in-between the sample points by using the MATLAB

function spline to include the rod position during the steady-state run at every 0.001

seconds. In Figure 3.3, we can see the average control rod position history plotted

before and after the use of spline. As we can see the spline function does a good job

filling in the gaps and creates a usable control rod input by calculating the average

position of the control rods at every 0.001 second interval throughout the entire run.

29

Chapter 3. Reactor Model

0 100 200 300 400 500 600
1400

1600

1800

2000

2200

2400

2600

2800

Time (sec.)

Av
er

ag
e

Co
nt

ro
l R

od
 P

os
itio

n
(ro

d
un

its
)

Before spline
After spline

Figure 3.3: Average Control Rod Position vs. Time for Steady-State Run 8512 (80%).

3.5 Recreation

When the ACRR is used for a steady-state power run, the reactor operators almost

always bring the reactor up from zero-power to a relatively low steady-state power

level usually between 5% and 15% of the ACRR full power level. Then, some time

after steady-state is reached at the lower power level, the reactor is taken up to its

desired steady-state power level. Here in the recreation of these steady-state power

runs we always begin the simulation just as the operator is beginning to take the

reactor up to the desired steady-state power level from the lower steady-state power

level. Therefore, the initial average control rod position and power level is never

30

Chapter 3. Reactor Model

equal to zero, but the initial amount of effective reactivity is always equal to zero.

In order to calculate the amount of reactivity added to the reactor by the control

rods, we always assume that the reactor is critical, i.e. in steady-state, before the

run begins. Therefore, the effective reactivity in the system is equal to zero and the

initial average position of the control rods is used to calculate the amount of reactivity

added to the reactor while the operator is taking the ACRR to its desired steady-

state power level from its initial low level steady-state power level. The reactivity

from the control rods is calculated using equation (3.6).

ρadd(t) = (y(t)− yo)(0.003), (3.6)

where yo is the average initial position of the control rods in rod units, y(t) is the

average position of the control rods in rod units over time, and ρadd(t) is the reactivity

added by the control rods in dollars over time. The 0.003 multiplier is due to the

relationship of $0.003/rod unit for the collective control rod bank.

Now, to calculate the effective reactivity (ρeff) within the reactor, we simply add

the reactivity from the control rods to the feedback reactivity due to the temperature

within the reactor,

ρeff = ρadd + ρf , (3.7)

where we use the temperature vs. power equation to find the current temperature

due to the current power level and then the −$0.006/◦C ratio to calculate ρf from

the current temperature. The effective reactivity, ρeff , and the current power level

are then used to find the resulting power by solving the kinetics equations.

Figure 3.4 shows a comparison of the actual power level over time (from the

ACRR data) and the power level over time calculated by the ACRR model, given

31

Chapter 3. Reactor Model

0 100 200 300 400 500 600
103

104

105

106

107

Time (sec.)

Po
we

r (
W

at
ts

)
Actual
Simulation

Figure 3.4: Power vs. Time for Steady-State Run 8512 (80%).

by the script file reactor1b.m, for an 80% power run.3 We can see that the eventual

steady-state power level is reached, but it does take longer for the simulated power

level to reach the desired steady state level. This is due to the temperature vs. power

equation, since it is calculated by fitting a polynomial equation to steady-state power

and temperature values the temperature feedback is more aggressive than in the real

world.

In the real world, the temperature feedback often takes more time to build up

depending on the rate at which the reactivity is being inserted. This often allows

the reactor operators to quickly get the ACRR up to the desired power level, and

3The script file reactor1b.m is located in Appendix B

32

Chapter 3. Reactor Model

0 100 200 300 400 500 600 700 800 900 1000
103

104

105

106

107

Time (sec)

Po
we

r (
W

at
ts

)
Actual
Simulation

Figure 3.5: Power vs. Time for Steady-State Run 8435 (40%).

then adjust the reactivity levels to keep the ACRR at the desired power level as the

temperature feedback becomes more pronounced.

After verifying that the model also adequately simulated 2 additional 80% power

runs, we decide to try a 40% power run. Due to the inconsistency in the data given,

we only had data that was useable from a few 80% and 40% power runs. After using

the MATLAB function spline to calculate the position of the control rods for every

0.001 seconds for the 40% power run, we enter it into the ACRR model and the

resulting power plot is shown in Figure 3.5.

As we can see from Figure 3.5 the steady-state power level from the model also

reaches the desired steady-state power level. The power level for the 40% run does

33

Chapter 3. Reactor Model

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
103

104

105

106

107

Time (sec.)

Po
we

r (
W

at
ts

)
Actual
Simulation

Figure 3.6: Power vs. Time for Steady-State Run 8031.

take a little longer to reach steady-state than the 80% run, but this is most likely

due to the control rods being inserted at a slower rate. Another 40% run was also

simulated and the ACRR model adequately recreated it as well.

With the ACRR model able to adequately recreate the 80% and 40% power runs

using the same reactivity inputs that were given to the ACRR, it is safe to say that

a reasonable model of the ACRR has been created, but just to make sure let us test

the ACRR model further and see if it can reproduce a run that has numerous steady

state power levels. The run starts from approximately the 0% power level and goes

up to the 20% power level and holds for a while, then up to 35% and holds, then up

to 55% and holds, and finally up to 65% and holds.

34

Chapter 3. Reactor Model

As we can see in Figure 3.6, the model reaches all the desired steady-state power

levels. This is very good news. Not only are we able simulate reaching single steady-

state power levels but, we are also able to reach multiple steady-state power levels

within a single run.

3.6 Solving the Inverse Equation

Using the Inverse Equation after each run, we are able to determine the amount of

effective reactivity within the reactor at each time step. By comparing the effective

reactivity input from the simulation to the calculated effective reactivity, we can

check the accuracy of the code.

The inverse equation given in (2.32) is repeated here for the sake of convenience

ρ(t) = β + Λ
d

dt
[lnP (t)]− β

∫ ∞
0

D(τ)
P (t− τ)

P (t)
dτ, (3.8)

where the delayed neutron kernel, D(τ), is as follows,

D(τ) ≡
6∑
i=1

λiβi
β
e−λiτ . (3.9)

Let us first apply the inverse kinetics method to solving the amount of effective

reactivity within a reactor at a certain instant in time. Here we assume that we have

just run a simulation that calculated the output power level of the ACRR from time

t = 0 to time t = 500 sec, and that we have the access to the power level of the

reactor at each time step throughout the simulation. Now, let’s choose to calculate

the amount of effective reactivity at a time t = 340 sec.

In equation (3.8), the delayed neutron kernel D(τ) → 0 as τ → ∞. Thus, the

first step in solving the inverse equation is to determine how large τ needs to be

35

Chapter 3. Reactor Model

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Time (sec.)

D(
t)

Figure 3.7: Delay Kernel Value vs. Time.

before D(τ) ≈ 0. In Figure 3.7, D(τ) is plotted from 0 to 300 seconds. The cut off

point for D(τ) is chosen to be at 240 seconds, since the value of D(τ) drops below

3× 10−5 sec−1. Therefore, we assume the integral portion of equation (3.8) will only

be relevant from τ = 0 seconds to τ = 240 seconds.

Now lets breakdown equation (3.8); first let’s look at the integral portion of

equation (3.8) when attempting to solve for ρ(340):

β
∫ 240

0
D(τ)

P (340− τ)

P (340)
dτ.

For the P (340−τ)
P (340)

portion within the integral, let’s take P (340) outside the integral,

and treat it as a constant, rather than have it divide P (340− τ) at every integration

36

Chapter 3. Reactor Model

step. Then, we multiply the power history from P (340) to P (100) at each time step

by the value of the delayed neutron kernel at each respective integration step and

store the values in a column vector as shown below for τ = 0 : dτ : 240,

D(τ)P (340− τ) =



D(0)P (340)

D(0.001)P (339.999)

D(0.002)P (339.998)
...

D(240)P (100)


.

Therefore, as τ increases by an integration step, we take the power of the reactor at

a later point in time and multiply it by the value of the delayed neutron kernel at τ .

Here the value of the integration step was taken to be the same as the time step used

for solving the kinetics equations, 0.001 seconds. To integrate, we take the column

vector, shown above, that holds the values of D(τ)P (340 − τ) at each integration

step, and use a backward integration method, given in [5], to find the value of the

integral at time t = 340.

Now for the derivative portion of equation (3.8). Rather than numerically cal-

culating the derivative of ln(P (340)), we instead use d
dt

(lnP (340)) = 1
P (340)

, since

d
dt

(lnx) = 1
x
.

To first test the algorithm to solve the inverse equation let us find the reactivity

at a single point from an 80% run. This was done at different instances throughout

the run and all were compared to the actual input for the simulation. In all cases the

reactivity calculated from the inverse equation was off by only $0.0003 of the actual

input of the simulation.

The next step is to calculate the reactivity for the entire run by using just the

power histories. In order to do so, we assume the reactor is critical before the input

is changed (control rods are moved). Therefore, we assume that 240 seconds prior

37

Chapter 3. Reactor Model

0 50 100 150 200 250 300 350 400 450 500
!0.1

0

0.1

0.2

0.3

0.4

Time (sec.)

R
ea

ct
iv

ity
 ($

)

Actual
Inverse Calculation

Figure 3.8: Inverse Calculated and Actual Reactivity Values vs. Time.

to, and up to the initial input, the power level within the reactor does not change.

As we can see in Figure 3.8, the calculated reactivity from the inverse equation

and the simulation input are pretty much equal. Figure 3.9 plots the error between

the two reactivity values shown in Figure 3.8 over time. For the entirety of the

calculation, the percent error remains within the ±$0.002 range. In fact, the RMS

error between the two was calculated to be $5.25×10−4 over the entire run. Therefore,

we conclude that our algorithm for solving the inverse equation is working correctly.

Now, with this powerful tool, if we are given a power history for a reactor we can

calculate the effective reactivity within the reactor throughout the run. The next

38

Chapter 3. Reactor Model

0 100 200 300 400 500 600
!14

!12

!10

!8

!6

!4

!2

0

2
x 10!3

Time (sec.)

R
ea

ct
iv

ity
 ($

)

Figure 3.9: Error Between Calculated and Actual Reactivity Values vs. Time.

task is to use the inverse equation to help automatically control the power level of

the ACRR.

3.7 Concluding Remarks

The model describing the time-dependent power level of the ACRR was validated

by comparing its stable reactor period with that of the actual ACRR, for different

reactivity inputs. The temperature vs. power equation when combined with the

time-dependent power level model of the ACRR adequately recreated multiple real

world ACRR power runs. In addition, the ACRR model was able to recreate a real

39

Chapter 3. Reactor Model

world power run containing multiple steady-state power levels.

The inverse equation was broken down into derivative and integral terms and

methods for calculating each were described. Then, successful calculations of point

reactivity levels and reactivity levels for entire runs confirmed the proper calculation

of the inverse equation.

With the ACRR model describing both the temperature feedback and the time-

dependent power level, we now move on to developing a controller to automatically

control the power level of the ACRR model.

40

Chapter 4

Controller

4.1 Overview

Before the development of a controller is discussed, we review the current plant model

and introduce the presence of a pure time delay within the ACRR system. Then, a

state-space representation of the ACRR reactor model is developed to more efficiently

simulate the ACRR. We then review the use of the inverse kinetics method to calcu-

late the desired reactivity trajectory and the current amount of effective reactivity

within the ACRR. Then, by the use of negative feedback and a PID compensator in

the forward path we cause the ACRR model, with the presence of a pure time delay,

to track the desired reactivity trajectory throughout the entire run.

4.2 Overview of the Plant Model

First, let us look at how the ACRR model operates as shown in Figure 4.1. As we

can see, the inputs for the reactor model are the effective reactivity, ρeff and the

41

Chapter 4. Controller

Figure 4.1: Plant Block Diagram.

current power level. The output is simply the new power level. From the new power

level and the temperature vs. power equation the negative reactivity feedback, ρf , is

calculated. Then with the negative reactivity feedback and the amount of reactivity

due to the position of the control rods, ρc, we obain the amount of effective reactivity

that will be added to the plant.

This is a rather simple breakdown of the reactor model but as we recall from

chapter 3, this simple representation of the ACRR is sufficient to simulate previous

runs reasonably well. The largest difference between the simplified model and the

real world ACRR is in the calculation of the average reactor temperature and thus the

negative reactivity. Of course this calculation is on the more conservative side since

the temperature vs. power equation used to calculate the average reactor temperature

is based on steady-state power and temperature values.

In order to have the simplified model better represent the real world ACRR a pure

time delay, of about 0.5 seconds, will need to be added to the model. A time delay

within a plant often occurs in the model of a system that involves the movement

42

Chapter 4. Controller

of some substance, such as in this case, the movement of the control rods [6]. To

account for such a delay, we assume that the desired destination of the control rods

at the end of the time delay may only be changed every 0.5 seconds, rather than

have an instantaneous adjustment every 0.5 seconds.

4.2.1 State-Space Representation

In an effort to more efficiently model the ACRR a state-space representation of the

kinetics equation was developed. Also, we found that the time in-between samples

may be increased from 0.001 seconds to 0.002 seconds without affecting the simulation

results. The kinetics equations are repeated here for the sake of continuity, but in a

discrete time representation:

P (k + 1)− P (k)

T
=
[
ρ(k)− β

Λ

]
P (k) +

6∑
i=1

λiCi(k) (4.1)

Ci(k + 1)− Ci(k)

T
=
βi
Λ
P (k)− λiCi(k), i = 1, . . . , 6, (4.2)

where T is the time in-between sample k and sample k + 1. For a state-space repre-

sentation of the kinetics equations, one must first determine proper state variables

and the proper input variables. But before we go any further we need to recall from

section 2.3, that Λ is really a function of ρ(k), therefore Λ will vary with time as well.

Recall from equation (2.6) that the mean neutron generation time, Λ, is defined as:

Λ ≡ l

k
, (4.3)

where l is the mean lifetime of a neutron in the ACRR and k is the multiplication

factor given in equation (2.4). If we recall that the reactivity, ρ, was defined as:

ρ =
k− 1

k
, (4.4)

43

Chapter 4. Controller

so that

k =
1

1− ρ
. (4.5)

Using equations (4.3) and (4.5), and moving all the terms that occur at sample

k to the right hand side we can re-write equations (4.1) and (4.2) as:

P (k + 1) = P (k) +
[
k(k)(1− β)− 1

l

]
P (k)T +

6∑
i=1

λiCi(k)T (4.6)

Ci(k + 1) = Ci(k) +
k(k)βi
l

P (k)T − λiCi(k)T, i = 1, . . . , 6. (4.7)

Equations (4.6) and (4.7) will now be used to develop a proper state-space repre-

sentation with P (k), C1(k), C2(k), . . . , and C6(k) being the state variables and k(k)

being the input. Rewriting Equations (4.6) and (4.7) in a state-space representation

we get the following equation:



C1(k + 1)

C2(k + 1)

C3(k + 1)

C4(k + 1)

C5(k + 1)

C6(k + 1)

P (k + 1)



= A



C1(k)

C2(k)

C3(k)

C4(k)

C5(k)

C6(k)

P (k)



+ N



C1(k)

C2(k)

C3(k)

C4(k)

C5(k)

C6(k)

P (k)



k(k), (4.8)

44

Chapter 4. Controller

where,

A =



1− λ1T 0 0 0 0 0 0

0 1− λ2T 0 0 0 0 0

0 0 1− λ3T 0 0 0 0

0 0 0 1− λ4T 0 0 0

0 0 0 0 1− λ5T 0 0

0 0 0 0 0 1− λ6T 0

λ1T λ2T λ3T λ4T λ5T λ6T 1− T
l


(4.9)

and

N =



0 0 0 0 0 0 β1T
l

0 0 0 0 0 0 β2T
l

0 0 0 0 0 0 β3T
l

0 0 0 0 0 0 β4T
l

0 0 0 0 0 0 β5T
l

0 0 0 0 0 0 β6T
l

0 0 0 0 0 0 (1−β)T
l



. (4.10)

As an aside, if we look closely at equation (4.8) we can see that it is of the form

x(k + 1) = Ax(k) + Bu(k) +
m∑
i=1

Niui(k)x(k), (4.11)

where B = [0] and m = 1. Equation (4.11) is state-space representation of a discrete-

time invariant bilinear system. Bilinear systems are systems that are linear in control

and in state but not jointly linear in state and control. Thus, the state-space model

developed above is also a bilinear system. More precisely the system representing the

ACRR is a homogenous bilinear system, due to the fact that B is a zero matrix [7].

45

Chapter 4. Controller

4.3 Using the Inverse Method

Let us revisit the inverse method that was introduced at the end of chapters 2 and 3

in equations (2.32) and (3.8) respectively. The inverse equation is repeated here for

convenience sake:

ρ(t) = β + Λ
d

dt
[lnP (t)]− β

∫ ∞
0

D(τ)
P (t− τ)

P (t)
dτ, (4.12)

where the delayed neutron kernel D(τ) is as follows

D(τ) ≡
6∑
i=1

λiβi
β
e−λiτ . (4.13)

As we know we can use equation (4.12) to calculate the amount of effective reactivity

present within a reactor from the reactor power histories. So let us do so with an

80% run from chapter 3 shown in Figure 4.2.

Figure 4.2 compares the power vs. time plots for both the actual ACRR run and

the simulated ACRR run. As we can see the steady-state values are very close, but

up until the about the 350 second mark the plots are very different. This is due to

the fact that both power runs were given entirely different effective reactivity inputs

even though the simulated run was given the same control rod input as the actual

run. This is due to, once again, the temperature vs. power equation that mod-

els the temperature feedback based on steady-state temperature and power values.

Therefore, the simulated temperature feedback will likely be more pronounced in the

earlier stages of the run since in the real-world the temperature feedback develops

much more slowly over time.

Utilizing the inverse kinetics method we can determine effective reactivity values

within the actual ACRR for the power run shown in Figure 4.2. Figure 4.3 plots

the actual effective reactivity input to the ACRR, which was calculated by using the

46

Chapter 4. Controller

0 100 200 300 400 500 600
103

104

105

106

107

Time (sec.)

Po
we

r (
W

at
ts

)
Actual
Simulation

Figure 4.2: Power vs. Time for Steady-State Run 8512 (80%).

inverse kinetics method, and the simulation effective reactivity input to the ACRR

model. As we can see the effective reactivity plots give us a lot insight into Figure

4.2. First the reactivity level for the simulation rises a lot faster than the actual

reactivity level and thus the simulated power level rises a lot quicker than the actual

power level. Then the reactivity level for the simulation quickly drops and thus

causes the power level to increase at a much slower rate.

Now let us take the effective reactivity found from the inverse method, shown

in Figure 4.3 and have it be the effective reactivity input to the ACRR model.

Figure 4.4 compares the actual power levels and the recreated power levels that were

generated using the effective reactivity inputs. In Figure 4.4, we see that there is a

47

Chapter 4. Controller

0 100 200 300 400 500 600
!0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time (sec.)

R
ea

ct
iv

ity
 ($

)
Actual
Simulation

Figure 4.3: Actual and Simulation Effective Reactivity Input for Steady-State Run
8512 (80%).

power difference between the actual and recreated power levels and Figure 4.5 plots

the percent error between the two power levels over time. As we can see the percent

error between the two power levels remains within the ±5% range for the entire run.

The power level difference, is likely due to the fact that the inverse kinetics method is

assuming six delayed neutron precursor groups to calculated the effective reactivity

input. If we were to use more delayed neutron precursor groups to calculate the input

and model the ACRR, the recreated power trajectory would more closely resemble

the actual power run.

As we can see, if we are able to input the same effective reactivity values as the

actual run, we can recreate a similar power trajectory by using the ACRR model.

48

Chapter 4. Controller

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 x 106

Time (sec.)

Po
we

r (
W

at
ts

)

Actual
Recreation

Figure 4.4: Actual and Recreated Power Levels for Steady-State Run 8512 (80%).

Therefore, we need to determine how to calculate the current amount of reactivity

within the ACRR model and automatically adjust the position of the control rods

to meet the required effective reactivity levels throughout the run. The inverse

method can be used to calculate the current amount of reactivity within the ACRR

model from the power output histories. By the use of negative feedback and a PID

compensator in the forward path we can cause the ACRR model to effectively track

the desired reactivity trajectories throughout the entire run.

49

Chapter 4. Controller

0 50 100 150 200 250 300 350 400 450 500
!3.5

!3

!2.5

!2

!1.5

!1

!0.5

0

0.5

Time (sec.)

Pe
rc

en
t E

rro
r (

%
)

Figure 4.5: Percent Error between Actual and Recreated Power Levels vs. Time.

50

Chapter 4. Controller

4.4 Developing the PID compensator

Figure 4.6 is a block diagram of the plant and the PID compensator. In this portion

we discuss the needed steps before the PID compensator may be tested. Creation of

the desired power trajectory, calculation of the proper desired reactivity trajectory,

the development of the plant input, the proper management of the power output,

the treatment of the error signal, and the management of the position of the control

rods will all be discussed. The PID output dictates the proper reactivity adjust-

ments needed for the plant to follow the desired reactivity trajectory. The reactivity

adjustments are converted to control rod adjustments by the $0.003/rod unit ratio.

Then, the control rod adjustments are made to the predetermined plant input to

ensure the proper reactivity levels are met.

Figure 4.6: Plant and Controller Block Diagram.

51

Chapter 4. Controller

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 x 106

Time (sec.)

Po
we

r (
W

at
ts

)

Figure 4.7: Desired Power vs. Time.

4.4.1 Creation of the Desired Power vs. Time Path

For this step we create a MATLAB function, spline4, that creates a cubic polynomial

trajectory from an input of an initial power level, a final power level, a time step,

and the total time to travel from the initial power level to the final power level.1

We chose a cubic polynomial trajectory since it is a relatively easy input to derive

since the rate of change at the beginning and end of the trajectory is assumed to be

zero [8]. Figure 4.7 is an example of a power plot that starts at 1 kW and ends at

1.92 MW.

1The function spline4 is given in Appendix B

52

Chapter 4. Controller

0 100 200 300 400 500 600 700
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (sec.)

Po
we

r (
W

at
ts

)

Figure 4.8: Desired Reactivity vs. Time.

4.4.2 Creation of the Desired Reactivity Path

The determination of the desired reactivity, at each time step, was accomplished by

using the inverse equation to calculate the amount of reactivity within the reactor

from the desired power trajectory. In order to properly use the inverse equation,

we assume that the reactor is at steady-state for about 4 minutes before the power

level begins to rise. This means that we need to add an extra 240 seconds of a

constant initial power level to the beginning of the power vs. time history. Figure

4.8 is the resulting desired reactivity path, calculated by the script file inverse2.m,

for the desired power level shown in Figure 4.7.2

2The script file inverse2.m is given in Appendix B.

53

Chapter 4. Controller

0 100 200 300 400 500 600 700
1400

1600

1800

2000

2200

2400

2600

2800

Time (sec.)

Po
we

r (
W

at
ts

)

Figure 4.9: Predetermined Control Rod Input.

4.4.3 Development of the Plant Input

For a simple test run, such as the one in Figure 4.7, the initial and final positions of

the control rods are determined from the real world steady-state control rod positions

of ACRR runs at a similar power level. Then we use the function spline5 to create a

cubic polynomial control rod trajectory.3 The goal here is to develop a predetermined

control rod path and have the compensator make the necessary adjustments to the

position of control rods as the plant reactivity deviates from its desired path. Figure

4.9 is an example of the predetermined plant input for a test run that takes the

reactor from 1 kW up to 1.92 MW.

3The function spline5 is given in Appendix B

54

Chapter 4. Controller

4.4.4 Management of the Power Output

For the model output, an initial power history needs to be created. Again, the

assumption is that the plant has been at steady-state for a least 4 minutes. This

allows for a proper calculation of the inverse equation so that the necessary current

plant reactivity level may be determined even at the beginning of the simulation.

The output of the plant is stored in a column vector and by using the function

invequ, we calculate the ACRR’s current reactivity level at every 0.5 second interval

throughout the simulation.4

4.4.5 Treatment of the Error Signal

The reactivity error is found every 0.5 seconds due to the pure time delay within the

ACRR system. The desired reactivity trajectory is calculated every 0.002 seconds

but during the run the error value is calculated at a 0.5 second interval along the

desired reactivity trajectory.

The integral and derivative of the reactivity errors versus time are calculated by

simple numerical methods. The derivative of the error is calculated by taking the

difference of the current error and the previous error value in time and then dividing

the difference by the time step in-between each error calculation.

The integration of the error signal requires a little more work, since the 0.5

second delay between error calculations did not allow for the familiar backward

integration method to be used. Therefore, a trapezoidal integration method is used.5

The trapezoidal method is essentially approximating the area underneath the error

function from sample k−1 to k as a trapezoid [5]. Then through trial and error runs

the respective proportional, derivative, and integral gains for the PID compensator

4The function invequ is given in Appendix B.
5For a detailed description on trapezoidal integration see Appendix A.1.

55

Chapter 4. Controller

are found to be 0.5, 0.35, and 3.7 respectively.

4.4.6 Control Rod Adjustments

Let’s review, due to the pure time delay within the ACRR system, we assume that

we can only make an adjustment to the control rods final destination or desired

position, every 0.5 seconds, rather than have an instantaneous adjustment every 0.5

seconds and track the progress over the delay.

We begin with a predetermined control rod trajectory. Then, due to the com-

pensator output, we adjust the desired control rod position for the next sample. To

accomplish this, let us again employ the use the MATLAB function spline. From the

current position, the adjusted future position, and the time period of the delay; the

trajectory for the control rods at every 0.002 second interval over the delay period

is calculated. This assumes the control rods will follow the calculated cubic spline

trajectory over the delay period. In essence, what we are telling the control rods,

is go from current position x to final position y in 0.5 seconds and we are assuming

that the control rods will follow the piecewise polynomial trajectory created by the

spline function.

4.4.7 Results

Let us now see how the PID compensator performs by using the script file reactor6.m,

to simulate the automatic control of the ACRR.6 In this section we will review an

80% power run and a special 50% power run that includes an additional sine power

curve that makes one ±0.24 MW oscillation about the 50% power level (1.2 MW)

once it reaches steady-state.

6The script file reactor6.m is given in Appendix B.

56

Chapter 4. Controller

0 100 200 300 400 500 600 700 800 900
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 x 106

Time (sec.)

Po
we

r (
W

at
ts

)

Figure 4.10: Desired Power Level for an 80% Test Run (1.92 MW).

80% Power Run

The power trajectory we want to follow is shown in Figure 4.10. In this case we

are keeping the reactor at steady-state for 30 seconds in the beginning to ensure

equilibrium power and temperature levels are maintained before increasing the power

level. Then, the power follows a cubic trajectory from 1 kW to 1.92 MW over a period

of 7 minutes. The reactor is then held at 1.92 MW for another 7 minutes to complete

the run.

Figure 4.11 shows the desired reactivity trajectory that results in the desired

power trajectory and the actual reactivity levels throughout the run. Figure 4.12

57

Chapter 4. Controller

0 100 200 300 400 500 600 700 800 900
!0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Time (sec.)

R
ea

ct
iv

ity
 ($

)
Desired
Actual

Figure 4.11: Desired and Actual Reactivity Levels vs. Time for 80% Run (1.92MW).

plots the error between the desired and actual reactivity levels throughout the run.

As we can see, in Figure 4.11, the compensator is able to closely follow the desired

reactivity trajectory throughout the run. In Figure 4.12, the error is relatively large

during the initial steady-state portion of the run. These larger error values are due

to the relatively small reactivity level we are trying to track and the fact that the

temperature feedback is not considered until after the simulation begins.

Once the simulation begins, the reactivity feedback begins to degrade the initial

steady-state effective reactivity level. Thus, the initial effective reactivity level de-

clines throughout the first half second of the simulation until the compensator can

begin tracking the effective reactivity level. In the real world ACRR, this initial

58

Chapter 4. Controller

0 100 200 300 400 500 600 700 800 900
!0.015

!0.01

!0.005

0

0.005

0.01

Time (sec.)

R
ea

ct
iv

ity
 E

rro
r (

$)

Figure 4.12: Reactivity Error vs. Time for 80% Run (1.92 MW).

steady-state offset would not occur since we are assuming the reactor operator has

already brought the ACRR to an initial steady-state power level and then activates

the inverse method and the PID compensator to automatically control the ACRR

reactivity level. Of course, the reactor operator may have to wait a long time for

the ACRR to reach an initial steady-state power level. Therefore, it is likely some

initial offset between the ACRR reactivity levels may be present, but for the given

run, this is most likely a “worst case” example.

Let us now go back to Figure 4.12. As we can see, once the reactivity levels

begin to climb (the 30 second mark) the compensator does a good job regulating

the error between the actual and desired reactivity levels to nearly zero. For the

59

Chapter 4. Controller

0 100 200 300 400 500 600 700 800 900
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 x 106

Time (sec.)

Po
we

r (
W

at
ts

)
Desired
Actual

Figure 4.13: Desired and Actual Power Levels vs. Time.

majority of the run, the error is well within the ±$0.005 range. In fact, the RMS

error between the desired and actual reactivity levels is only $6.6 × 10−4 for the

entire run. Unfortunately, even a relatively small RMS error such as this still has a

negative impact on the desired power level.

Figure 4.13 shows the comparison between the desired and actual ACRR power

levels and Figure 4.14 plots the percent error between the two power levels vs. time

for the 80% power run. As we can see in Figure 4.14, the reactivity error in the

beginning of the run does causes the error between the desired and actual ACRR

power levels to be off, but due to the relatively low desired reactivity levels, during

this initial steady-state portion, the resulting power error is minimal. The actual

60

Chapter 4. Controller

0 100 200 300 400 500 600 700 800 900
!1.5

!1

!0.5

0

0.5

1

Time (sec.)

Pe
re

ce
nt

 E
rro

r (
%

)

Figure 4.14: Power Percent Error vs. Time.

ACRR power level, for the majority of the run, is often within ±1% of its desired

power level. Of course as we can see, since we are only regulating the reactivity

level within the ACRR, there is always some amount of error present between the

desired and actual ACRR power levels. For this run, the RMS error is approximately

4.2 kW over the entire run and the resulting steady-state error is approximately 5

kW or +0.3% of the desired steady-state power level. Therefore, errors in the overall

reactivity levels result in a deviation between the desired and the actual ACRR power

levels, but in this case the difference is negligible.

Figure 4.15 plots the control rod adjustments over time. As we can see the

adjustments are relatively small and other than the sharp increase right when the

61

Chapter 4. Controller

0 100 200 300 400 500 600 700 800 900
!5

0

5

10

15

20

Time (sec.)

C
on

tro
l R

od
 A

dj
us

tm
en

ts
 (R

od
 U

ni
ts

)

Figure 4.15: Control Rod Adjustments vs. Time for an 80% Run (1.92 MW).

desired reactivity starts to increase, we have a fairly smooth adjustment plot. The

large sharp increase right around 30 seconds is due to the delay in the plant, since

the desired reactivity is synced up directly with the delay in the plant, i.e. the change

in desired reactivity occurs just as the next delay in the plant begins. Therefore, we

are stuck with waiting a whole 0.5 seconds before the error between the desired and

actual reactivity levels is noticed. To help lessen the sharp change, we could alter

the desired reactivity path so that the initial reactivity change does not happen at

a 0.5 second interval.

Also, in Figure 4.15, we can see that there is a lot of effort in the beginning of the

run to regulate the ACRR to its initial steady-state reactivity level. This is again

62

Chapter 4. Controller

due to the fact that the temperature or reactivity feedback is not considered until

after the simulation begins.

One of the concerns in implementing this compensator into the real ACRR, is

the rate of change in the control rods. The maximum rate of change allowed is

approximately 40 rod units/second. The maximum rate of change for the 80% power

run shown in Figure 4.13 is about 30 rod units/second. If there was a concern that

the control rod rate might exceed the maximum value it could be easily compensated

for by simply lengthening the amount of time it takes to reach the desired steady-

state power level. In fact, the desired power trajectory shown in Figure 4.7 was first

used, but when the maximum rate of change for the control rods exceeded 40 rod

units/second, the time to full power was increased from 5 minutes to 7 minutes to

create the power trajectory given in Figure 4.10.

In addition, we also experimented with three different numerical integration meth-

ods to determine the integral of the error signal: backward rectangular, trapezoidal,

and parabolic.7 The backward rectangular method was not very effective at all due

to the large time step in-between the calculation of the error. The trapezoidal and

parabolic methods both worked well and there was little to no improvement in the

RMS error for the reactivity levels between the trapezoidal and parabolic methods.

7A detailed derivation of the parabolic integration method is given in Appendix A.2.

63

Chapter 4. Controller

0 100 200 300 400 500 600 700
0

5

10

15 x 105

Time (sec.)

Po
we

r (
W

at
ts

)

Figure 4.16: Desired Power Trajectory for a Sine Oscillation About the 50% Power
Level.

50% Power Run and Sine Wave

The power trajectory we wish to follow is shown in Figure 4.16. In this run we

are keeping the reactor at steady-state for 20 seconds in the beginning to ensure

equilibrium power and temperature levels are maintained before increasing the power

level. Then, the power follows a cubic trajectory from 1 kW to 1.2 MW over a period

of 5 minutes. The reactor is then held at 1.2 MW for one minute before it oscillates

about the 1.2 MW power level up to 1.44 MW, down to 0.96 MW, and then back to

1.2 MW to complete the run.

Figure 4.17 shows the desired reactivity trajectory that results in the desired

64

Chapter 4. Controller

0 100 200 300 400 500 600 700
!0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Time (sec.)

R
ea

ct
iv

ity
 ($

)
Desired
Actual

Figure 4.17: Desired and Actual Reactivity Levels vs. Time for Sine Run.

power trajectory and the actual reactivity trajectory. Figure 4.18 plots the percent

error between the desired and actual reactivity levels throughout the test run. As we

can see the compensator does a good job of following the desired reactivity trajectory.

From Figure 4.18, we can see, once again, the compensator has a little trouble track-

ing the reactivity levels due to the initial steady-state error. This is once again due

to the small magnitude of the initial reactivity value and the effect of temperature

feedback.

In Figure 4.18, we can see once the simulation reaches the 20 second mark the

compensator does a good job regulating the error to nearly zero. Once it reaches

the sine portion of the run the compensator has some trouble tracking the desired

65

Chapter 4. Controller

0 100 200 300 400 500 600 700
!0.02

!0.015

!0.01

!0.005

0

0.005

0.01

Time (sec.)

R
ea

ct
iv

ity
 E

rro
r (

$)

Figure 4.18: Reactivity Error vs. Time.

trajectory but it quickly recovers. For the majority of the run the error is between

the ±$0.005 range, even during the sine portion of the run. In addition, the RMS

error between the desired and actual reactivity levels is $8.4 × 10−4 over the entire

run.

Figure 4.19 shows the comparison between the desired and actual ACRR power

levels and Figure 4.20 plots the percent error between the two power levels for the

sine wave power run. As we can see the percent error plot is similar to the one for

the 80% power run. For the majority of the run, the actual ACRR power level is

within ±1% of the desired power level and even during the sine portion of the run,

the actual power level is within a close proximity of the desired power level. For this

66

Chapter 4. Controller

0 100 200 300 400 500 600 700
0

5

10

15 x 105

Time (sec.)

Po
we

r (
W

at
ts

)
Desired
Actual

Figure 4.19: Desired and Actual Power Levels vs. Time.

run the RMS power error is approximately 3.4 kW and the resulting steady-state

error, once the reactor reaches the 1.2 MW level, is approximately 4 kW or +0.3%

of the desired steady-state power level. Once again, we can see in Figure 4.20, the

resulting error in tracking the desired reactivity levels does have a negative impact on

the desired power trajectory, but since a resolution of ±1%, for the majority of the

run, is likely sufficient for this application, we can conclude that the compensators

performance is respectable.

Figure 4.21 plots the control rod adjustments that were made throughout the run

in order to follow the desired reactivity trajectory. As we can see in the beginning a

lot of effort is made in driving the ACRR reactivity level to zero. Then, we see the

67

Chapter 4. Controller

0 100 200 300 400 500 600 700
!2

!1.5

!1

!0.5

0

0.5

1

1.5

Time (sec.)

Pe
rc

en
t E

rro
r (

%
)

Figure 4.20: Power Percent Error vs. Time.

large increase right at 20 seconds due to the compensator making a large adjustment

to catch up with the desired reactivity trajectory. After the large spike, the control

rods adjustments are rather smooth unit we encounter the sine wave portion of the

reactivity trajectory. As we see the compensator has a little trouble following the

desired trajectory at the beginning of the sine curve, but it soon adjusts and begins

following the trajectory rather well. On a separate note, we can see that in the

beginning of the simulation it takes a rather large amount of time and effort to

regulate the ACRR reactivity level to the desired steady-state level. One option

would be to add an additional 10 seconds to the time that the reactor is initially

at steady-state, much like the previous 80% power run. But, as we noted before, in

the previous power run, this is most likely a worst case example, since the reactivity

68

Chapter 4. Controller

0 100 200 300 400 500 600 700
!5

0

5

10

15

20

Time (sec.)

C
on

tro
l R

od
 A

dj
us

tm
en

t (
R

od
 U

ni
ts

)

Figure 4.21: Control Rod Adjustments vs. Time for the Sine Wave Run.

feedback is not accounted for until the simulation begins.

As we noted before, an area of concern is keeping the velocity of the control rods

within their physical limits. As we know the maximum velocity of the control rods

is about 40 rod units per second. For the sine wave run the maximum velocity of

the control rods was 36 rod units per second.

69

Chapter 4. Controller

4.5 Concluding Remarks

By utilizing the inverse kinetics method to calculate the current reactivity levels

within the ACRR and the use of PID compensation in the forward path, we are

able to automatically control the ACRR power level by tracking a predetermined

reactivity trajectory. Even with the presence of a time delay within the plant, the

compensator is able to track the desired reactivity level quite closely. The small

tracking error, unfortunately, does have a negative effect on the desired steady-state

power level. Of course, due to the relatively small amount of steady-state error, the

hope is that once the reactor reaches its final power level after being driven by the

compensator, the difference will be negligible or the reactor operator may make the

necessary adjustments to reach the final desired power level.

70

Chapter 5

Conclusions

5.1 Review

Using the point kinetics equations introduced in chapter 2 and the temperature

vs. power equation (3.5), we were able to create an adequate model describing the

ACRR. Similar real world inputs were used to drive the ACRR model and the re-

sulting steady-state power levels were able to be reproduced. The inverse kinetics

method was then used to calculate the reactivity over time for a re-created power

run and resulted in an almost exact calculation of the original simulation input.

The inverse kinetics method was then applied to determine the required reactivity

levels over time for a desired power trajectory. This desired reactivity trajectory was

checked against the current reactivity levels within the ACRR model that were again

calculated by the inverse kinetics method. The error in the reactivity levels was feed

to a PID compensator which output the required control rod adjustments to meet

the desired reactivity levels.

The PID compensator created to automatically control the ACRR model did an

71

Chapter 5. Conclusions

acceptable job reaching the desired power levels. Due to the time delay, control

rod adjustments were only able to be made every half second. The cumulative

error between the desired and actual reactivity levels did have a negative impact on

the final desired steady-state power level but in both cases that were reviewed the

difference in power level was negligible.

Some limitations do exist in using this proposed controller. One is the assumption

is that the reactor operator can successfully reach the initial predetermined steady-

state power level. This often is not the case with the real ACRR. The initial power

level is often within a range of five to fifteen percent of the peak reactor power. If

the initial power level were off to start with, this could cause the controller to over

or undershoot the final desired steady-state power level due to the continued build

up of the power level error, since we are only tracking the effective reactivity levels.

Another limitation is the assumption that the control rods will follow a cubic

spline trajectory when traveling from the current control rod position to the final

control rod position over the half second delay. The control rods may in fact follow a

linear or even a higher order polynomial trajectory over the delay, which could alter

the performance of the PID compensator to regulate the effective reactivity level.

5.2 Future Work

Of course, the next step will be to actually apply the PID compensator and the

inverse kinetics method to the automatic control of the actual ACRR. Some of the

challenges will include implementing the kinetics method and ensuring that its cal-

culation can be made in a sufficient amount of time so as not to increase the time

delay within the plant. Another challenge will be ensuring that the compensator

correctly adjusts the control rods and ensuring that the velocity of the control rods

remains within its physical limits.

72

Chapter 5. Conclusions

Another interesting application could include direct power feedback of the power

levels over the time of the plant delay to automatically control the ACRR. The

theory developed by Calafiore, Dabbene, and Tempo to use randomized algorithms

to calculate the proper gain values for desired control [9] is a possible avenue of study.

73

Appendices

A Derivation of Numerical Integration Methods 4

B Matlab Script and Function Files 5

74

Appendix A

Derivation of Numerical

Integration Methods

A.1 Trapezoidal

We want the integral of the function e(t) from t = 0 to t as given by

I =
∫ t

0
e(t)dt

using only the samples e0, e1, . . . , ek−1, ek. We assume that the integral from t = 0 to

t = tk−1 is known, and is represented as uk−1. Thus we are trying to find a procedure

to calculate the “next step.” Here we will use trapezoidal integration, where we

approximate the integral by computing the area A of the trapezoid in Figure A.1.

Therefore,

A =
tk − tk−1

2
(ek + ek+1) (A.1)

75

Appendix A. Derivation of Numerical Integration Methods

Figure A.1: Trapezoidal Integration.

By assuming a constant step-size, where tk − tk−1 = T , we arrive at the linear

difference equation for trapezoidal integration as [5]:

uk = uk−1 +
T

2
(ek + ek+1) (A.2)

76

Appendix A. Derivation of Numerical Integration Methods

Figure A.2: Parabolic Integration.

A.2 Parabolic

As in the trapezoidal case we will assume we know the value of the integral from

t = 0 to t = k− 1 and is represented as uk−1. Therefore, as before we are looking for

a procedure to calculate the “next step.” In this case, we first assume that the three

points we need for this method are centered about t = 0 and then we determine the

more generalized case. Using the three samples shown in Figure A.2, along with the

parabola,

ê = b0 + b1t+ b2t
2 (A.3)

we fit the parabola by requiring

ê(−T) = b0 − b1T + b2T
2 = e−1, (A.4)

ê(0) = b0 = e0, (A.5)

77

Appendix A. Derivation of Numerical Integration Methods

ê(T) = b0 + b1T + b2T
2 = e1. (A.6)

Solving equations (A.4)-(A.6) we get

b0 = e0, b1 =
e1 − e−1

2T
, b2 =

e−1 − 2e0 + e1
2T 2

. (A.7)

Next we integrate the parabola given in equation (A.3) to find the area A:

A =
∫ T

0
(b0 + b1t+ b2t

2)dt = b0T +
b1T

2

2
+
b2T

3

3
, (A.8)

by substituting the expressions from equations (A.7) into equation (A.8), we arrive

at the expression for the area A as:

A =
[
5e1 + 8e0 − e−1

12

]
T. (A.9)

We can now generalize from samples -1, 0, 1 to samples k−2, k−1, and k, respectively,

we arrive at the final form of the difference equation for parabolic integration as [5]:

uk = uk−1 +
T

12
(5ek + 8ek−1 − ek − 2) (A.10)

78

Appendix B

Matlab Script and Function Files

reactor1a.m

%reactor1a.m

%

%1st attempt at a reactor model.

%This is the script that will calculate the power output of ACRR.

%This script does not encorperate the use of temperature feedback

%to dynamically describe the ACRR. This script only simulates the

%time-dependence of the ACRR power level(hopefully) :D

%

%-- B.R.G ECE599 --

tic

RHO = 0.0; %initial reactivity

DOTRHO = 2.5e-4; %reactivity/sec

fin = 0.25; %final amount of reactivity desired

79

Appendix B. Matlab Script and Function Files

Po = 3000 %initial power

%determines initial CI’s and ACRR variables from initial steady-state

%power and effective reactivity levels

[LAMI,CI,CAPLAM,BETA,BI] = Inkin(Po,RHO);

tf = 100 %final time

dt = 0.001 %time step

t = 0.0:dt:tf;

t = t’;

N = tf/dt %total # of iteration steps

PWR = zeros(N+1,1); %vector of power histories

PWR(1,1) = Po;

rho = zeros(N+1,1); %vector of reactivity histories

rho(1,1) = RHO;

RHO = RHO + DOTRHO;

for i=1:N

%solves the new CI values and the new ACRR power level for the

%next time step

rho(i+1,1) = RHO;

[Po,CI] = kinetics(Po,CI,LAMI,CAPLAM,BETA,RHO,BI,dt);

80

Appendix B. Matlab Script and Function Files

PWR(i+1,1) = Po;

pwr2(q,1) = Po;

%determines if the desired total amount of reactivity has been

%entered into the system

if RHO < fin

RHO = RHO + DOTRHO;

else

RHO = RHO;

end

end

%displays the final power level

Po

%calculates and displays the reactor period

tau = dt/(log(PWR(N+1,1))-log(PWR(N,1)))

toc

81

Appendix B. Matlab Script and Function Files

Inkin.m

%function [LAMI,CI,CAPLAM,BETA,BI] = Inkin(Po,RHO) calculates the

%initial values for the effective precursor concentrations for the

%six groups from an initial steady-state power level and reactivity

%level. This function also returns the LAMI’s, BI’s, BETA, and CAPLAM

%values for the ACRR. The inputs are:

%Po - Initial Power level (Watts)

%RHO - Initial amount of effective reactivity ($)

%

%The outputs are:

%CI’s - effective precursor concentration for the six groups

%LAMI’s - effective decay constatns for the six groups (1/sec.)

%CAPLAM - mean neutron generation time (sec.)

%BETA - total effective delayed neutron fraction

%RHO - amount of effective reactivity ($)

%BI’s - effective delayed neutron fraction of the six groups

%

%-- BRG ECE599 --

function [LAMI,CI,CAPLAM,BETA,BI] = Inkin(Po,RHO)

CAPLAM = 24e-6; %mean neutron lifetime for ACRR

GEFF = 0.0073/0.007;

%CAPLAM = CAPLAM*GEFF;

BETA = 0.0073;

82

Appendix B. Matlab Script and Function Files

CI = zeros(1,6);

%six group beta’s for ACRR

BI = [2.66e-4 1.492e-3 1.317e-3 2.851e-3 8.97e-4 1.82e-4];

%six group lamda for ACRR

LAMI = [1.27e-2 3.17e-2 1.15e-1 3.11e-1 1.40 3.87];

%BETA = BETA*GEFF;

BI = BI*GEFF;

%LAMI = LAMI*GEFF;

%initial conditions

RO = RHO*BETA; %effective reactivity

CAPLAM1 = CAPLAM*(1-RO); %mean neutron generation time

for j=1:6

CI(1,j) = (Po*BI(j))/(CAPLAM1*LAMI(1,j));

end

83

Appendix B. Matlab Script and Function Files

kinetics.m

%function [Po,CI] = kinetics(Po,CI,LAMI,CAPLAM,BETA,RHO,BI,dt) solves

%the point reactor kinetics equations for six precursor groups by

%using Eulers method. The inputs are:

%Po - Power (Watts)

%CI’s - effective precursor concentration for the six groups

%LAMI’s - effective decay constatns for the six groups (1/sec.)

%CAPLAM - mean neutron generation time (sec.)

%BETA - total effective delayed neutron fraction

%RHO - amount of effective reactivity ($)

%BI’s - effective delayed neutron fraction of the six groups

%dt - time step between calculations (sec.)

%

%The outputs are:

%Po - New Power level (Watts)

%CI’s - New effective precursor concentration for the six groups

%

%-- B.R.G. ECE599 --

function [Po,CI] = kinetics(Po,CI,LAMI,CAPLAM,BETA,RHO,BI,dt)

RO = RHO*BETA; %effective amount of reactivity

current = Po; %current power level (Watts)

CAPLAM1 = CAPLAM*(1-RO); %mean neutron generation time (sec.)

%sum up the contributions from the delayed neutrons

84

Appendix B. Matlab Script and Function Files

S = sum(LAMI.*CI);

%calculate change in power

DP = (((RO - BETA)/CAPLAM1)*current + S)*dt;

%calculate new power level

Po = current + DP;

%calculate new CI’s for the new power level

for i=1:6

DCI(1,i) = ((BI(1,i)/CAPLAM1)*current - LAMI(1,i)*CI(1,i))*dt;

CI(1,i) = CI(1,i) + DCI(1,i);

end

85

Appendix B. Matlab Script and Function Files

reactor1b.m

%reactor1b.m

%

%1st attempt at reactor model.

%This is the script that will simulate the dynamic response of the

%ACRR by solving the point reactor kinetics equations and the use

%of a temperature vs. power feedback equation. This script was

%created to re-create actual real world ACRR power runs by giving

%the model similar real world inputs. (hopefully) :D

%

%-- B.R.G. ECE599 --

tic

RHO = 0.0; %initial amount of effective reactivity

RHOF = 0.0;

%load power history for an actual ACRR power run

Pd = load(’8512_Power_short.txt’);

Po = Pd(1,1)

%determines initial CI’s and ACRR variables from initial steady-state

%power and effective reactivity levels

[LAMI,CI,CAPLAM,BETA,BI] = Inkin(Po,RHO);

tf = 600 %final time

dt = 0.001 %time step

t = 0.0:dt:tf;

86

Appendix B. Matlab Script and Function Files

t = t’;

Ts = 6; %time step inbetween logged data points

N = tf/dt %total # of iteration steps

h = tf/Ts;

%load actual control rod path for re-creation of ACRR power run

y = load(’CR_position_8512_short.txt’);

ys = length(y);

tt = 0:Ts:(ys*Ts)-Ts;

yy = spline(tt,y,t);

yo = yy(1,1); %initial position of the control rods

PWR = zeros(N+1,1); %vector of power histories

PWR(1,1) = Po;

rho = zeros(N+1,1); %vector of effective reactivity histories

rho(1,1) = RHO;

rhoadd = zeros(N+1,1); %vector of reactivity added by control rods

rhof = zeros(N+1,1); %vector of feedback reactivity due to temp.

TEMP = zeros(N+1,1); %vector of core temperature history

for i=1:N

%calculate the amount of reactivity added to the system in $ by

%the position of the control rods

RHOADD = (yy(i,1) - yo)*0.003;

87

Appendix B. Matlab Script and Function Files

rhoadd(i+1,1) = RHOADD;

%calculate the amount of effective reactivity

RHO = RHOADD + RHOF;

rho(i+1,1) = RHO;

%solves the new CI values and the new ACRR power level for the

%next time step

[Po,CI] = kinetics(Po,CI,LAMI,CAPLAM,BETA,RHO,BI,dt);

PWR(i+1,1) = Po;

%calculates the amount of feedback reactivity and temperature

%within the ACRR due to the current power level

[RHOF,T] = feedback(Po);

rhof(i+1,1) = RHOF;

TEMP(i+1,1) = T;

end

%displays the final power level

Po

%calculates and displays the instantaneous reactor period

tau = dt/(log(PWR(N+1,1))-log(PWR(N,1)))

toc

88

Appendix B. Matlab Script and Function Files

feedback.m

%function [RHOF,T] = feedback(Po) calculates the amount of feedback

%reactivity within the ACRR due to temperature from a given power

%level. The input is:

%Po - Power level (Watts)

%

%The outputs are:

%RHOF - feedback reactivity ($)

%T - core temperature (deg C)

%

%-- B.R.G ECE599 --

function [RHOF,T] = feedback(Po)

Po = Po/(1e6); %normalize power level to a 1MW scale

% Average from ACRR model

%T = 2.8108*Po^3 - 45.535*Po^2 + 369.23*Po + 36.345;

% Values given from measured data

%T = 29.643*Po^3 - 167.11*Po^2 + 553.19*Po + 35.311;

% Max values from ACRR model

%T = 80.201*Po^3 - 348.84*Po^2 + 800.8*Po + 27.049;

% Average from ACRR model (MATLAB fit)

89

Appendix B. Matlab Script and Function Files

%T = 21.7*Po^5 - 87.2*Po^4 + 115*Po^3 - 83.3*Po^2 + 377*Po + 520;

T = 2.64*Po^5 - 30.7*Po^4 + 138*Po^3 - 317*Po^2 + 577*Po + 21.2;

%T = 0.752*Po^5 - 12.5*Po^4 + 78.1*Po^3 - 239*Po^2 + 545*Po + 22.0;

%we assume at 20 deg C there is no reactivity feedback

RHOF = -0.006*T + 0.12;

90

Appendix B. Matlab Script and Function Files

spline4.m

%function [time,traj_p]=spline4(tf) calculates a desired cubic power

%trajactory for the ACRR.

%The input is:

%tf - final time (sec.)

%

%The outputs are:

%time - time vector

%traj_p - power trajectory

%

%-- BRG ECE 599 --

function [time,traj_p] = spline4(tf)

dt = 0.002;

ti = 30;

h = ti/dt;

t=[0.0:dt:tf]’;

w = length(t);

rf = 1920000; %final power

ri = 1000; %initial power

a0 = ri;

a1 = 0;

91

Appendix B. Matlab Script and Function Files

a2 = (3/(tf^2))*(rf-ri);

a3 = -(2/(tf^3))*(rf-ri);

traj_2 = a0*t.^0 + a1*t + a2*t.^2 + a3*t.^3;

traj_3 = ones(w-1,1)*traj_2(w,1);

traj_1 = ones(h,1)*traj_2(1,1);

traj_p = [traj_1; traj_2; traj_3];

time = [0:dt:2*tf+ti]’;

92

Appendix B. Matlab Script and Function Files

spline5.m

%function [time,traj_cr]=spline5(tf) calculates a desired cubic

%control rod trajectory for the ACRR.

%The input is:

%tf - final time (sec.)

%

%The outputs are:

%time - time vector

%traj_cr - trajectory of the control rods

%

%-- BRG ECE 599 --

function [time,traj_cr] = spline5(tf)

%dt = 0.001;

dt = 0.5;

ti = 30;

h = ti/dt;

t=[0.0:dt:tf]’;

w = length(t);

rf = 2620; %final control rod position (rod units)

%(80% = 2620)

%(40% = 2260)

93

Appendix B. Matlab Script and Function Files

%(50% = 2320)

%(60% = 2400)

ri = 1550; %initial control rod position (rod units) good

%for 1 kW

a0 = ri;

a1 = 0;

a2 = (3/(tf^2))*(rf-ri);

a3 = -(2/(tf^3))*(rf-ri);

traj_2 = a0*t.^0 + a1*t + a2*t.^2 + a3*t.^3;

traj_3 = ones(w-1,1)*traj_2(w,1);

traj_1 = ones(h,1)*traj_2(1,1);

traj_cr = [traj_1; traj_2; traj_3];

time = [0:dt:2*tf+ti]’;

94

Appendix B. Matlab Script and Function Files

inverse2.m

%inverse2.m

%

%This script calculates the amount of effective reactivity in the

%reactor over time from the loaded power history or desired

%power trajectory by solving equation 6-52 in Duderstadt and

%Hamilton (hopefully):D.

%

%-- BRG ECE 599 --

tic

dt = 0.002; %time step

BETA = 0.0073; %total delayed neutron fraction for the ACRR

CAPLAM = 24e-6; %mean neutron generation time for the ACRR

M = 240/dt; %total # of integration steps

%load power history or power trajectory

PWR = load(’test8_Power.txt’);

ps = length(PWR)

pwr = ones(M,1);

pwr = pwr*PWR(1,1);

pwr1 = [pwr; PWR];

95

Appendix B. Matlab Script and Function Files

l = length(pwr1);

pwr2 = flipud(pwr1);

%vector created to store effective reactivity levels to create a

%desired effective reactivity trajectory

inv_rho = zeros(ps,1);

%load delayed neutron kernel

D = load(’delayKernel2.txt’);

K = speye(M,length(D));

D = K*D;

d = length(D)

for i=0:ps-1

%variable used for keeping track of the power vector

q = ps-i;

v = q+M-1;

%power vector to be used in calculating the amount of effective

%reactivity

C = pwr2(q:v);

mult = D.*C;

%calculation of the integral portion

96

Appendix B. Matlab Script and Function Files

intg = sum(mult);

intg = intg*dt;

%calculation of the derivative portion

der = 1/C(1,1);

%calculation of seperate numerator and denomenator portions

num = BETA*C(1,1) + der*CAPLAM - BETA*intg;

den = der*CAPLAM + C(1,1);

%calculation of the amount of effective reactivity ($)

inv_rho(i+1,1) = (num/den)*(1/BETA);

end

toc;

97

Appendix B. Matlab Script and Function Files

reactor6.m

%reactor6.m

%

%The reactor6.m script will simulate the operation of the inverse

%kinetics method and a PID compensator to automatically control

%the ACRR. In this simulation the point reactor kinetics equations

%are expressed and solved in a state-space representation. This

%simulation also models the pure time delay within the ACRR system.

%

%-- BRG ECE 599 -- 10/12/07 --

tic

RHO = 0.0; %initial amount of effective reactivity

%PID gains

Kp = 0.5

Kd = 0.35

Ki = 3.7

%Load Desired Power Trajectory

Pd = load(’test7_Power.txt’);

Po = Pd(1,1); %initial power level

%determines initial CI’s and ACRR variables from initial steady-state

%power and effective reactivity levels

[LAMI,CI,CAPLAM,BETA,BI] = Inkin(Po,RHO);

98

Appendix B. Matlab Script and Function Files

%initial values for state variables

xo = [CI’; Po];

tf = 680; %final time

dt = 0.002 %time step of simulation

z = 0.5; %delay of plant

n = z/dt; %number of plant delay itterations

%time vectors for plotting simulation results

t = 0.0:dt:tf;

t2 = 0.0:z:tf;

t3 = 0.5:z:tf;

t = t’;

t2 = t2’;

N = tf/dt %total # of iteration steps

Q = tf/z;

M = 240/dt;

%column vectors to hold variables values throughout simulation

rho = zeros(N+1,1); %effective reactivity

rho(1,1) = RHO;

rhoadd = zeros(N+1,1); %reactivity added by control rods

99

Appendix B. Matlab Script and Function Files

rhof = zeros(N+1,1); %feedback reactivity due to temperature

TEMP = zeros(N+1,1); %core temperature (deg C)

cra = zeros(Q+1,1); %control rod adjustments (rod units)

inv_rho = zeros(N+1,1); %effective reactivity calculated by

%inverse method

rhoe = zeros(Q+2,1); %reactivity error between desired and

%actual

rhoa = zeros(Q+1,1); %reactivity adjustments calculated from

%cra

r = ones(N+1,1); %multiplication factor

%state space matrices -- xo = d*xo + h*xo*u

d = [1-LAMI(1,1)*dt 0 0 0 0 0 0;

0 1-LAMI(1,2)*dt 0 0 0 0 0;

0 0 1-LAMI(1,3)*dt 0 0 0 0;

0 0 0 1-LAMI(1,4)*dt 0 0 0;

0 0 0 0 1-LAMI(1,5)*dt 0 0;

0 0 0 0 0 1-LAMI(1,6)*dt 0;

LAMI(1,1)*dt LAMI(1,2)*dt LAMI(1,3)*dt...

LAMI(1,4)*dt LAMI(1,5)*dt LAMI(1,6)*dt 1-dt/CAPLAM];

h = [0 0 0 0 0 0 BI(1,1)*dt/CAPLAM;

0 0 0 0 0 0 BI(1,2)*dt/CAPLAM;

0 0 0 0 0 0 BI(1,3)*dt/CAPLAM;

0 0 0 0 0 0 BI(1,4)*dt/CAPLAM;

100

Appendix B. Matlab Script and Function Files

0 0 0 0 0 0 BI(1,5)*dt/CAPLAM;

0 0 0 0 0 0 BI(1,6)*dt/CAPLAM;

0 0 0 0 0 0 (1-BETA)*dt/CAPLAM];

%create output matrix -- PWR = C*xo

C1 = [zeros(1,6) 1];

PWR = zeros(N+1,1); %vector of power histories

PWR(1,1) = Po; %initial power level

ps = length(PWR);

%create extended power history for use of the inverse kinetics method

pwr = ones(M,1);

pwr = pwr*PWR(1,1);

pwr1 = [pwr; PWR];

pwr2 = flipud(pwr1);

%load delay kernel value

D = load(’delayKernel2.txt’);

F = D;

GG = speye(M,length(D));

D = GG*D;

%load predetermined control rod trajectory

yyy = load(’test7_crd.txt’);

yo = yyy(1,1) %initial position of the control rods

101

Appendix B. Matlab Script and Function Files

y = yyy; %initial trajectory of control rods

k = 0;

aa = [0 z]’;

ttt = (0:dt:z)’;

int = 0.0;

RHOF = 0.0;

%load desired effective reactivity trajectory

rho_d = load(’test7_rho.txt’);

for i = 1:Q

%determine control rod trajectory over plant delay period

yyy(i+1,1) = yyy(i+1,1) + sum(cra);

bb = [yyy(i,1) yyy(i+1,1)]’;

%assumes piece-wise cubic polynomial trajectory for control rods

yy = spline(aa,bb,ttt);

%this for loop simulates the ACRR progres over the plant delay

for j = 1:n

k = k+1;

%variable used for keeping track of the proper power vector

%for use in the inverse method

q = ps-k;

102

Appendix B. Matlab Script and Function Files

v = q+M-1;

%calculate the amount of reactivity added to the system in $

%by the position of the control rods

RHOADD = (yy(j,1)-yo)*0.003;

rhoadd(k+1,1) = RHOADD;

%calculated the amount of effective reactivity present within

%the system ($)

RHO = RHOADD + RHOF;

rho(k+1,1) = RHO;

%converts effective reactivity in dollars to effective

%reactivity in a decimal representation

RO = RHO*BETA;

%calculates the value of the effective multiplication factor

r(k+1,1) = 1/(1-RO);

%solves the state-space equations and calculates the new CI

%values and new ACRR Power level

xo = d*xo + h*xo*r(k+1,1);

%power output

PWR(k+1,1) = C1*xo;

pwr2(q,1) = PWR(k+1,1);

%calculates the amount of feedback reactivity due to the

103

Appendix B. Matlab Script and Function Files

%temperature within the ACRR

[RHOF,T] = feedback(PWR(k+1,1));

rhof(k+1,1) = RHOF;

TEMP(k+1,1) = T;

end

%calculate the actual amount of effective reactivity within the

%ACRR by the use of the inverse method

C = pwr2(q:v);

INV_RHO = invequ(C,D,dt);

inv_rho(k+1,1) = INV_RHO;

%finds the error between the desired and actual amounts of

%effective reactivity

RHOE = rho_d(k+1,1) - INV_RHO;

rhoe(i+2,1) = RHOE;

%derivative of the error signal miltiplied by the gain value

DER = Kd*(rhoe(i+2,1)-rhoe(i+1,1))/z;

%%INTEGRATION METHODS%%

%backwards integration

%int = sum(rhoe)*z;

%trapizoidal integration

int = int + (rhoe(i+2,1)+rhoe(i+1,1))*z/2;

%parabolic integration

%int = int + (5*rhoe(i+2,1)+8*rhoe(i+1,1)-rhoe(i,1))*z/12;

104

Appendix B. Matlab Script and Function Files

%multiplies gain values

INT = Ki*int;

PRO = Kp*RHOE;

%calculates the needed amount of reactivity compensation

RHOA = DER+INT+PRO;

rhoa(i+1,1) = RHOA;

%calculates the needed amount of control rod compensation

CRA = (RHOA/0.003);

cra(i+1,1) = CRA;

end

%calculates the velocity of the control rods over entire simulation

rod_vel_6 = RodV(yyy);

mrv = max(rod_vel_6) %max positive control rod velocity

lrv = min(rod_vel_6) %max negative control rod velocity

%calculates the RMS error between the desired and actual effective

%reactivity trajectoies ($)

erms_rho = sqrt(rhoe’*rhoe/length(rhoe))

PWR(k+1,1) %final ACRR power level

toc

105

Appendix B. Matlab Script and Function Files

invequ.m

%function [inv_rho] = invequ(C,D,dt) calculates the effective

%reactivity in the reactor at a single point in time from the power

%histories by using equation 6-52 in Duderstadt and Hamilton

%(hopefully):D. The inputs are:

%C - vecotr containing the Reactor power histories (Watts)

%D - vector containing the values of the delayed neutron kernel

%dt - time step between Reactor power values (sec.)

%

%The output is:

%inv_rho - effective reactivity level ($)

%

%-- BRG ECE599 --

function [inv_rho] = invequ(C,D,dt)

BETA = 0.0073; %total effective delayed neutron fraction

CAPLAM = 24e-6; %mean neutron generation time

%calculates the product of the delayed neutron kernel with the power

%history

mult = D.*C;

%calculates the integral portion

intg = sum(mult);

intg = intg*dt;

106

Appendix B. Matlab Script and Function Files

%calculates the derivative portion

der = 1/C(1,1);

%calculation of seperate numerator and denomenator portions of the

%equation

num = BETA*C(1,1) + der*CAPLAM - BETA*intg;

den = der*CAPLAM + C(1,1);

%calculation of the amount of effective reactivity ($)

inv_rho = (num/den)*(1/BETA);

107

Appendix B. Matlab Script and Function Files

RodV.m

%function [rod_vel] = RodV(rod_pos) calculates the velocity of the

%control rods from a vector containing the position of the control

%rods over time. The input is:

%rod_pos - vector containing control rods positions over time

%

%The output is:

%rod_vel - vector containing the velocity of the control rods over

%time

%

%-- BRG ECE599 --

function [rod_vel] = RodV(rod_pos)

dt = 0.5; %time step between values of the

%control rod positions

l = length(rod_pos);

rod_vel = zeros(l-1,1);

for i=1:(l-1)

rod_vel(i,1) = (rod_pos(i+1,1)-rod_pos(i,1))/dt;

end

108

References

[1] James J. Dahl, Richar L. Coats, and Michael K. Black. Documented saftey
analysis (dsa) for the annular core research reactor facility (acrrf), ucni. Technical
report, Sandia National Laboratory, 2007.

[2] Ronald A. Knief. Nuclear Engineering: Theory and Technology of Commercial
Nuclear Power. Hemisphere Publishing Corp, second edition, 1992.

[3] Samuel Glasstone and Alexander Sesonske. Nuclear Reactor Engineering. Van
Nostrand Reinhold Company, 1967.

[4] James J. Duderstadt and Louis J. Hamilton. Nuclear Reactor Analysis. John
Wiley and Sons, Inc., 1976.

[5] Gregory P. Starr. Introduction to applied digital control. Lecture Notes in Digital
Control, November 2006.

[6] Valery D. Yurkevich. Design of Nonlinear Control Systems with the Highest
Derivative in Feedback. World Scientific, 2004.

[7] Ronald R. Mohler. Nonlinear Systems, volume II Application to Bilinear Control.
Prentice Hall, 1991.

[8] John J. Craig. Introduction to Robotics Mechanics and Control. Pearson Prentice
Hall, third edition, 2005.

[9] Giuseppe Calafiore, Fabrizio Dabbene, and Roberto Tempo. A survey of ran-
domized algorithms for control synthesis and performance verification. Journal
of Compexity, 23:301–316, June 2007.

109

