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ABSTRACT 

Temperature, radiation, vacuum, and other factors encountered in the space environment 

yield significant influence over the dynamic behavior of a payload system in orbit. Other 

factors affecting dynamic behavior may include the additional mass and damping 

characteristics of extensive cable harnesses, such as those required for actuated 

deployable systems. In extreme circumstances these factors can adversely affect stability 

of a control law derived from dynamic data collected on the ground or from flight data 

collected under unique environmental conditions. Although a robustly stable control law 

may be derived to accommodate varying environmental conditions, such robustness 

typically comes at the expense of the controller performance. In such circumstances, it 

may be possible to repeat the system identification process, assemble a new plant model 

and synthesize a control law from data collected on orbit. However, for systems of even 

moderate complexity this approach is time consuming, costly, and still may not yield the 

simultaneously desired stability robustness and performance margins. 

 

This thesis explores a controller development approach that proposes the application of a 

cost metric for both stability and robustness based on directly measured frequency 
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response functions (FRF’s) under operational conditions. These cost metrics are used to 

tune an existing control law such that the total cost is minimized, thereby precluding the 

need to perform additional system identification and modeling tasks on-orbit. The 

covariance of the measured FRF’s are incorporated into the cost metric to ensure both 

robust stability and performance. Single-input, single-output (SISO) methods are 

extended to the multi-input, multi-output (MIMO) domain and gradient descent 

algorithms are modified accordingly with the guidance of previous work. The resulting 

tuning algorithm is verified using a simple Fast Steering Mirror (FSM) system with the 

intent to demonstrate viability before applying it to the more complex Deployable Optical 

Telescope system at the Air Force Research Laboratory Space Vehicles Directorate at 

Kirtland AFB. 
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CHAPTER 1  INTRODUCTION   

This chapter provides a background of work done to date specifically on the Deployable 

Optical Telescope (DOT) and why that lead to the work documented in this thesis. The 

background is followed by a literature review to bring the reader up to date with the 

current knowledge on the topic; forming a basis for the goal of this thesis and 

justification for future research in this area. Finally, the objectives and overview are 

provided to clarify the focus of the thesis. 

1.1 Background 

Since the advent of space transportation systems, the concept of deployable large space 

structures (LSS’s) has been on the minds of those in the scientific community. LSS’s 

involve a high level of mechanical flexibility often combined with extremely accurate 

pointing and shape requirements. The same LSS characteristics defined in reference [12] 

still apply today: 

• They are distributed parameter systems and therefore infinite dimensional in 

theory and very large dimensional in practice; 

• They have many resonant low frequencies; 

• Their natural damping is poorly known and very light; 

• Prediction of their behavior in space via on-earth testing is limited; 

• Requirements for shape, orientation, alignment, vibration suppression, and 

pointing accuracy are very stringent. 

 

Based on the above characteristics, these structures tend to be actively controlled with a 

variety of sensors and actuators and that control is an extremely interdisciplinary subject 
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drawing on structural mechanics and dynamics, mathematical modeling and 

approximation of distributed parameter systems, optimization, estimation and control 

science, numerical analysis, and large-scale computation [12]. Control science has 

evolved greatly since the concept of LSS’s was first considered and there have been 

many studies in the application of these advances to LSS controller design and 

implementation. Current knowledge on the subject can be found in the literature review 

of the following section, 1.2.  

 

 

Figure 1. Solid Model Rendering and Photo of Integrated DOT System 
 

The Deployable Optical Telescope (shown in Figure 1), is a large space structure. As 

explained in reference [13], it is a space traceable sparse-aperture telescope with 

deployable primary and secondary mirrors developed under the Large Deployable Optics 

program. This laboratory experiment has been and continues to be used to develop and 

evaluate technologies critical to the fielding of future large space telescopes.  

 

As stated in reference [11], the deployable mirror segments must be precisely aligned 

relative to each other, and the optical pathways maintained to nanometer tolerances to 
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achieve the necessary optical wave-front coherence and image quality. The lightweight 

composite structure tends to exhibit lightly damped resonances that cause large-amplitude 

motion when excited. Low-frequency motion can induce pointing error and defocus and 

may be caused by gravity gradients, solar pressure, or thermal gradients. Higher-

frequency motion can cause line-of-sight jitter and may be caused by small lurching in 

hinges or latches, popping or drying effects of composite materials, or excitation of 

structural modes by the spacecraft’s attitude control system. Vibration above 100 Hertz 

poses the risk of coupling with optical elements, causing high-order wave-front 

distortions. Developing such a LSS therefore requires advances in many technical areas, 

including integrated system modeling and validation, active vibration control design and 

implementation, on-orbit system identification, structural and optical metrology, and 

wave-front sensing and control [11].  

 

The control system developed for DOT was based on a variation of linear-quadratic-

Gaussian (LQG) optimal setpoint control [6]. Low-bandwidth integrator-type control was 

used to maintain setpoint positions for each primary mirror segment. Upon each low-

bandwidth controller, a wide-bandwidth dynamic output-feedback controller was 

implemented to provide active damping and wide-bandwidth ambient disturbance 

rejection. This full-order (344-state) LQG optimal output-feedback controller was 

developed based on MIMO system identification models. Since persistent disturbances, 

traceable to spacecraft subsystems associated with attitude control and thermal 

management, are not sufficiently attenuated with the broadband LQG controller, an 
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adaptive disturbance rejection controller can be applied as an outer loop around the LQG 

and setpoint controller.  

 

Controller performance is contingent upon the quality of the system model used for 

controller synthesis. There are many options for system identification of a MIMO system. 

Those working on the DOT structure utilized a frequency-domain modeling approach 

which has many advantages: models can be identified in separate frequency bands and 

later combined to form a single model, frequency data need not be uniformly spaced, 

each data point in the frequency domain may be the result of significantly averaged time-

domain data which reduces uncertainty and uncorrelated noise, and the excitation signals 

can be tailored to account for system properties such that signal-to-noise data in and 

around system zeros or poles can be optimized and sensor saturation avoided [11]. Data 

based models were created for the lightly damped, modally dense structure. Measured 

FRF information was captured and, along with it, corresponding variance information to 

quantify the uncertainty in data collection [13]. There are many sources of model 

uncertainty, too numerous to list here, that can enter into and corrupt a system model; 

thus affecting the performance of the controller synthesized from it. The model validation 

process used by those working on the DOT structure was extensive and time consuming. 

Even then, the inability to accurately simulate on-orbit conditions is a recognized model 

limitation. Also, time-varying system dynamics were observed. Based on these past 

findings, on-orbit system identification and controller tuning capability was identified as 

a necessary follow-on research effort for the development of a tactical space telescope 

design. That is what prompted the work presented in this thesis.  
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1.2 Literature Review 

Prior work directly associated with or simply applicable to Large Space Structures, 

including deployable optical systems, is well documented in the open literature, but a few 

pertinent examples will be given here.  

 

The development of large space structures has required advances in technical areas 

including integrated system modeling and validation, active vibration control design and 

implementation, on-orbit system identification, structural metrology and, in the case of 

optical space structures, optical metrology and wave-front sensing and control. Research 

in the 1970’s and 1980’s was typically performed at the component level but progressed 

to system-level hardware testing in the 1990’s [11]. Reference [14] surveys the U.S. 

experimental facilities for control of flexible structures. A review of experimental test 

articles is available in the literature review of reference [1]. 

 

Work was done by Carrier and Aubrun [15] in the early 1990’s on the Advanced 

Structures and Controls Integrated Experiment (ASCIE) at Lockheed Martin Advanced 

Technology Center. Their research focused on developing numerically tractable and 

robust methods to model and structurally control large, complex, flexible systems. Their 

research included evaluating how accurately the dynamic behavior of such a structure 

could be predicted using finite element analysis, developing structural control methods to 

improve segment alignment of a primary mirror and achieving wideband structural 

vibration suppression. Carrier and Aubrun used frequency-response functions measured 

with active control sensors and actuators to obtain modeling data because classical modal 
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testing of large systems is costly and difficult and using FRFs was more representative of 

on-orbit testing of space structures. They demonstrated methods to model system 

dynamics online, analytically determine modal characteristics offline, and synthesize 

system models for controller development from frequency-response measurements. 

 

NASA has, of course, been at the forefront of LSS research and development through 

their own research centers as well as through contractors. Recent work by NASA 

includes its facilitation of the James Webb Space Telescope (JWST), which uses adaptive 

optics, wavefront sensing, and lightweight structures. See references [16-19] for more 

information. NASA has also supported many university studies [20]. 

 

The U.S. Air Force Research Laboratory (AFRL), Space Vehicles Directorate, has been 

involved in developing innovative solutions for the deployment and operation of LSSs. 

The AFRL established the Ultra-Lightweight Imaging Technologies Experiment 

(UltraLITE) program in 1995 to develop and demonstrate a variety of enabling 

technologies. Much of this program is documented in various papers, see references [21-

23]. Several component-level flight experiments were accomplished as part of the 

UltraLITE program, including active vibration control and isolation experiments [24,25]. 

The DOT experiment, mentioned in the Background, section 1.1 above, was the final 

project completed under the UltraLITE program. 

System identification for LSSs is typically performed in the frequency domain; recall the 

findings of Carrier and Aubrun. There are now several frequency domain system 

identification tools, such as DynaMod [26] which allows the modeler to add and remove 
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dynamics from the model, as well as tune the model using an iterative search algorithm 

based on several model fit metrics with frequency weighting. PAM-VA One [27] is a 

hybrid modeling tool that combines low-frequency deterministic modeling with statistical 

approximations for modally dense subsystems. More details on frequency domain system 

identification algorithms and methods can be found in references [11,13,26, 28-31]. 

 

After synthesis of an initial model, model tuning must commence in order to correct 

deficiencies and yield a model which is a more accurate match to measured data. Model 

synthesis algorithms tend to have difficulty fitting MIMO models with low-amplitude 

response at low frequency. A model can be improved in the low-frequency band by 

tuning with appropriate frequency-weighting matrices [11]. Correlation and error metrics 

can be used to improve efficiency and guide the model tuning process [32,33]. 

 

Disturbances must be considered depending on the LSS mission. Both the Hubble and 

James Webb deep space telescopes can afford to allow a long period of time for 

disturbances to dissipate on their own, whereas time-critical tactical missions necessitate 

the use of on-orbit system identification, active vibration isolation, and active vibration 

control to mitigate disturbances within the required timeline. The necessary bandwidth of 

the controller is largely determined by the on-orbit response and optometchanical 

coupling of the spacecraft. The need to balance passive structural stability and active 

control requirements for large optic systems is discussed in work by Lake et al. [34]. On-

orbit system identification and controller tuning is recognized as a required capability 

because of the uncertainty surrounding the models used to create the controller. That 
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uncertainty includes mismodeling, where discrepancy exists between the physical reality 

of the system and the virtual model used for control design and performance prediction, 

design evolution, where the model is manipulated without necessarily improving it, and 

environmental factors, either unknown such as solar flux or insufficiently modeled, such 

as zero-gravity conditions [35]. A comprehensive list of spacecraft disturbances is 

presented in [36]. 

 

Many studies have been performed on sensor and actuator assessment, both open and 

closed-loop, for control effectiveness. A major component is actuator and sensor 

placement for the control problem. Reference [37] includes a literature review on the 

actuator placement problem for structural systems. References addressing closed-loop 

techniques include [38-40]. References addressing open-loop techniques, where the 

design model is analyzed without explicitly solving for the controller, include [1,41-49]. 

 

Controller synthesis involves designing a compensator for the open-loop system. 

Reference [50] is a classic reference on the synthesis of MIMO H2 controllers. Reference 

[51] is more modern and includes H∞ and µ synthesis controllers. Reference [52] 

compares several robust control synthesis techniques. 

 

Controller tuning is a process to modify the closed-loop system by perturbing a baseline 

controller. Many control synthesis techniques can be applied as tuning techniques. 

Adaptive control and on-line tuning has a lack of spaceflight heritage and is less 

established. Some off-line controller tuning strategies include:  H2/∞ design weight tuning 
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[51,53,54], Sensitivity-Weighted Linear Quadratic Gaussian tuning (SWLQG) [52, 

55,56], Youla Parameter Tuning [57-62], Direct (Parameter Optimization) MIMO control 

[38,63-67]. The tuning methodology developed in reference [1] extends the direct 

(parameter optimization) tuning described in the previous references to capture 

robustness as an explicit element of the cost, to create a framework for a general 

controller parameterization, and to create capability to directly tune controllers with 

measured plant data; all limitations of the prior direct MIMO control techniques. That is 

why reference [1] was chosen as the foundation for the objectives of this thesis. 

 

For more information on the topics mentioned above please see the literature review and 

body of reference [1]. 

1.3 Thesis Objectives and Overview 

The performance and stability of a control law derived from a model-based synthesis 

approach is inherently dependent on the fidelity of the baseline model used in the 

synthesis process. Although models may be produced by a variety of techniques from 

finite-element analysis (FEA) to least-squares fit of measured time or frequency domain 

response functions, such models are typically representative of a limited set of 

environmental conditions present during the modeling process. Just as with most space 

systems, a dynamically controlled system may be assembled, modeled and tested in one 

environment, but subject to a vastly different ambient environment during actual 

operation. 
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In the operational environment a controller designed from a system identification model 

may become obsolete. System uncertainty arising from persistent disturbances, noise, un-

modeled dynamics and nonlinearities may reduce the system performance or even prove 

unstable.  Disturbances induced by the operational environment can include heat loading 

on a spacecraft as it enters and exits the earth eclipse. In the case of a multiple-input, 

multiple-output system where only measured frequency response and corresponding 

variance data is available, it may be useful to apply and extend an approach proposed in 

reference [1] that optimally tunes the baseline controller by minimizing a cost function 

that balances performance and robustness given measured system uncertainty. The use of 

variance data is a concept explored in reference [2]. Simulated validation is obtained 

from the application of this approach to a FSM system with the intent to obtain both 

simulated and experimental validation via application to the Deployable Optical 

Telescope (DOT) structure which resides at the Air Force Research Laboratory on 

Kirtland Air Force Base [3]. This approach may be applied to cases less extreme than the 

deployment of a space-based structure. 

 

Areas recommended for future work in reference [1] which this thesis will address 

include: 

• Exploration of the connection between the stability robustness metric and model 

uncertainty.  

• The development and implementation of the tuning methodology in the discrete-

domain as opposed to the continuous domain. 
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1.4 Summary 

This chapter has explained the work leading up to this thesis, what its focus is, and why it 

is useful; thus preparing the reader for the following detailed description of the 

methodology used to achieve the objectives. 
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CHAPTER 2  METHODOLOGY 

This chapter begins with an overview of the algorithm used in this thesis to generate an 

improved system compensator given a simulated baseline compensator and actual plant 

frequency response data with corresponding uncertainty data. It continues on to explain 

the details of the components of the applied algorithm and their dependency on system 

architecture. 

2.1 Algorithm Overview 

When a baseline controller is available and it is not convenient to re-characterize a 

system via complete system identification, tuning the baseline controller to accommodate 

changes in the dynamic behavior of the plant is an attractive option. As stated in 

reference [1], the tuning tool is based on forming an augmented cost function from 

weighting performance, stability robustness, deviation from the baseline controller, and 

controller gain. The tuning algorithm can operate with the plant’s state-space design 

model or directly with the plant’s measured frequency-response data. The controller is 

parameterized with a general tri-diagonal parameterization based on the real-modal state-

space form. The augmented cost metric is chosen to be differentiable and a closed-loop, 

stability-preserving, nonlinear descent program is used to directly compute controller 

parameters that decrease the augmented cost. To automate the closed-loop stability 

determination in the measured-data-based designs, a rule-based algorithm is created to 

invoke the multivariable Nyquist stability criteria. This can be accomplished with only 

frequency response data.  

2.2 Notation 

 – the field of real numbers 



13 

y – sensor measurement,  

w – exogenous disturbances, including process and sensor noises,  

x  – plant state vector 

u – actuator inputs,  

ω – frequency vector (radians/second) 

G – Plant FRF data over ω 

K – compensator FRF data over ω 

Kb – baseline compensator FRF data over ω 

H – closed loop system 

xc – compensator state variable,  

uc – compensator input,  

yc – compensator input,  

Ac, Bc, Cc, Dc – parameterized dynamic, input, output and feedthrough matrices of the           

State Space Compensator K of compatible dimensions: , , 

,  

p – compensator parameter vector 

K(p) – a specific parameter of the Compensator K 

Ss – penalty term for deviations of max singular value of Sensitivity greater than 

threshold  

Scr – penalty term for distance of Nyquist locus to the critical point 

J(p) – cost function 
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α – cost function weighting scalar (between 0 and 1) 

µ – stepsize 

2.3 Algorithm Details 

2.3.1 System Architecture 

Three different system architectures were encountered during algorithm development. 

The architectures of reference [1], reference [2], and the FSM system are depicted in the 

figures below. All definitions are presented for MIMO systems unless otherwise noted. 

Each system architecture figure is followed by some corresponding equations. The 

nuances encountered vastly change the equations used and can lead to algorithm 

dysfunction if not implemented correctly. 

 

Figure 2. System Architecture in reference [1], General control system interconnection 
(left) and Standard feedback configuration (right) 
 

The left diagram in figure 2 contains a plant, G, with a set of vector inputs and outputs: 

exogenous disturbances w, actuator inputs u, and sensor measurements y. A compensator, 

K, receives y as an input and generates actuator signals, u. Tracking is enabled, as shown 

in the right diagram of figure 2, by introducing a reference, r, at an appropriate location 

in the loop. With the compensator unconnected, one can obtain the open loop system. 

The systems feedback is defined in the compensator, K. When the compensator is 

appended to the dynamics of the open loop system one arrives at the closed loop system, 

H. The MIMO Sensitivity function, S, relates the exogenous disturbances, including 

w 
G = [ Gyw  

Gyu] 

K u y K Gy

u 

r 

w 

y - 
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process noise, w to the output y. It defines the sensitivity of the closed loop response to 

perturbation in the open-loop. 

 (1) 

 (2) 

 (3) 

 (4) 

 (5) 

 

 

Figure 3. System Architecture in reference [2] 
 

 (6) 

 (7) 

 (8) 

 (9) 

 (10) 

 

K 

G 
r Ge y - 

e 
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Figure 4. FSM System Architecture 
 

The FSM architecture compensator receives the error signal as input. 

 (11) 

 (12) 

 (13) 

 (14) 

 (15) 

 

It will be apparent in the formulations to follow how these architectures affect function 

definitions. 

2.3.2 Cost Functions 

The performance cost function is defined in reference [1] as an expression for the 

sensitivity of the performance as a function of the controller parameters, p. A regulator 

control problem is assumed. Since a white noise disturbance input is assumed (shown in 

Figure 2), the cost term is a summation of the closed loop (CL) cost over the frequency 

samples. H is a CL metric relating disturbance input to performance variables (the sensor 

suite y in this case). The cost function uses an H2 root-mean-square (RMS) performance 

metric on the CL Transfer Function of the system to assess performance. This works 

K G 
r GKe y - 

e Ke 



17 

under the assumption that the system is stable so that the H2 norm exists [6]. The H2 norm 

is the RMS of the transfer functions impulse response, which measures the steady-state 

covariance of the output response, y, to unit white noise inputs, w. Smaller performance 

cost function magnitude indicates improved performance: 

 (16) 

 

Hcl is the closed loop system, defined above in equations (5), (10) or (15) depending on 

system architecture. And S is the sensitivity, defined above in equations (4), (9) or (14) 

depending on system architecture. (·)H denotes the conjugate transpose. 

 

The stability cost function, Js(p), is defined in reference [1] as a weighted combination of 

the Maximum Sensitivity Singular Value Stability Metric, Ss, and the Critical Point 

Distance Metric, Scr:  

 (17) 

 (18) 

 (19) 

 

Ss  is the summation of the deviation of the maximum singular value of the sensitivity 

over a threshold in a frequency band of interest and Scr is the summation of the inverse of 

the distance from the Multivariable Nyquist locus to the critical point over a frequency 

band of interest. For good stability robustness this distance is maximized near crossover. 
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γcr  is a weighting term. In the interest of simplicity, the stability cost function was 

implemented with a weighting term of γcr  = 1 so that the function uses the Multivariable 

Nyquist locus exclusively. Therefore, the equation for Ss will not be provided. 

This yields a less conservative measure of stability robustness. The reasons for allowing 

this simplification of the stability cost metric are detailed in section 3.1.  

 

Wcr(ωk), from equation (18), is defined in reference [1] as a vector weighting function on 

the frequency values of interest, which also weights the relative contribution of the 

stability cost to the total cost. F, used in equation (19), is the systems loop transfer 

function (LTF) matrix and is dependent on system architecture. The term comes from the 

fact that I+F = I-(-F), where –F represents the transfer-matrix function around the loop in 

the presence of a subtraction block [6]. For reference [1], -F = GK since the negative sign 

is defined as part of the compensator K. For reference [2], -F=-KG since the negative sign 

is defined outside of the compensator K. For the FSM architecture, -F=-GK, since the 

negative sign is also defined outside of the compensator K. 

 

There are weightings on the stability and performance cost functions that sum to create 

the total cost: 

  (20) 

2.3.3 Parameterization 

For tuning, a full state-space parameterization of the compensator is desired. The baseline 

compensator FRF data is referred to as Kb and has the following state-space form (refer to 

the Notation in section 2.2 for dimensions, recall this is a MIMO system): 
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  (21) 

  (22) 

 

State-space realizations are not unique so there are countless possible parameterizations. 

Reference [1] provides a study of some possible parameterizations, stating the Jordan 

canonical form as useful for understanding the form of the parameterization but having 

the flaws that not all systems can be diagonalized and some eigenvalues come in complex 

conjugate pairs so that each eigenvalue parameter is not independent, making the 

real/complex transition of the eigenvalues awkward. A near-modal state-space form is 

suggested where complex conjugate eigenvalues are grouped together and real 

eigenvalues are grouped in pairs, a second-order form is then applied. It is termed near-

modal because of its resemblance to modal form with the inclusion of even pairs of real 

poles. Because the dynamics matrix is broken into 2x2 blocks corresponding to factors of 

the characteristic equation, a smoother transition from real to complex conjugate poles is 

obtained. Additionally, according to reference [1], most structural systems can be 

transformed into this form. However, multiple transformations and scaling are required to 

uniquely specify the matrices and improve numerical conditioning; which complicates 

the parameterization considerably. 

 

When selecting a parameterization, it is important to consider that derivatives of the state-

space representation of the compensator with respect to the parameters are required for 

all of the gradient computations. Derivatives of the near-modal form are relatively 

simple. The same is true of a modal parameterization, where the real eigenvalues appear 
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on the diagonal of the Ac matrix and the complex conjugate eigenvalues appear in 2x2 

blocks on the diagonal of Ac. The modal transformation requires that the A matrix be 

diagonalizable. For example:   

 (23) 

 (24) 

 

This parameterization was chosen for the FSM system in order to simplify the 

parameterization process. Cost function derivatives with such a parameterization are 

detailed in section 2.3.4.  

Another parameterization suggestion in reference [1], referred to as Constrained 

Topology Parameterization, is something to keep in mind for systems where it is 

necessary to maintain integral action. As stated in reference [1], by fixing certain 

parameters in a free-topology controller parameterization, such as the near-modal 

parameterization, the controller topology can be constrained. Block diagonal controller 

topologies are generated by removing some controller parameters from the vector of 

tunable parameters, p. 

2.3.4 Gradient Descent 

Given the constant baseline compensator Kb, the tuned compensator is determined by the 

parameter vector, p. The gradients of the cost can be written as, 
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 (25) 

 

where the gradient operator represents a vector formed of partial derivatives with respect 

to compensator parameters: .  

There is only one component of any of the applicable cost functions that contains the 

controller parameters and that is the compensator K. Thus, the gradient of any applicable 

cost function reduces to a multiplication of known matrices and the partial derivative of K 

with respect to controller parameters. Recalling the state space representation of K: 

 (26) 
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Its partial derivative with respect to controller parameters is: 

 (27) 

 

The characteristic inverse is: 

  (28) 

 

In the interest of processor efficiency, it is useful to look at the structure of the partial 

derivative of K as defined in equation (26) with respect to each parameter set and 

simplify the number of multiplications. Assuming the compensator is in modal canonical 

form, the Ac matrix contains complex pole pairs in 2x2 block form along its diagonal with 

the possibility of real poles on the diagonal and zeros elsewhere as exemplified in 

equation (23). 

 

This results in the following possible structure of the characteristic inverse, φc: 

 
(29) 

Where, for simplicity,  (30) 
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Since most of the derivatives are zero, we can simplify the equations. Consider the partial 

derivative of K with respect to the parameters aij in the real pole case: 

 

 (31) 

 

In the complex pole pair case: 

 (32) 

 

And similarly, with respect to the parameters bij, cij and dij for real poles: 

 

 (33) 

 (34) 

 (35) 
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With respect to the parameters bij and cij for complex pole pairs: 

 (36) 

 (37) 

 

The simplicity of the derivative matrices allows for numerical efficiency. Matlab code 

may be obtained in which the general implementation of these calculations is shown. 

 

Now that the partial derivative of K with respect to all parameters has been calculated, it 

may be substituted back into the gradient of the applicable cost functions. Cost function 

gradients were defined in reference [1], but the mathematical derivations of these 

equations were often inexplicit. Re-deriving the gradient equations from the original 

metrics defined in equations (16) and (18) proved useful. In doing so, the effects of 

system architecture were made apparent and a typo in reference [1] in the definition of 

the Critical Point Distance Metric, Scr, gradient was corrected. These detailed derivations 

can be found in the Appendix.  

By simply applying the product rule to equation (16) we have the performance cost 

gradient: 

 (38) 
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To simplify this in terms of the gradient of K, we must first take the partial derivative of 

Hcl which will vary depending on system architecture. Using differentiation by parts on 

the FSM architecture definition of equation (15), we have: 

 (39) 

 

The partial derivative of the Sensitivity transfer matrix is also in terms of K and varies 

depending on system architecture. Using the following rule, 

 (40) 

 

and letting M-1=S in the FSM architecture definition of equation (14), we have: 

 (41) 

 

Now it is possible to write the performance cost gradient in terms of the partial derivative 

of K with respect to the parameters, p.  

 

Derivation and simplification of the gradient of the Critical Point Distance Metric, Scr, is 

considerably more complex. Recalling the stability metric equations (18) and (19), we 

have:  

 (42) 
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Equation (43) is the result of letting M(p) equal (I+F(jω)) from equation (19), where 

F(jω) depends on system architecture. We can use the equation (44) definition of the 

derivative of a determinant in the case of a non-singular matrix M(p) with distinct 

eigenvalues: 

 (43) 

 (44) 

 

Several additional definitions and properties must be applied to equation (42) in order to 

define it in terms of the partial derivative of K. One such definition, 

 (45) 

 

holds true only if the Ac matrix is symmetrical, which is the case for a modal canonical 

parameterization. Please refer to the Appendix for the more detailed, architecture 

dependent, derivations of this gradient. 

2.3.5 Tuning 

The gradient descent optimization algorithm finds a local minimum of a function, F(x), 

by taking steps proportional to the negative of the gradient of the function at the current 

point, xn. If the function is defined and differentiable in the neighborhood of xn, then it 

decreases fastest if one goes from xn in the direction of the negative gradient of F at xn. If 

we define, 
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 (46) 

 

for step size γn>0 a small enough number, then F(xn)≥ F(xn+1). The value of the step size 

is allowed to change at each iteration. The algorithm can take an arbitrary number of 

iterations to converge, but there is a variable that allows one to limit the total allowable 

number of iterations in this algorithm in the interest of time. Finding the optimal step size 

each iteration can also be time-consuming but using a fixed step size can produce poor 

results. There are many techniques that may be used for determining step size. Once 

determined, the step size can be further limited by the algorithm with closed-loop and 

compensator stability checks. The technique suggested by reference [1] for the stepping 

algorithm is the iterative Boyden-Fletcher-Goldfard-Shanno (BFGS) nonlinear descent 

method which requires that the gradient of the cost be computed at arbitrary points using 

the expressions defined in 0. Reference [1] prefers BFGS over other descent methods 

based on informal comparison of performance and computational complexity with the 

developed tuning algorithms and an additional similar study.  

 

In order to simplify the tuning process, BFGS was not used in the initial algorithm 

development. Rather, the step size was set to an initial value of one and allowed to be 

halved if it produced a tuned compensator that did not satisfy the algorithms stability 

checks, which are detailed in section 2.3.6. 

2.3.6 Stability Determination 

In the case of the DOT structure, preserving open loop (OL) and closed loop (CL) 

stability is desired. Since the compensator is always available in state-space form, its 
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stability is ensured by simply confirming the eigenvalues of Ac are inside the unit circle. 

If the plant is OL stable, which it is for all cases examined in this thesis, and the 

compensator has been shown to be OL stable, it follows that the system is OL stable. 

Determining CL stability when only frequency response data is available to define the 

plant is more complex. A knowledge-based algorithm is developed in reference [1] to 

automatically implement the rules of the MIMO stability criterion to determine stability.  

 

Recall equation (19) and its dependence on system architecture. The MIMO Nyquist 

function can be determined at each frequency point:   

 (47) 

 

The MIMO Nyquist stability requires that the net number of counter-clockwise (CCW) 

encirclements of the critical point, -1 in the case of equation (47), made by the locus of 

L(jω) on the complex plane must be equal to the number of unstable poles in the OL 

system [4]. It is simpler to quantify this in an algorithm by employing the Nichols plot 

where the locus of L(jω) is plotted as log-magnitude versus phase [7]. In this form, 

encirclements in the Nyquist plot are equivalent to passes of the locus of L(jω) over the 

critical points at a magnitude of one with phase -180±n360 degrees. Thus the net number 

of left to right (lower to higher phase) passes of the locus of L(jω) over the critical points 

must be equal to the number of unstable poles in the OL system. 

L(jω) points are placed in their respective quadrants according to the following figure: 
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Figure 5. Quadrant Definition for CL Stability Determination 
 

Subsequent points, L(jωk) and L(jωk+1), are compared and a right to left pass of a critical 

point corresponds to traversing from quadrant three to two (clockwise). A left to right 

pass corresponds to traversing from quadrant two to quadrant three (counter-clockwise). 

Encirclements are counted only for subsequent points whose corresponding magnitudes 

are greater than one.  

 

In the case where there is a quadrant two to three or three to two crossover and only one 

magnitude is greater than unity, then it is unclear if the locus has passed over or under the 

critical point. Linear interpolation to generate points between ωk and ωk+1 is 

recommended, but a more conservative and less computational approach is to go ahead 

and count this case as an encirclement. 

 

In the case where consecutive points skip a quadrant (one to three, two to four or vice 

versa) and the magnitude of the points exceeds unity, data is considered to be bad (noisy 

and/or sparse). This case proves to be rather problematic in the implementation of the 

algorithm with noisy and/or sparse Digital Signal Analyzer (DSA) frequency response 

data and is discussed in more detail in section 3.2. 
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As stated earlier, with a passive plant we can assume the plant is OL stable meaning there 

are no right half plane (RHP) poles. In the case that the tuned state-space compensator is 

OL stable (which is the first criteria to be satisfied in the algorithm), meaning there are no 

RHP poles; a CW encirclement of the critical point by the locus indicates a zero in the 

RHP and thus an unstable root of the CL system. Therefore, the criteria for confirming 

the tuned compensator stabilizes the plant is based on MIMO Nyquist locus having zero 

CW encirclements of the critical point – we need not concern ourselves with counting 

CW and CCW encirclements, only detecting if any CW encirclements exist.  

 

Please compare the following two figures which show an example of the MIMO Nyquist 

and MIMO Nichols plots, respectively, for the FSM structure from 140 to 2000 Hertz. 

The red lines show smooth data and the blue show the true noisy data. The MIMO 

Nyquist data begins at 140 Hertz in the south-east corner of Figure 6 and that corresponds 

to the point of greatest magnitude in Figure 7. Observe the green asterisk in the figures; 

note the jump from quadrant two to three (left to right) in Figure 7 and how it 

corresponds to the CCW pass around the critical point in Figure 6. Similarly, the cyan 

asterisk corresponds to a jump from quadrant three to two (right to left) and a 

corresponding CW pass of the critical point. However, one will observe the magnitude of 

the right to left pass is less than one, meaning it does not get included in the net 

encirclement summation. 
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Preserving stability is what makes the tuned compensator so dependent on the baseline 

compensator. It ensures all iterations occur within the stable set containing the baseline 

compensator. There may be an alternate stabilizing set of compensators corresponding to 

clockwise/counter-clockwise encirclement cancellation that the algorithm never 

approaches. However, allowing the algorithm to search for that alternate set of stable 

compensators may result in a vastly more complex algorithm. 

2.4 Summary 

This chapter has described the algorithm, as developed in reference [1], and its applied 

components in this thesis. The following chapter will expand on the components that 

were extended and/or modified for use with noisy FRF and uncertainty data from a 

MIMO system.  

 

Figure 6. MIMO Nyquist Example 
 

 

Figure 7. MIMO Nichols Example 
. 
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CHAPTER 3  CONTRIBUTIONS 

In the implementation of the algorithm presented in references [1] and [2], some 

modifications and/or extensions have been considered in the case that MIMO uncertainty 

data is available and FRF data is noisy.  

3.1 Stability Cost Function 

It is mentioned in reference [1] that the MIMO Nyquist criterion is a necessary but not a 

sufficient condition for determining stability because the properties of the determinant 

operator are problematic. Thus the sensitivity singular value cost is proposed as a 

complementary stability robustness measure. However the problematic properties of the 

determinant only apply to cases of structured uncertainty. Because the MIMO Nyquist 

criterion is based on the small gain theorem [8], it is both necessary and sufficient for 

determining stability robustness if the plant perturbations are unstructured. For this 

application our focus is on unstructured uncertainty, that is the frequency response 

uncertainty, and the complimentary sensitivity cost Ss is ignored: 

 (48) 

 

Recall the definition of Scr from equation (18). One interesting component is the Wcr(ωk) 

term. It is defined in reference [1] as a vector weighting function on the frequency values 

of interest, which also weights the relative contribution of the stability cost to the total 

cost. It can be used to push important frequency points away from the critical point. In 

reference [2], the standard deviation of the frequency response data for a single-input, 

single-output (SISO) system is available and used to define this weighting term. Because 
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in the SISO case the standard deviation associated with each frequency of the frequency 

response data is a scalar, dcr was defined as: 

  (49) 

And thus  (50) 

 

Where σ2 is the variance of the FRF data and can be pulled out and considered as part of 

the weighting function, Wcr(ωk). This stability cost definition ensures that the cost 

function will decrease as the curve moves farther from the critical point and/or has a 

smaller variance. However, in the MIMO case, the variance data is a matrix and must be 

properly propagated from its matrix FRF form to the Nyquist curve; a scalar due to the 

use of the determinant operator of the Multivariable Nyquist criterion.  

 

Two options have been considered for reducing the variance matrix to a scalar value. The 

first is an H2 norm approach, taking the maximum value of the variance matrix at each 

frequency point of interest. The second, less conservative, approach is based on treating 

the variance as a random variable with a given distribution. It is possible to approximate 

the distribution of a nonlinear function of a random variable by linearizing the function 

about the mean of the variance data, so that the standard deviation of the nonlinear 

function of the variance is just a scaled version of the square-root of the variance. Note 

when the function is highly nonlinear, has a large second derivative, compared to the 

standard deviation of the data, this approach does not work well. 
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The linearization approach is derived as follows: 

Let  (51) 

Where  (52) 

 

And σG is the standard deviation of the FRF data, 

Then  (53) 

 

The verdict is still out on whether equation (53) is differentiable or not. If it is 

differentiable, the result is expected to still be a matrix, so the inner product must be 

taken to get a scalar: 

And  (54) 

 

If DSA measured variance data has anomalous data, those frequency points should be 

removed. If that leads to a sparse data set in regions of interest, one may precondition the 

variance data to be no greater than the gain of the system at applicable frequency points.  

3.2 Stability Determination 

In section 2.3.6, the negative effects of noisy DSA data on the CL Stability Check 

algorithm were mentioned. During algorithm development, it was found that the phase of 

the Multivariable Nyquist locus created using DSA data did not align with that created 
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using the pristine simulation data, see Figure 8. The determinant of (I+GK) where the 

FRF data of the plant G had been created from the noisy magnitude and phase of the 

DSA data, could not be reliably transferred back again to a representative phase because 

of the magnification of the noise resulting from taking the determinant. Thus a 

discrepancy was seen in the CL stability algorithm, allowing it to identify an unstable 

system as stable. 

 

The selected solution is to filter the DSA magnitude and phase data before it is 

transformed into the FRF format. A method consisting of using a running average with 

variable window size based on DSA variance data was considered, but that method has a 

tendency to introduce lag into the magnitude and phase. Therefore, the data is instead 

filtered using Matlabs filtfilt function which performs zero-phase digital filtering by 

processing the input data in both the forward and reverse directions, it additionally 

attempts to minimize startup and ending transients by matching initial conditions. This 

 

Figure 8. Incorrect MIMO Nyquist Phase 

 

 

Figure 9. Corrected MIMO Nyquist Phase 
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filtered plant FRF data was used only in the CL stability determination algorithm, see 

Figure 9. 

3.3 Summary 

This chapter has shown how the algorithm can be modified and extended for use with 

MIMO uncertainty data and noisy FRF data. The following chapter describes how the 

algorithm with its modification and extensions was implemented using actual MIMO 

FRF and uncertainty data. It also shows the results of that implementation.  
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CHAPTER 4  IMPLEMENTATION 

This chapter will discuss how the previously described algorithm is applied to a specific 

model. The results of this application will demonstrate its performance and viability for 

use with other, similar systems. 

4.1 Algorithm Flow Chart 

The flow chart in Figure 10 outlines how the algorithm was implemented in Matlab code: 

 

Figure 10. Flow chart of applied algorithm. 
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4.2 System Overview 

4.2.1 The DOT Structure 

For a detailed description of the DOT structure and design, refer to reference [3]. The 

DOT structure is a 10 input, 9 output MIMO system with 334 states. Frequency response 

functions are acquired between optical outputs of tip, tilt and piston of each primary 

mirror segment, and the ten actuators in the system. It is an open-loop stable structure. 

The baseline controller was created from a system identification performed on the un-

cabled DOT structure. Since that time, cables have been added to the structure and new 

frequency response data has been collected. To simplify the calculations and time 

required to run the algorithm, the DOT structure was reduced to a single petal, 3x3, 

system and the order of the compensator was reduced from 344 to 40 states using model 

truncation on the balanced realization. The compensator was developed using the LQG 

method.  

Originally, the architecture was simplified and the integral action was omitted. A 

block diagram of the original architecture is shown in Figure 11 and a suggested 

architecture is shown in Figure 12. The suggested architecture includes the integral action 

as part of the plant, thus removing it from the compensator state space matrices that are 

tuned by the optimization algorithm and preventing its potential elimination during 

tuning. 
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Figure 11. Current System Configuration 

 

 

Figure 12. Suggested System Configuration 

4.2.2 The FSM Structure 

The FSM structure consists of independent, but equivalent, X and Y axis second order 

SISO compensators with integral action. X and Y outputs are passed through a 

decoupling matrix yielding three outputs corresponding to the FSM’s three coil structure. 

Thus, for the purposes of exercising this optimization algorithm, the compensator is 
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turned into a two input, three output MIMO system which includes the decoupling 

matrix. The plant is therefore represented as a three input, two output MIMO system, 

Figure 13, that includes the power amplifiers and coupling matrices that feed X and Y 

acceleration to the FSM dynamics model shown in Figure 14.  

 

Figure 13. 3x2 MIMO Plant 

 

Figure 14. FSM Dynamics 

Figure 15 shows a model of the entire CL system. The plant is OL stable. The modeled 

compensator was developed using classical control techniques and has no complex poles. 
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Appropriate filters were added later to the actual system after system dynamics were 

analyzed. Frequency response data was collected with a Digital Signal Analyzer for the X 

and Y axes of the OL system. Y axis data is shown in Figure 16.  

 

 

Figure 15. CL FSM System 
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Figure 16. Y Axis DSA Data Bode Plot 

 

Since the FRF data included the compensation, it had to be defined and removed so that 

the three input, two output plant FRF data remained for use in the algorithm  Variance 

data was not collected with the FRF data and was heuristically defined by applying a best 

fit to the data, normalizing it and squaring the running standard deviation. This data is 

shown in Figure 17. 
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Figure 17. 3x2 Plant Using DSA Data 

4.2.3 Order of Implementation 

Perhaps too ambitiously, the algorithm was first applied to a reduced order DOT model. 

This produced some very thought provoking results, but proved to be rather difficult to 

debug due to the complexity of the system. Thus, a simpler model was reverted to for 

easier algorithm verification. Understanding how the algorithm performs with a simpler 

system will help determine its strengths and weaknesses and if it is a viable option for use 

with the DOT system. 



44 

4.3 Results of Algorithm Application to the FSM Structure 

4.3.1 FSM Cases Tested with the Tuning Algorithm 

The compensation used in the simulation was designed classically and has no complex 

poles. This compensation was first used in the optimization algorithm and results did not 

show much of an improvement. One might assume, if the algorithm is working properly, 

that this particular compensator cannot be improved upon in its current form; that is, the 

optimization routine implemented does not augment the compensator size or increase the 

number of complex poles. It was necessary to give the optimization routine more to work 

with by having it tune the actual compensator, which includes the complex poles 

associated with the added notch filters. Results of tuning the actual compensator verified 

that the optimization routine was working as designed. The simplicity of the FSM 

system, the X and Y axes being uncoupled, allows us to look at the bode plots of the 

system to understand stability and performance in addition to the Multivariable Nyquist 

plot, which can be a less intuitive indicator.  

 

In addition to giving the optimization algorithm different compensators to tune, one can 

vary the stability and performance cost weighting value, alpha. Recall alpha from 

equation (20). A value of one for alpha means the optimization algorithm tunes based 

only on minimizing the performance cost. Alternately, a value of zero for alpha means 

the optimization algorithm tunes based only on minimizing the stability cost. Thus, with a 

value of one for alpha, we expect to see an improvement in the system performance, but 

not necessarily in the system stability, and vise versa.  
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One may recall, from section 2.3.3, that precautions must be taken to preserve integral 

action during the tuning process. Observe a 9x9 section of the actual 18x18 FSM 

compensator discrete state-space A matrix, in Modal Canonical form, in Figure 18. This 

is a discrete compensator. Element [7,7] represents the integral action for the X axis. 

Element [16,16] of the full 18x18 FSM compensator discrete state-space A matrix, 

viewable in the appendix , represent the integral action for the Y axis. To avoid the 

possibility of the tuning algorithm reducing these elements to zero, thus eliminating the 

integral action, these elements are removed from the parameter list during the tuning 

process. 

 

Figure 18. Subset of the Discrete State-Space A Matrix of the Actual FSM Compensator 

 

Results shown in Figures 19 through 23 are using the actual compensator and an alpha of 

zero, meaning the optimization algorithm is minimizing the stability cost. Therefore, a 

plot of the stability and performance costs should show a decrease in the stability cost, 

though not necessarily a decrease in the performance cost. Figure 19 shows that both the 

stability and performance costs were improved. Recalling equation (18), we expect to see 

the tuning result in an increase in the distance of the MIMO Nyquist from the critical 

point. Figure 21, a zoom on the critical point of the MIMO Nyquist plots in Figure 20, 
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shows that this is occurring as the algorithm goes through its iterations. The step size, h, 

started out at a value of one, but when iteration three produced an unstable system (the 

dotted green line in Figure 20), the step size was halved, and would have continued to be 

halved until a stable system was produced. It is apparent from both Figure 19 and 20 that 

the algorithm begins to converge after iteration three; stable results from iterations three 

through five are nearly overlaid. 

 

 

Figure 19. Cost Function Progression for Stability Optimization 
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Figure 20. MIMO Nyquist Convergence for Stability Optimization 

 

Figure 21. Zoom of MIMO Nyquist Convergence for Stability Optimization 

The improvement in the stability is obvious when looking at a single axis bode plot, 

shown in Figure 22. The baseline OL DSA data system (dark green dashed) has a 

bandwidth of ~500 Hz with a corresponding phase margin of ~40 degrees. The tuned OL 

DSA data system (light green solid) has a bandwidth of ~475 Hz with a corresponding 

phase margin of ~60 degrees. The performance cost function indicated that system 

performance had also improved, though only stability cost was minimized during 
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optimization. At first glance, it is not apparent how the performance has been improved. 

In fact, due to the obvious loss of error rejection at frequencies below cross over (tuned 

magenta versus baseline red sensitivity), it seems the performance cost improvement 

must be erroneous. However, one must remember the algorithm is only doing what it has 

been told to do. Zooming in on the sensitivity curve, Figure 23, reveals that the overshoot 

of the error rejection has been reduced. The performance cost function registers this as an 

improvement in spite of the loss of error rejection at lower frequencies. 

 

Figure 22. Bode Plot for Stability Optimization 
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Figure 23. Zoom of Bode Plot for Stability Optimization 

The optimization algorithm was rerun with alpha set to one, meaning the optimization 

algorithm is minimizing the performance cost. Therefore, a plot of the stability and 

performance costs should show a decrease in the performance cost, though not 

necessarily a decrease in the stability cost. The plot of the cost function values throughout 

the iterations is shown in Figure 24 and indicates that the values for both Performance 

and stability are decreasing and they converge on similar values to those seen in Figure 

19, one difference being that it took fewer iterations to converge. Also, Figure 25 

indicates that the step size had to be reduced greatly for the compensator tuning to arrive 

at a stable system. Figures 24 through 27 show that the final system is nearly identical to 

that converged upon when the stability cost function was being minimized. 
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Figure 24. Cost Function Progression for Performance Optimization 

 

 

Figure 25. MIMO Nyquist Convergence for Performance Optimization 
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Figure 26. Zoom of MIMO Nyquist Convergence for Performance Optimization 

 

Figure 27. Bode Plot for Performance Optimization 

 

In order to help the performance cost function improve performance in a frequency area 

of interest, in this case the error rejection at lower frequency, we can apply a performance 

cost weighting variable. The optimization algorithm was rerun with alpha set to one, 
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minimizing performance cost only, with a weighting vector the same length as the 

frequency vector. The weighting vector consisted of ones below the 200Hz index and 

zeros above the 200Hz index; the weighting vector could be any function that 

appropriately suits the desired performance improvement. The cost over the iterations, 

Figure 28, shows that the performance cost improved but at the expense of the stability 

cost.  

 

Figure 28. Cost Function Progression for Weighted Performance Optimization 

 

You can see how the MIMO Nyquist locus moved closer to the critical point in Figure 30 

indicating a less stable system according to the stability cost function. It took more 

iterations to converge than the previous performance cost took and the step size never 

needed to be reduced from its original value of one.  
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Figure 29. MIMO Nyquist Convergence for Weighted Performance Optimization 

 

Figure 30. Zoom of MIMO Nyquist Convergence 

for Weighted Performance Optimization 

Looking at the single axis bode plot in Figure 31 shows the performance weighting had 

the desired affect on the performance optimization, increasing the error rejection at lower 

frequency (the magenta versus the red lines). Figure 31 also shows how the stability was 

reduced. The baseline OL DSA data system (dark green dashed) has a bandwidth of ~500 

Hz with a corresponding phase margin of ~40 degrees. The tuned OL DSA data system 

(light green solid) has a bandwidth of ~575 Hz with a corresponding phase margin of ~25 

degrees.  
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Figure 31. Bode Plot for Weighted Performance Optimization 

 

With this newly defined performance cost weighting in place, if the optimization 

algorithm is rerun for an alpha of zero, minimizing stability cost, we would no longer see 

the performance cost improve as we did in Figure 19. This is demonstrated in Figure 32. 
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Figure 32. Cost Function Progression for Stability 

Optimization and Weighted Performance 

Now one may vary the alpha weighting on the performance and stability cost according 

to what type of improvement is desired.  

 

Recall the discussion in section 3.1 about the use of the FRF uncertainty, in the form of 

the variance of the FRF data, in the stability cost function. It was intended that the 

conservatism of the MIMO Nyquist locus as a measure of robustness be countered by the 

inclusion of the FRF uncertainty in the stability cost function. To verify that this 

modification was successful, the weighting term which was a function of the FRF 

variance data, was removed from the stability cost function and the optimization 

algorithm was rerun with alpha equal to zero; minimizing the stability cost only. Results 

showed that the compensator tuning converged on the same compensator produced by 

running the optimization routine with the stability weighting in place, depicted in Figures 

20 through 23. The difference was that, because the stability metric was more 
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conservative without the stability weighting in place, it took more iterations to converge 

on this compensator. 

4.4 Results of Algorithm Application to the DOT Structure 

4.4.1 DOT Cases Tested with the Tuning Algorithm 

As stated in section 4.2.3 the complexity of the DOT structure made it hard to debug the 

algorithm and the simpler FSM system was reverted to. Unlike the FSM system, the DOT 

system had variance data that was collected by the DSA. It was discovered the variance 

data exhibited some anomalies where the measured variance was either not a number 

(NaN) or excessively large. This was an artifact of the FRF data collection approach. 

Since these anomalous values adversely affected the weighting for the stability cost 

function, they were either removed from the FRF set or preconditioned not to exceed the 

gain of the system. 

4.5 Summary 

This chapter demonstrated the optimization algorithm’s effect on compensator stability 

and performance as well as the algorithm improvement due to the inclusion of 

uncertainty data. Because is performed as expected, it appears a viable algorithm to apply 

to the DOT structure and other similar systems. 
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CHAPTER 5  CONCLUSIONS 

As is often the case, the step from theoretical to practical application proves challenging. 

Dealing with the nuances of noisy data can be quite frustrating and was one of the 

greatest obstacles to a robustly functioning optimization algorithm. As indicated earlier, 

noisy data can lead to false stability checks if not dealt with properly. It can also 

dramatically affect the cost functions and their gradients, and subsequently the entire 

tuning of the compensator. There are numerous parameters and variables to be considered 

in the definition and tuning of a compensator. Algorithm simplicity, for ease of algorithm 

validation and confidence, must be balanced with algorithm complexity, necessary to 

produce optimal results; and this balance is best achieved by one with a thorough 

knowledge of the system and its dynamics.  

 

A main goal of investigating the application of the optimization algorithm presented in 

reference [1] was to understand its viability, specifically in the case of the Deployable 

Optical Telescope systems and systems like it. The above analysis has demonstrated that 

the algorithm, when applied knowledgably, can produce an improved compensator when 

given a non-ideal compensator to tune and measured FRF data to accompany it. With an 

extensive understanding of the system specific dynamics and noise, this optimization 

algorithm has the potential to be a very efficient and helpful tool for complex MIMO 

systems operating in remote and varying conditions. 

 

Areas recommended for future work in reference [1] which were addressed in this thesis 

include: 
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• Exploration of the connection between the stability robustness metric and model 

uncertainty:  The plant model variance data was incorporated into the stability 

cost function and its inclusion demonstrated improvement of the optimization in 

that it took fewer iterations to converge. 

• The development and implementation of the tuning methodology in the discrete-

domain as opposed to the continuous domain:  In reference [1] compensators were 

tuned in the continuous-time domain and converted to discrete-time 

compensators, whereas this algorithm directly tuned discrete-time compensators. 

 

The Tuning Algorithm should be tested on various other systems, including several cases 

of the DOT structure. Once the scripts are adequately validated, progress using the cabled 

DOT FRF data can be made and ultimately a tuned controller applied to the actual DOT 

cabled structure.  

 

There are many other useful paths that should be explored. They include: 

• The identification of relevant frequency information, log versus linear down-

sampling of frequency vector.  

• Further research into the gradient descent algorithm regarding its extension to 

finding global versus local minima.  

• Proper tuning of the performance and stability weighting factors. 

• What to do in the case that the plant is not open loop stable. 

• Advantages/Disadvantages of limiting the optimization iterations and step sizes 

by requiring open loop and closed loop stability at every iteration. 
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Overall, the algorithm is promising and further development could yield an extremely 

useful adaptive control algorithm.
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APPENDIX A  

STABILITY ROBUSTNESS DERIVATIVE CALCULATION 

Calculations were aided by identities and equations found in reference [5]. 

Let   

Then   

 

Recall equation (42) defining the gradient of the Stability Cost Function. It requires that 

we calculate: 

   

Let   

Then   

Using the identity:   

We have   
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Substitution yields: 

  

  

 

We want to reduce this so that it is in terms of the derivative of K; the reduced functions 

will vary according to system architecture. The following equations will be performed 

assuming the FSM architecture described in section 2.3.1. The following identities will 

be necessary to perform the reduction [4]: 
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Now we can start the reduction: 

  

 

Note the above equation may have a negative sign in front depending on system 

architecture. 
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Substituting back into , yields 

  

 

Finally, substituting this back into , yields 

 

  

 

Discrete State-Space A Matrix of the Actual FSM Compensator 

 

 

Resources 

All the code used to develop the results shown in section 4.3.1 can be obtained by 

contacting Haley Alexander via e-mail: haley.e.alexander@boeing.com or 

UltraViolet002@hotmail.com. 
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