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Abstract

The new generations of CDMA communications systems (3G, B3G and 4G) and

adhoc networks are expected to support multirate services (multimedia applications,

email, Internet, etc.) in addition to telephone service (fixed-rate service), which

was the only service offered by 1G and 2G. Each user in these new generations

of communications systems has different quality of services (QoSs) (e.g., signal-to-

interference ratio (SIR), frame error rate (FER) and data rate) that he/she is willing

to fulfill by accessing the common radio interface. These new services establish a

strong need for new algorithms that enable the efficient spectral use of the common

radio interface.

Due to the strong relation between the SIR and the data rate at which a user can

send information as was shown by Shannon, it was natural to propose joint power
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and rate control algorithms for wireless data. Prior work that has emerged to address

this problem has used a centralized algorithm.

Our approach to solve the problem of jointly optimizing rate and power for wire-

less data in game-theoretic framework relies on two layered games: Game G1 is a

non-cooperative rate control game with pricing (NRGP). It sets the rules for the

users to enable them to reach a unique rate Nash equilibrium (NE) operating point

that is the most socially desired operating point (Pareto efficient)in a distributed

fashion. Game G2, on the other hand, is a non-cooperative power control game with

pricing (NPGP). G2 admits a unique power Nash equilibrium operating point that

supports the resulting rate Nash equilibrium point of game G1 with lowest possible

transmit power level (Pareto efficient).

In this dissertation we also propose two new distributed games: New NPGP game

to optimize the transmit power for wireless data in CDMA uplink. With the rules

of this game, mobile users were able to achieve higher than their minimum required

SIRs (signal-to-interference ratio) with a reasonable small transmit power levels as

compared to other existing NPGP games. New NPGpr game to minimize the fading

induced outage probability in an interference limited wireless channels by maximizing

certainty-equivalent-margin(CEM) under Nakagami and Rayleigh channels. Analysis

of this NPG game shows that under Rayleigh and Nakagami (with fading figure

m = 2) the best policy for all users is to set their transmit power to the minimum

level.

Moreover, we studied the performance of NPG and NPGP games proposed by

Saraydar et. al. in realistic fading wireless channels and we showed how the strat-

egy spaces of the mobile users should be modified to guarantee the existence and

uniqueness of NE operating point.
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Chapter 1

Introduction

The demand for high data rates in modern wireless CDMA communications systems,

which support multirate services, increases the need to efficiently use the available

radio channel bandwidth as the shared resource by the network users. The relation-

ship between the signal-to-interference ratio (SIR) and channel capacity, as shown

by Shannon [25], inspired many centralized schemes of balancing a target SIR for all

users using the communication system [11]-[14].

Because of the difficulty in implementing centralized power control algorithms,

and to avoid the extensive number of control signals that cause delays in the system

operation, a need for distributed algorithms arose. In earlier distributed algorithms

that does not use game-theoretic framework, each user is expected to allocate his own

power iteratively based on local measurements to meet SIR constraints. In general,

these algorithms result in large transmitter power requirements. Such algorithms

may be found in [1]-[4].

To find distributed algorithms that efficiently use the transmit power, game the-

ory was proposed. In a game-theoretic distributed power control algorithm, each

user efficiently chooses his transmit power level in an attempt to optimize a target

1



Chapter 1. Introduction

function. This target function maps the preferences and desires of the user (e.g.,

SIR, FER, data rate, etc.) into the real line. Such distributed algorithms are found

in [5]-[10].

The mathematical theory of games was introduced by John Von Neumann and

Oskar Morgenstern in 1944 [17]. In the late 1970’s game theory became an important

tool in the analyst’s hand whenever he or she faces a situation in which a player’s

decision depends on what the other players did. Game theory has been used by

economists for long time to study how rational individuals interact to reach their

goals.

Our focus in this research will be on non-cooperative games which is a subclass

of game theory. A player in a non-cooperative game, responds individually to the

actions of other players by choosing a strategy from his strategy space in an attempt

to optimize a target function that quantifies its QoS.

The power control problem for wireless data CDMA systems was first addressed

in the game theoretic framework in [5], then in a more detailed manner in [6] and [8].

The reason that game theory attracts researchers in the power control field is that it

offers a good insight into the strategic interactions between rational agents (cellular

users), and generates efficient outcomes according to the players’ preferences [19],

[29].

In the remainder of this Chapter we will introduce some of the vocabulary of

game theory that appear in the dissertation.

1.1 What is a Game ?

A game is a situation where a rational agent’s decision or choice that is selected from

his action profile to maximize his pay off, depends on the actions and decisions of

2



Chapter 1. Introduction

the other rational agents. And all these rational agents have potential conflicting

objectives. Therefore, the elements of a game are :

• A group of rational players

• Strategy spaces from which players choose their actions

• A functional description of player’s preferences

• Strategic interdependence, that is a player’s decision depends on others deci-

sions

In this research, we shall concentrate on one type of games, that is the non-cooperative

game, since it represents the best game theoretic framework for the distributed power

and rate control algorithms.

1.2 Utility Function

A player in a game has objectives and preferences which are combined into what is

called a utility function by the economists. A utility function quantifies the level

of satisfaction a player obtains by adopting a strategy from his action (strategy)

profile. Mathematically, a utility function maps the preferences and goals of a player

into the real numbers. One should note, that the utility function is not unique,

since any function that puts all the elements of the game in a desired order is a

candidate function. For this reason, we may use different utility functions in the

various Chapters of this dissertation.
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Chapter 1. Introduction

1.3 Non-Cooperative Game

A non-cooperative game is a game in which each player decides, based on local

information, his strategy in response to the other players’ decisions. The functional

description of the player’s preferences (utility function) in this kind of game should

be designed such that the best responses of all players converge to a fixed operating

point. This operating point is known as a Nash equilibrium point as introduced by

John Nash in 1951 [43].

A Nash equilibrium point is interpreted as the operating point where no player

can unilaterally improve his utility by changing his strategy (on the individual’s level

it is the best point). Unfortunately, Nash equilibrium point may not be the most

desired social point, that is the point seen by all users. The most desired social

point is called a Pareto optimal point in game theory [29]. The interpretation of

Pareto optimal point is that no player can improve his utility by adopting a different

strategy without harming at least one other player. In other words, a Pareto optimal

point maximizes the aggregate utility of all players in the game.

To improve the performance of a Nash equilibrium point in non-cooperative

games, a modified version of non-cooperative games was suggested by economists.

In this modified version, a pricing technique on the game resources was introduced.

Such modified non-cooperative game is called non-cooperative game with pricing.

Any improvement in the Nash equilibrium point performance of a non-cooperative

game with pricing, is called Pareto dominance with respect to the performance of

Nash equilibrium point of pure non-cooperative game.

4



Chapter 1. Introduction

1.4 Motivation

In wireless data systems that are expected to support multirate services (multimedia

applications, Internet, etc.), users may desire to have a different SIRs at their re-

ceivers coupled with the lowest possible transmit powers. The importance of having

a high SIR in such systems results from the need of a low error rate, a more reliable

system, and high channel capacity, which allow users to transmit at higher bit rates

[11],[15]. It is also important to decrease the transmit power because low-power levels

help alleviate the ever present near-far problem in CDMA systems [16] and increase

the lifetime of the battery in a mobile unit or in a node of adhoc networks.

To simultaneously achieve these two goals many papers have emerged within the

game-theoretic framework [6]-[8], or outside such framework [1]-[4]. Our focus in

this research will be on power-control algorithms and joint rate and power control

algorithms within a game-theoretic framework.

In [8] the authors proposed asynchronous distributed algorithms for uplink CDMA

wireless data in a single cell. The authors did not, however, consider the statisti-

cal variation of the power in a realistic wireless channel, as they only considered

an additive-white-Gaussian noise (AWGN) channel. Wireless channels are known to

exhibit multipath fading, and multipath wireless channels experience two kinds of

fading: Large-scale and small-scale fading. Large-scale fading results if the distance

between the transmitter and the receiver is relatively large and the main contribu-

tion of the received signal comes from the reflections of the transmitted signal. The

large-scale fading parameter is modeled as a log normal random variable, and it is

sometimes called log-normal shadowing. Small-scale fading, on the other hand, oc-

curs in heavily populated urban areas with a short distance between the transmitter

and the receiver, and the main contribution of the received signal comes from the

scattering of the transmitted signal. The small-scale fading parameter is usually

5



Chapter 1. Introduction

modeled as Rayleigh, Rician, or Nakagami random variables.

In this research we examine the algorithms of [8] in a flat-fading channel (see

Appendix B for the description of flat-fading channels) and modify the algorithms

and the strategy spaces to fit the flat-fading channel model.

In [26], the authors proposed a cost (utility) function, which is the difference

between a utility function and a pricing function. The proposed utility function

is proportional to the capacity of the channel, while the pricing function is linear

in the user’s transmit power in market-based pricing scheme. The existence and

uniqueness of a Nash equilibrium point was established in [26], and moreover, the

authors offered different schemes of pricing and two methods of updating the user’s

transmit power. One limitation, however, of the cost function in [26] is that under

market-based pricing, and if the users desire SIRs such that their utility factors are

the same, the transmit power level will increase as the mobile comes closer to the

base station (BS). Another limitation of the proposed algorithms in [26], is that they

result in an unnecessarily high power at equilibrium.

In light of the two limitations mentioned above, we propose a new target (utility

or cost) function that helps the users of CDMA systems, or adhoc networks, to

operate on equilibrium points that support the lowest possible power with guaranteed

different QoSs for the different users.

Each user in the new CDMA wireless generations and adhoc wireless networks has

unique QoS requirements. Therefore, there must be realistic algorithms that take

care of supporting the needs of each user in the network. To adopt more realistic

(multi-objective) algorithms we study a joint power and rate control algorithm for

wireless data in a game-theoretic framework. Invoking the rate in the joint optimiza-

tion problem provides a fairness criterion for the power control algorithm. In other

words, we need to guarantee that the obtained SIRs at equilibrium are enough for

6



Chapter 1. Introduction

all transmitters to establish a communication link with their corresponding receivers

at the required data rate.

1.5 Outline

The dissertation is organized as follows: Chapter 2 is devoted to studying and mod-

ifying the algorithms in [8] in a fast/slow flat-fading wireless channels. Small-scale

fading is studied using three models: Rayleigh, Rician and Nakagami channel models.

In Chapter 3 we apply statistical learning theory to overcome the lack of prior knowl-

edge of the channel model, where we learn the utility function class under a slow

flat-fading channel model. As an example to validate our analysis, we show a suc-

cessful application of distribution-free learning theory when the channel is modeled

as a Rayleigh slow flat-fading channel. Chapter 4 presents a distributed algorithm of

optimizing the outage probability for CDMA system users in an interference-limited

fading wireless channel. In Chapter 5 we propose a new power control algorithm

that results in a low transmit powers compared to existing algorithms. Chapter 6

presents a study of game-theoretic jointly power and rate control for wireless data.

In Chapter 7, we conclude our results in this dissertation and give our thoughts of

possible related future work.

1.6 Contributions

In this section we list our contributions in this dissertation as follows:

• Non-cooperative power control games (NPG) and non-cooperative power con-

trol games with pricing (NPGP) in [8] were extended for a realistic wireless

channels

7
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• A distribution-free learning theory was applied to evaluate the performance of

NPG and NPGP in slow flat-fading wireless channels

• We combined distribution-free learning theory and game theory to study the

performance of NPG and NPGP algorithms for wireless data

• Successful NPG was proposed to minimize the outage probability in an inter-

ference limited multicell CDMA network

• Successful new utility function was proposed for wireless CDMA uplink which

results in a very low power compared to existing ones.

• Introducing the first practical game-theoretic joint power and rate control for

wireless data.
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Chapter 2

Game Theoretic Power Control

Algorithms in Flat-Fading

Channels

We consider in this chapter a game-theoretic power control algorithm for wireless

data in a fading channel. This algorithm depends on an average utility function that

assigns a numerical value to the quality of service (QoS) a user gains by accessing

the channel. We also study the performance of the game-theoretic power algorithms

introduced by [8] for wireless data in the realistic channels: (a1) Fast flat-fading

channel and (a2) Slow flat-fading channel. The fading coefficients under both (a1)

and (a2) are studied for three appropriate small-scale channel models that are used

in CDMA cellular systems: A Rayleigh channel, a Rician channel and a Nakagami

channel. Our results show that in a non-cooperative power control game (NPG)

the best policy for all users in the cell is to target a fixed signal-to-interference and

noise ratio (SIR) similar to what was shown in [8]. The difference, however, is that

the target SIR in fading channels should be much higher than that in a nonfading

channel.
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The remaining of this chapter is organized as follows: In Section 2.1 we present

the utility function and the system model studied in this chapter. In Section 2.2

we evaluate the performance of the system using the channel models mentioned

above. Non-cooperative power control game (NPG) and Non-cooperative power con-

trol game with pricing (NPGP) are discussed in Sections 2.3 and 2.4, respectively.

Then we establish the existence and uniqueness of Nash equilibrium points for NPG

and NPGP under the assumed channel models in Section 2.5. Simulation results are

outlined in Section 2.6. Finally, we summarize our results in Section 2.7.

2.1 Utility Function and System Model

We use the concept of a utility function to quantify the level of satisfaction a player

can get by choosing an action from its strategy profile given the other players’ actions,

that is, a utility function maps the player’s preferences into the real line. A formal

definition of utility functions is available from [29].

Definition 2.1.1. A function u that assigns a numerical value to the elements of

the action set A, u : A → R is a utility function if for all a, b ∈ A, action a is at

least as preferred compared to b if u(a) ≥ u(b).

In a cellular CDMA system there are a number of users sharing a spectrum and

the air interface as a common radio resource. Henceforth, each user’s transmission

adds to the interference of all users at the receiver in the base station (BS). Each

user desires to achieve a high quality of reception at the BS, i.e., a high SIR, by using

the minimum possible amount of power to extend the battery’s life.

The goal of each user to have a high SIR at the BS produces conflicting objec-

tives that make the framework of game theory suitable for studying and solving the

problem.
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In this chapter we consider a single-cell DS-CDMA (direct sequence code division

multiple access) system with N users, where each user transmits frames (packets) of

M bits with L information bits (M−L are parity bits) [8]. The rate of transmission is

R bits/sec for all users. Let Pc represents the average probability of correct reception

of all bits in the frame at the BS, in other words, Pc refers the average frame (packet)

correct reception rate, and p represents the average transmit power level. As we

know, Pc depends on the SIR, the channel characteristics, the modulation format,

the channel coding, etc.

A suitable utility function for a CDMA system is given by (see [8] and references

therein):

u =
LR

M p
Pc (2.1.1)

where u thus represents the number of information bits received successfully at the

BS per joule of expanded energy. With the assumption of no error correction, the

random packet correct reception rate P̃c, where Pc = E[P̃c], is then given as P̃c =
∏M

l=1(1 − P̃e(l)), where P̃e(l) is the random bit error rate (BER) of the lth bit at a

given SIR γi (c. f. (2.2.11), (2.2.27) and (2.2.45)).

We are assuming that all users in a cell are using the same modulation scheme,

namely non-coherent binary frequency shift Keying (BFSK), and that they are trans-

mitting at the same rate R.

2.2 Evaluation of The Performance

In this Section we find closed-form formulas of the average BERs and the average

utility functions under the six assumed channel models. We then use these formulas

to study the existence and uniqueness of Nash equilibrium points in Section 2.5.
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The SIR γi at the receiver for the ith user is given by [15]:

γi =
W

R

pi hi α
2
i∑N

k 6=i pk hk α2
k + σ2

, (2.2.1)

where αi is the path fading coefficient between ith user and the BS and it is a random

variable that changes independently from bit to bit in a fast flat-fading channel (a1).

On the other hand, it changes independently from packet/frame to packet/frame in

a slow flat-fading channel (a2). In both cases: (a1) and (a2), the fading coefficients

among the different users are assumed to be independent. The parameter W is the

spread spectrum bandwidth, pk is the transmitted power of the kth user, hk is the

path gain between the BS and the kth user, and σ2 is the variance of the AWGN

(additive-white-Gaussian-noise) that represents the thermal noise in the receiver. For

simplicity let us express the interference from all other users (i.e., all but user i) as

x−i, where

x−i =
N∑

k 6=i

pk hk α2
k (2.2.2)

therefore (2.2.1) may be written as:

γi =
W

R

pi hi

x−i + σ2
α2

i

:= γ
′
iα

2
i (2.2.3)

For a given αi and x−i, the conditioned BER, P̃ (e|γi) = P̃ (e|γi, x−i) (the dependence

on x−i comes through γi), of the ith user using non coherent BFSK is given by [15]:

P̃ (e|γi, x−i) =
1

2
e−

γi
2 (2.2.4)

The average BER and average utility functions for this modulation scheme are eval-

uated in this chapter for the following channel models: Rayleigh fast/slow flat-fading

channel, Rician fast/slow flat-fading channel and Nakagami fast/slow flat-fading

channel.
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2.2.1 Rayleigh Flat-Fading Channel

In this case αi is modeled as a Rayleigh random variable with a probability density

function (PDF) given by (see Appendix B for the description of channel models):

fαi(ω) =
ω

σ2
r

e−(1/2σ2
r)ω2

, i = 1, 2, · · · , N (2.2.5)

In all following calculations, and as a consequence of the multiplicative channel model

of small and large scale fading, it is assumed that σ2
r = 1/2. Using (2.2.3) and (2.2.5)

the PDF of γi for a given x−i is defined as:

fγi|x−i(ω) =
1

γ
′
i

e−ω/γ
′
i (2.2.6)

Rayleigh Fast Flat-Fading Channel

For the lth bit in the frame, we can rewrite the SIR (2.2.3) and the interference

(2.2.2) for the ith user as follows:

γi(l) =
W

R

pi hi α
2
i (l)

x−i(l) + σ2
(2.2.7)

x−i(l) =
N∑

k 6=i

pk hk α2
k(l) (2.2.8)

Assuming that both {αi(l)}M
l=1 and {x−i(l)}M

l=1 are iid (identically independent dis-

tributed) random variables, and of course αi(l) and x−i(l) are independent random

variables. Henceforth, the averaged correct reception of all frame (packet) bits at

the BS Pc is given as (1−Pe)
M , where Pe is averaged BER for each bit in the frame,

that is Pe = E[P̃e]. We will calculate the averaged Pe next.

We can find the conditional error probability P̃ (e|x−i) by taking the average of

13
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(2.2.4) with respect to fγi|x−i(ω):

P̃ (e|x−i) = E
[
P̃ (e|γi, x−i)

]

=

∫ ∞

0

P̃ (e|ω, x−i) fγi|x−i(ω)dω

=
1

2γ
′
i

∫ ∞

0

e
−(

2+γ
′
i

2γ
′
i

)ω

dω

=
1

2 + γ
′
i

(2.2.9)

Notice that we dropped the bit index l because the average BER does not depend

on l. For large SIR, (2.2.9) behaves as:

P̃ (e|x−i) ≈ 1

γ
′
i

=
x−i + σ2

W
R

pi hi

(2.2.10)

Now, we can find the averaged BER Pe by taking the expectation of (2.2.10):

Pe = E
[
P̃ (e|x−i)

]
=

E[x−i] + σ2

W
R

pi hi

=
1

γi

(2.2.11)

where γi is the ratio of the mean of the received power from user i to the mean of

the interference at the receiver as given by:

γi =
W

R

pi hi∑N
k 6=i pk hk + σ2

(2.2.12)

Therefore, the average utility function of the ith user is given by:

ui =
L R

M pi

(1− 1

γi

)M (2.2.13)

Rayleigh Slow Flat-Fading Channel

In a slow flat-fading channel model, αi of the ith user is assumed to change indepen-

dently for each packet/frame, that is αi(1) = αi(2), · · · , αi(M). Also, it is assumed
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that αi and αk are independent for all i 6= k. The averaged frame correct reception

Pc is therefore given as the expectation of (1 − P̃ (e|γi, x−i))
M with respect to the

random variables γi and x−i. This suggests rewriting (2.1.1) as:

ui(p|γi, x−i) =
L R

M pi

(1− e−γi/2)M (2.2.14)

Where p = (p1, p2, · · · , pN) is the vector of transmit powers of all users. Note

that P̃e was replaced by 2P̃e to give the utility function ui(p|γi, x−i) this property:

ui(p|γi, x−i) → 0 as pi → 0 and ui(p|γi, x−i) → 0 as pi → ∞ [8]. One can evaluate

ui(p|x−i) as follows:

ui(p|x−i) =

∫ ∞

0

ui(p|ω, x−i) fγi|x−i(ω) dω

=

∫ ∞

0

L R

M pi

(1− e−ω/2)M 1

γ
′
i

e−ω/γ
′
i dω

=
L R

M pi γ
′
i

M∑

k=0

(−1)k

(
M

k

) ∫ ∞

0

e
−( k

2
+ 1

γ
′
i

) ω

dω

=
L R

M pi

M∑

k=0

(
M

k

)
2 (−1)k

k γ
′
i + 2

(2.2.15)

For γ
′
i À 1, (2.2.15) can be approximated by:

u(p|x−i)≈ L R

M pi

(
1 +

1

γ
′
i

M∑

k=1

(
M

k

)
2 (−1)k

k

)
(2.2.16)
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Averaging (2.2.16) with respect to x−i we obtain the average utility function for high

SIR:

ui = E [ui(p|x−i)]

≈ L R

M pi

(
1 +

E[x−i] + σ2

W
R

pi hi

M∑

k=1

(
M

k

)
2 (−1)k

k

)

=
L R

M pi

(
1 +

1

γi

M∑

k=1

(
M

k

)
2 (−1)k

k

)
(2.2.17)

ui ≈ L R

M pi

(
1− β

γi

)

where β = −∑M
k=1

(
M
k

) 2 (−1)k

k
> 0.

2.2.2 Rician Flat-Fading Channel

In this case, αi is modeled as a Rician random variable with PDF given by (see

Appendix B):

fαi(ω) =
ω

σ2
r

e
(−ω2+s2

2σ2
r

)
I0(

ω s

σ2
r

) (2.2.18)

Similarly to the Rayleigh case, we need to find the PDF of γi (see (2.2.3)) for fixed

x−i (see (2.2.2)):

fγi|x−i(ω) =
e−s2

γ
′
i

e−ω/γ
′
i I0(2s

√
ω

γ
′
i

) (2.2.19)

where we assumed that σ2
r = 1/2 as we mentioned earlier.
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Rician Fast Flat-Fading Channel

Similar to the Rayleigh fast flat-fading case, the averaged frame correct reception is

given by Pc = (1− Pe)
M , where Pe can be found as follows:

P̃ (e|x−i) =

∫ ∞

0

P̃ (e|ω, x−i)f
γi|x−i(ω)dω

=
e−s2

2γ
′
i

∫ ∞

0

e
−ω( 1

2
+ 1

γ
′
i

)

I0

(
2s

√
ω

γ
′
i

)
dω (2.2.20)

using the fact that I0(ζ) can be written as:

I0(ζ) =
∞∑

n=0

( ζ
2
)2n

(n!)2
(2.2.21)

and substituting (2.2.21) in (2.2.20), and after few mathematical manipulations we

obtain:

P̃ (e|x−i) =
1

2 + γ
′
i

e
s2(−1+ 2

2+γ
′
i

)

(2.2.22)

At high SIR (γ
′
i À 1), P̃ (e|x−i) may be approximated as:

P̃ (e|x−i) ≈ 1

γ
′
i

e−s2

=
x−i + σ2

W
R

pi hi

e−s2

(2.2.23)

In order to find the final average error rate Pe, we need to find µx−i
the mean of x−i.

µx−i
= E[x−i] = E

[
N∑

k 6=i

α2
kpk hk

]

=
N∑

k 6=i

pk hk E[α2
k] = (1 + s2)

N∑

k 6=i

pk hk (2.2.24)

where we used the fact that [15]

E[αn
k ] = (2σ2

r)
n/2 e

(− s2

2σ2
r
) Γ((2 + n)/2)

Γ(n/2)
1F1[(2 + n)/2, n/2; s2/2σ2

r ] (2.2.25)
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where Γ(.) is the Gamma function, and 1F1[a, b; y] is the confluent hypergeometric

function [20]. By substituting for σ2
r = 1/2 and n = 2 in (2.2.25) we obtain the

result in (2.2.24). Note that we have used the following special case of the confluent

hypergeometric function 1F1[a, b; y] in calculating (2.2.24):

1F1[2, 1; s2] = (1 + s2) es2

(2.2.26)

Finally, to obtain Pe we replace x−i in (2.2.23) by µx−i
, that is

Pe ≈ e−s2
(µx−i

+ σ2)
W
R

hi pi

=
1

γs
i

(2.2.27)

where

γs
i =

W
R

hi pi es2

(1 + s2)
∑N

k 6=i hk pk + σ2
(2.2.28)

Then, the utility function of the ith user is given by

ui =
L R

M pi

(1− 1

γs
i

)M (2.2.29)

Rician Slow Flat-Fading Channel

Following the same argument of the Rayleigh slow flat-fading case, we find the average

Pc or equivalently the average utility function of the ith user as follows.

ui(p|x−i) =

∫ ∞

0

ui(p|ω, x−i)f
γi|x−i(ω)dω

=

∫ ∞

0

L R

M pi

(1− e−ω/2)M e−s2

γ
′
i

e−ω/γ
′
i I0(2s

√
ω

γ
′
i

) dω (2.2.30)

By substituting (2.2.21), factorizing (1 − e−γi/2)M , and after few mathematical ma-

nipulations we obtain:

ui(p|x−i) =
LR

M pi

M∑

k=0

(−1)k

(
M

k

)
2

k γ
′
i + 2

e
s2(−1+ 2

k γ
′
i
+2

)

(2.2.31)
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For large SIR, γ
′
i À 1 the above equation can be approximated by:

ui(p|x−i) ≈ LR

M pi

[
1 +

e−s2

γ
′
i

M∑

k=1

(−1)k

(
M

k

)
2

k

]
(2.2.32)

Averaging (2.2.32) with respect to x−i we obtain the final approximate averaged

utility function of the ith user in the following form:

ui ≈ LR

M pi

[
1 +

1

γs
i

M∑

k=1

(−1)k

(
M

k

)
2

k

]
(2.2.33)

ui ≈ L R

M pi

[
1− β

γs
i

]

with γs
i given by (2.2.28).

2.2.3 Nakagami Flat-Fading Channel

In this case αi is modeled as a Nakagami random variable with PDF given by (see

Appendix B) [15]:

fαi(ω) =
2mm

Γ(m)Ωm
ω2m−1 e(−m

Ω
)ω2

, (2.2.34)

Note that by setting m = 1 the Nakagami PDF reduces to the Rayleigh PDF. In the

following calculations it is assumed that Ω = 1. Then the PDF of γi for fixed x−i is

given by:

fγi|x−i(ω) =
1

Γ(m)

(
m

γ
′
i

)m

ωm−1 e
−( m

γ
′
i

) ω

(2.2.35)
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Nakagami Fast Flat-Fading Channel

Here, we find the conditioned error probability P̃ (e|x−i) by taking the average of

(2.2.4) with respect to fγi|x−i(ω):

P̃ (e|x−i) =

∫ ∞

0

P̃ (e|ω, x−i) fγi|x−i(ω)dω

=
1

2Γ(m)

(
m

γ
′
i

)m ∫ ∞

0

ωm−1 e
−(

γ
′
i+2m

2γ
′
i

) ω

dω

=
1

2

(
2m

2m + γ
′
i

)m

(2.2.36)

For fixed m and γ
′
i À 1, (2.2.36) can be rewritten as:

P̃ (e|x−i) ≈ 1

2

(
2m

γ
′
i

)m

(2.2.37)

To find the average Pe, we need to find the mean of (x−i + σ2)m. Here, xi is the sum

of independent random variables, each distributed according to a Gamma density

function. This makes the evaluation of (x−i + σ2)m a tedious mathematical job. In

such a case it is easier to find an approximate density function of xi. To do this, we

recall Esseen’s inequality which estimates the deviation of the exact PDF of a sum

of independent variables from the normal PDF.

Theorem 2.2.1. [21] let Y1, · · · , YN be independent random variables with E[Yj] = 0,

E[|Yj|3] < ∞ (j = 1, · · · , N). Let

σ2
j := E[Y 2

j ], BN :=
N∑

j=1

σ2
j , LN := B

−3/2
N

N∑
j=1

E[|Yj|3]

Let ψK(z) be the c.f. (cumulative distribution ) of the random variable B
−1/2
N

∑N
j=1 Yj.

Then

|ψN(z)− e−z2/2| ≤ 16 LN |z|3 e−z2/3 (2.2.38)
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Proof : See [21].

Let us define Ỹk := pkhkα
2
k and Yk := Ỹk − pkhk. By simple calculations we find

that Ỹk, (k = 1, · · · , N) are Gamma distributed random variables, such that

f Ỹk(ω) =
(m/pkhk)

m

Γ(m)
ωm−1 e−(m/pkhk)ω

and E[Ỹk] = pkhk, which means that Yk, (k = 1, · · · , N) are zero mean random

variables. The values of σ2
k = E[Y 2

k ] are (pkhk)
2/m, ∀k = 1, · · · , N , and therefore,

BN = 1
m

∑N
k=1(pkhk)

2. It is fairly simple to find out that the third moment E[|Yk|3] =

E[Y 3
k ] = 2(pkhk)3

m2 (Yk ≥ 0). Then,

LN =
2
∑N

k=1(pkhk)
3

√
m (

∑N
k=1(pkhk)2)3/2

.

For large N , LN has a very small value, i.e., LN << 1. By examining (2.2.38) for

small values of z, LN takes care of righthand side of the inequality, making it very

small. For large values of z, on the other hand, the exponential term e−z2/3 will

decrease the bound and make it approach zero. In conclusion, we can approximate

x−i as a Gaussian random variable with mean ζx−i
and variance σ2

x−i
as given by:

ζx−i
= E[x−i] = E

[
N∑

k 6=i

α2
kpk hk

]

=
N∑

k 6=i

pk hk E[α2
k]

=
N∑

k 6=i

pk hk (2.2.39)
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and

σ2
x−i

= E[x2
−i]− ζ2

x−i

= E

[
N∑

l 6=i

N∑

k 6=i

plhlpk hk α2
l α2

k

]
− ζ2

x−i

=
1

m

N∑

k 6=i

(pk hk)
2 (2.2.40)

where (2.2.40) was obtained using the fact that αk and αl are statistically independent

for all k 6= l. Thus, we can write π(x−i), the PDF of x−i, as follows:

π(x−i) =
1√

2πσx−i

e
− (x−i−ζx−i )2

2σ2
x−i (2.2.41)

where x−i ≥ 0. Averaging (2.2.37) over π(x−i) we obtain the average error probability

Pe for high SIR as follows:

Pe ≈ 1

2

(
2m

W
R

pi hi

)m ∫ ∞

0

(
x−i + σ2

)m 1√
2πσx−i

e
− (x−i−ζx−i )2

2σ2
x−i dx−i

=
1

2

(
2m

W
R

pi hi

)m ∫ ∞

σ2

ym 1√
2πσx−i

e
− (y−(ζx−i+σ2))2

2σ2
x−i dy

≈ 1

2

(
2m

W
R

pi hi

)m ∫ ∞

0

ym 1√
2πσx−i

e
− (y−(ζx−i+σ2))2

2σ2
x−i dy (2.2.42)

where we used the change of variable y = x−i + σ2 and the last approximation in

(2.2.42) was based on the fact that σ2 ¿ 1. By examining (2.2.42) one can see that

it represents the mth moment of a random variable normally distributed with mean

ζy = ζx−i
+ σ2

and variance

σ2
y = σ2

x−i
.
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Therefore, the average Pe is given by:

Pe =
1

2

(
2m

W
R

pi hi

)m

E [ym]

=
1

2

(
2m

W
R

pi hi

)m

E [((y − ζy) + ζy)
m]

=
1

2

(
2m

W
R

pi hi

)m m∑

k=0

(
m

k

)
ζm−k
y Ck

=
1

2

(
2 mζy

W
R

pi hi

)m m∑

k=0

(
m

k

)
Ck

µk
y

= 2m−1

(
m

γi

)m m∑

k=0

(
m

k

)
Ck

ζk
y

(2.2.43)

where γi is given in (2.2.12), and Ck is the kth central moment given by [15]:

Ck =





1.3 · · · (k − 1) σk
x−i

k even

0 k odd

By splitting up the summation in (2.2.43), we obtain:

m∑

l=0

(
m

l

)
Cl

ζ l
y

= 1 +

(
m

2

)
σ2

x−i

(σ2 +
∑N

k 6=i pk hk)2
+ · · ·

+

(
m

m′

)
1.3 · · · (m′ − 1)σm

′−1
x−i

(σ2 +
∑N

k 6=i pk hk)m′ (2.2.44)

where m
′
= m if m is even and m

′
= m − 1 if m is odd. Since σ2

x (see (2.2.40)) is

very small compared to ζx−i
(see (2.2.39)), we can approximate the summation by

its leading term, namely 1. Therefore the average Pe at high SIR behaves as:

Pe ≈ 2m−1

(
m

γi

)m

. (2.2.45)

Therefore the utility function of the ith user is given as:

ui =
L R

M pi

(
1− 2m−1

(
m

γi

)m)M

. (2.2.46)
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Notice that if we set m = 1, we obtain the same performance as in the Rayleigh slow

flat-fading case.

Nakagami Slow Flat-Fading Channel

As described earlier, ui(p|x−i) can be determined as follows:

ui(p|x−i) =

∫ ∞

0

ui(p|ω, x−i)f
γi|x−i(ω)dω

=

∫ ∞

0

L R

M pi

(1− e−ω/2)M 1

Γ(m)

(
m

γ
′
i

)m

ωm−1 e
−( m

γ
′
i

) ω

dω(2.2.47)

By factoring (1− e−γi/2)M and using the identity
∫∞
0

yne−a y dy = Γ(n+1)
an+1 we obtain:

ui(p|x−i) =
LR

M pi

M∑

k=0

(−1)k

(
M

k

)(
2 m

k γ
′
i + 2 m

)m

(2.2.48)

For fixed m and high SIR, γ
′
i À 1, (2.2.48) may be approximated as:

ui(p|x−i) ≈ LR

M pi

[
1 + (

1

γ
′
i

)m

M∑

k=1

(−1)k

(
M

k

)(
2 m

k

)m
]

. (2.2.49)

Averaging (2.2.49) with respect to the distribution of x−i and using the same ar-

gument as in (2.2.42), (2.2.43) and (2.2.44), we end up with the final approximate

averaged utility function given by:

ui ≈ LR

M pi

[
1 + (

1

γi

)m

M∑

k=1

(−1)k

(
M

k

)(
2 m

k

)m
]

ui ≈ L R

M pi

[
1− ξ (

1

γi

)m

]
(2.2.50)

where ξ = −∑M
k=1(−1)k

(
M
k

) (
2 m
k

)m
> 0.
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2.3 Non-Cooperative Power Control Game (NPG)

Let N = {1, 2, · · · , N} represent the index set of the users currently served in the

cell and {Pj}j∈N represents the set of strategy spaces of all users in the cell. Let

G = [N , {Pj}, {uj(.)}] denote a noncooperative game, where each user, basing on

local information, chooses its power level from a convex set Pj = [pj−min, pj−max]

and where pj−min and pj−max are respectively the minimum and the maximum power

levels in the jth user strategy space. With the assumption that the power vector

p = [p1, p2, · · · , pN ] is the result of NPG, the utility of user j is given as [8]:

uj(p) = uj(pj, p−j) (2.3.1)

where pj is the power transmitted by user j, and p−j is the vector of powers trans-

mitted by all other users. The right side of (2.3.1) emphasizes the fact that user j

can just control his own power. We can rewrite (2.1.1) for user j as:

uj(pj, p−j) =
LR

M pj

Pc(γj) (2.3.2)

The formal expression for the NPG is given in [8] as:

G : max
pj∈Pj

uj(pj, p−j), for all j ∈ N (2.3.3)

Where uj(pj, p−j) is a continuous function. This game will produce a sequence of

power vectors that converges to a point where all users are satisfied with the utility

level they obtained. This operating point is called a Nash equilibrium operating

point of NPG. In the next subsection, we define the Nash equilibrium point and

describe its physical interpretation.

2.3.1 Nash Equilibrium (NE) in NPG

The resulting power vector of NPG is called a Nash equilibrium power vector.
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Definition 2.3.1. [8] A power vector p = [p1, p2, · · · , pN ] is a Nash equilibrium of

the NPG defined above if for every j ∈ N , uj(pj, p−j) ≥ uj(p
′
j, p−j) for all p

′
j ∈ Pj.

One interpretation of NE point is that no user has incentive to modify its power

level unilaterally, in other words, NE is the best operating point from the user per-

spective. If we multiply the power vector p by a constant 0 < λ < 1 we may obtain

higher utilities for all users, as was the case in nonfading channel. This means that

the Nash equilibrium is not Pareto efficient, that is, the resulting p is not the most

desired social operating point. In order to reach a Pareto dominant Nash point, a

pricing technique was introduced in [8]. We discus this modified NPG game in the

following Section.

2.4 Non-Cooperative Power Control Game with

Pricing (NPGP)

In NPGP each user maximizes the difference between his/her own utility function

and a pricing function. This approach aims to allow more efficient use of the system

resources within the cell, where each user is made aware of the cost for the aggressive

use of resources and of the harm done to other users in the cell. The pricing function

discussed here is a linear pricing function, i.e., it is a pricing factor multiplied by

the transmit power. The base station broadcasts the pricing factor to help the users

currently in the cell reach a Nash equilibrium that improves the aggregate utilities

of the users at lower equilibrium power levels than those of the pure NPG. In other

words, the resulting power vector of NPGP is Pareto dominant compared with the

resulting power vector of NPG, but is still not Pareto optimal in the sense that

we can multiply the resulting power vector of NPGP by a constant 0 < λ < 1 to

obtain higher utilities for all users. Let Gc = [N , {Pj}, {uc
j(.)}] represent an N -
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player noncooperative power control game with pricing (NPGP), where the utilities

are given by [8]:

uc
j(p) = uj(p)− cpj for all j ∈ N (2.4.1)

where c is a positive number, chosen to obtain the best possible performance im-

provement. Therefore, NPGP with a linear pricing function may be expressed as:

Gc : max
pj∈Pj

{uj(p)− c pj} for all j ∈ N (2.4.2)

2.5 Existence and Uniqueness of NE Point

In this Section we establish the existence and uniqueness of Nash equilibrium points

in both NPG and NPGP games under the assumed channel models. We also show

that the strategy space defined in [8] should be modified in order to guarantee the

existence of Nash equilibrium points under the considered channel models. Let Ii

and Is
i be the effective interference that user i needs to cope with in both Rayleigh

and Nakagami channels and Rician channels, respectively. Let pmax
i be the maxi-

mizing transmit power level. In the following Lemmas we establish the existence

and uniqueness of Nash equilibrium point of NPG in the channel models mentioned

above.

Lemma 2.5.1. a) In NPG under Rayleigh fast flat-fading channel with the av-

erage utility function ui given in (2.2.13), the existence of a Nash equilib-

rium point is guaranteed if the strategy space is modified to Pi = {pi : γi ∈(
γi−min, γi−max

)}, where

γi−min = M + 1−
√

M(M + 1)

2

and

γi−max = M + 1 +

√
M(M + 1)

2
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The best response vector of all users r1(p) =(r1
1(p), r1

2(p), · · · , r1
N(p)), where

r1
i (p) = min(pmax

i , pi−max),

and

pmax
i = (M + 1) Ii, Ii =

R (
∑N

k 6=i hkpk + σ2)

W hi

(2.5.1)

is a standard vector function, therefore by [2], the Nash equilibrium point is

unique.

b) Under Rayleigh slow flat-fading channel with the average utility function ui

given in (2.2.17), the existence of a Nash equilibrium point is guaranteed if the

strategy space is modified to Pi = {pi : γi ∈ (1, 3 β)}. The best response vector

of all users r2(p) =(r2
1(p), r2

2(p), · · · , r2
N(p)), where

r2
i (p) = min(pmax

i , pi−max),

and

pmax
i = 2 β Ii, (2.5.2)

is a standard vector function, therefore by [2], the Nash equilibrium point is

unique.

Proof : a) In this and following proofs we take advantage of the classical results

of game theory, where the existence of a Nash equilibrium point is guaranteed

if the utility function is quasiconcave (see Appendix A for the definition of

quasiconcave and quasiconvex notations) and optimized on a convex strategy

space.

Thus, to prove the existence of a Nash equilibrium point, it is enough to prove

that the utility function ui is concave (a concave function on some set is also
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a quasiconcave function on the same set) in pi given p−i on the interval Pi =

{pi : γi ∈
(
γi−min, γi−max

)}. Let us find the first- and second-order derivatives

with respect to pi as follows:

∂ui

∂pi

=
LR

M p2
i

(
M + 1

γi

− 1) (1− 1

γi

)M−1, (2.5.3)

then

∂2ui

∂p2
i

=
L R (1− 1

γi
)M [M2 + M(3− 4 γi) + 2(−1 + γi)

2]

M p3
i (−1 + γi)2

(2.5.4)

Therefore,

∂2ui

∂p2
i

< 0,∀ γi ∈
(
γi−min, γi−max

)
(2.5.5)

where

γi−min = M + 1−
√

M(M + 1)

2

and

γi−max = M + 1 +

√
M(M + 1)

2

This implies that the strategy space should be modified to:

Pi = {pi : γi ∈
(
γi−min, γi−max

)}

to guarantee the concavity of the utility function, and therefore guarantee the

existence of Nash equilibrium point.

To prove the uniqueness of a Nash equilibrium point we need to prove that

r1(p) is a standard function. By setting (2.5.3) to zero we find that the maxi-

mizing transmit power level that lies in the convex strategy space Pi is given by

(2.5.1). See Section A.2 for the definition of a standard vector function before

proceeding in the proof.

To prove that r1(p) is a standard vector function we then need to check the

three conditions in the definition A.2.1.
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The proof of positivity is trivial, since Pi ⊂ R+ and r1
i (p−i) ∈ Pi, ∀ i ∈ N ,

where r1
i (p−i) = r1

i (p). Also, it is obvious that pmax
i (p) > pmax

i (p̂) for all i if

p > p̂ by examining (2.5.1), henceforth the monotonicity of r1(p) is satisfied.

To prove scalability, it is enough to prove that pmax
i (p−i) is a scalable function.

Let us rewrite equation (2.5.1) as follows:

pmax
i (p−i) =

R (M + 1) (
∑N

k 6=i hkpk + σ2)

W hi

(2.5.6)

then

pmax
i (δp−i) =

R (M + 1) ( δ
∑N

k 6=i hkpk + σ2)

W hi

, (2.5.7)

while

δpmax
i (p−i) =

δ R (M + 1) (
∑N

k 6=i hkpk + σ2)

W hi

(2.5.8)

From (2.5.7) and (2.5.8), it is clear that δpmax
i (p−i) > pmax

i (δ p−i), therefore

r1(p) is a standard vector function, and by this we conclude the proof of unique-

ness of the Nash equilibrium point.

In the following lemmas we omit the proof of existence and/or uniqueness as

they are similar to those of lemma 2.5.1.

b) We need to find the first- and second-order derivatives of ui with respect to pi:

∂ui

∂pi

=
LR

M p2
i

(
2 β

γi

− 1

)
, (2.5.9)

then,

∂2ui

∂p2
i

=
2 LR

M p3
i

(
1− 3 β

γi

)
, (2.5.10)

which means that

∂2ui

∂p2
i

< 0,∀ γi ∈ (1, 3 β) (2.5.11)
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so the strategy space should have the following form:

Pi = {pi : γi ∈ (1, 3 β)}

to guarantee the concavity of ui and then to guarantee the existence of Nash

point.

Lemma 2.5.2. a) In NPG under Rician fast flat-fading channel with the average

utility function ui given in (2.2.29), the existence of a Nash equilibrium point is

guaranteed if the strategy space is modified to Pi = {pi : γs
i ∈

(
γs

i−min, γ
s
i−max

)},
where γs

i−min = M + 1−
√

M(M+1)
2

and γs
i−max = M + 1 +

√
M(M+1)

2
. The best

response vector of all users r3(p) =(r3
1(p), r3

2(p), · · · , r3
N(p)), where

r3
i (p) = min(pmax

i , pi−max),

and

pmax
i = (M + 1) Is

i , (2.5.12)

Is
i =

R ( (1 + s2)
∑N

k 6=i hkpk + σ2)

W hi es2

is a standard vector function, therefore by [2], the Nash equilibrium point is

unique.

b) Under Rician slow flat-fading channel with the average utility function ui given

in (2.2.33), the existence of a Nash equilibrium point is guaranteed if the strat-

egy space is modified to Pi = {pi : γs
i ∈ (1, 3 β)}. The best response vector of

all users r4(p) =(r4
1(p), r4

2(p), · · · , r4
N(p)), where

r4
i (p) = min(pmax

i , pi−max),

and

pmax
i = 2 β Is

i , (2.5.13)
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is a standard vector function, therefore by [2], the Nash equilibrium point is

unique.

Lemma 2.5.3. a) In NPG under Nakagami fast flat-fading channel with the av-

erage utility function ui given in (2.2.46) with m = 2, the existence of a Nash

equilibrium point is guaranteed if the strategy space is modified to Pi = {pi :

γi ∈
(
γi−min, γi−max

)}, where

γi−min = 2

√
2 + 5M −

√
M (8 + 17M)

and

γi−max = 2

√
2 + 5M +

√
M (8 + 17M)

The best response vector of all users r5(p) =(r5
1(p), r5

2(p), · · · , r5
N(p)), where

r5
i (p) = min(pmax

i , pi−max),

and

pmax
i =

√
8 + 16M Ii, (2.5.14)

is a standard vector function, therefore by [2], the Nash equilibrium point is

unique.

b) Under Nakagami slow flat-fading channel with the average utility function ui

given in (2.2.50), a Nash equilibrium point is guaranteed if the strategy space

is modified to Pi = {pi : γi ∈
(
1,
√

6 ξ
)}. The best response vector of all users

r6(p) = (r6
1(p), r6

2(p), · · · , r6
N(p)), where

r6
i (p) = min(pmax

i , pi−max),

and

pmax
i =

√
3ζ Ii, (2.5.15)

is a standard vector function, therefore by [2], the Nash equilibrium point is

unique.
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Proof : a) We find the first- and second-order derivatives of ui in (2.2.46) after

setting m = 2 with respect to pi as follows:

∂ui

∂pi

=
LR

M p2
i

(
16M + 8

γ2
i

− 1) (1− 8

γ2
i

)M−1, (2.5.16)

then

∂2ui

∂p2
i

=
1

M p3
i (−8 + γ2

i )
2

(2 LR (1− 2

γ2
i

)M [64(1+M)(2M +1)−8(2+5M) γ2
i +γ4

i ])

(2.5.17)

which implies that

∂2ui

∂p2
i

< 0,∀ γi ∈
(
γi−min, γi−max

)
, (2.5.18)

where

γi−min =

√
2 + 5M −

√
M (8 + 17M)

and

γi−max =

√
2 + 5M +

√
M (8 + 17M)

Henceforth, the strategy space should have the following form:

Pi = {pi : γi ∈
(
γi−min, γi−max

)}

to guarantee that ui is strict concave, and thus the existence of a Nash equi-

librium.

b) The first- and second-order derivatives of ui after setting m = 2 with respect

to pi are given by:

∂ui

∂pi

=
LR

M p2
i

(
3 ξ

γ2
i

− 1

)
, (2.5.19)

and

∂2ui

∂p2
i

=
2 LR

M p3
i

(
1− 6 ξ

γ2
i

)
, (2.5.20)
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therefore,

∂2ui

∂p2
i

< 0,∀ γi ∈
(
1,

√
6 ξ

)
(2.5.21)

As a result, the strategy space should be modified to:

Pi = {pi : γi ∈
(
1,

√
6 ξ

)
} (2.5.22)

to guarantee the strict concavity of ui and then the existence of a Nash equi-

librium point is guaranteed.

Now, we turn to the existence and uniqueness of Nash equilibrium point of NPGP

under the assumed channel models.

Lemma 2.5.4. a) In NPGP under Rayleigh fast flat-fading channel model with

utility function uc
i = ui − c pi, where ui is given in (2.2.13), a Nash equilib-

rium point existence is guaranteed if the strategy space is: Pi = {pi : γi ∈(
γi−min, γi−max

)}, where

γi−min = M + 1−
√

M(M + 1)

2

and

γi−max = M + 1

The best response vector r7(p) =(r7
1(p),r7

2(p),· · · ,r7
N(p)) of all users, where

r7
i (p) = min(pmax

i , pi−max),

and

pmax
i ≈ −6 21/3 a + 22/3(27 bi +

√
108 a3 + 729 b2

i )2/3

6 (27 bi +
√

108 a3 + 729 b2
i )1/3

a =
LR

M c
, bi =

(M + 1) LR Ii

M c
(2.5.23)
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is a standard vector function, therefore by [2], the Nash equilibrium point is

unique.

b) Under Rayleigh slow flat-fading channel model with utility function uc
i = ui −

c pi, where ui is given in (2.2.17), a Nash equilibrium point existence is guar-

anteed if the strategy space is the following: Pi = {pi : γi ∈ (1, 2 β)}. The best

response vector of all users r8(p) =(r8
1(p),r8

2(p),· · · ,r8
N(p)), where

r8
i (p) = min(pmax

i , pi−max),

and

pmax
i =

−6 21/3 a + 22/3(27 bi +
√

108 a3 + 729 b2
i )2/3

6 (27 bi +
√

108 a3 + 729 b2
i )1/3

a =
LR

M c
, bi =

2 LR β Ii

M c
(2.5.24)

is a standard vector function, therefore by [2], the Nash equilibrium point is

unique. Note that we have equality in (2.5.24) because there was no approxi-

mation in obtaining pmax
i .

Proof : a) Let us find the maximizing power pmax
i in terms of the SIR γi as

follows:

∂uc
i

∂pi

=
LR

M p2
i

(
M + 1

γi

− 1) (1− 1

γi

)M−1 − c = 0, (2.5.25)

then

pmax
i =

√
LR

M c
(
M + 1

γi

− 1) (1− 1

γi

)M−1 (2.5.26)

For pmax
i to be feasible, i.e., real and positive, we need to enforce the following

condition on the strategy space: Pi = {pi : γi ∈ (1,M + 1)}. On the other

hand, to guarantee the concavity of the utility function uc
i , we must have Pi =

{pi : γi ∈
(
γi−min, γi−max

)}, where

γi−min = M + 1−
√

M(M + 1)

2
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and

γi−max = M + 1 +

√
M(M + 1)

2

Therefore, to fulfill both conditions, the strategy space should be the intersec-

tion of the two sets, that is Pi = {pi : γi ∈
(
γi−min, γi−max

)}, where

γi−min = M + 1−
√

M(M + 1)

2

and

γi−max = M + 1

Since γi >> 1 in the convex strategy space Pi given above, one can approximate

pmax
i , the solution of (2.5.25), as the feasible solution of the following equation:

p3
i +

LR

M c
pi − (M + 1) LR Ii

M c
= 0 (2.5.27)

This equation has only one real and positive solution which is given in (2.5.23).

It is fairly easy to prove that r7(p) with pmax
i as given in (2.5.23) is a standard

vector function. Therefore, the Nash equilibrium point is unique.

In the following lemmas we omit the proof of existence and/or uniqueness if it

can be argued the same way as in lemma 2.5.4.

Lemma 2.5.5. a) In NPGP under Rician fast flat-fading channel model with

utility function uc
i = ui − c pi, where ui is given in (2.2.29), a Nash equi-

librium point existence is guaranteed if the strategy space is the following:

Pi = {pi : γs
i ∈

(
γs

i−min, γ
s
i−max

)}, where γs
i−min = M +1−

√
M(M+1)

2
and γs

i−max

= M + 1. The best response vector of all users r9(p) =(r9
1(p),r9

2(p),· · · ,r9
N(p)),

where

r9
i (p) = min(pmax

i , pi−max),
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and

pmax
i ≈ −6 21/3 a + 22/3(27 bi +

√
108 a3 + 729 b2

i )2/3

6 (27 bi +
√

108 a3 + 729 b2
i )1/3

a =
LR

M c
, bi =

(M + 1) LR Is
i

M c
(2.5.28)

is a standard vector function, therefore by [2], the Nash equilibrium point is

unique.

b) Under Rician slow flat-fading channel model with utility function uc
i = ui−c pi,

where ui is given in (2.2.33), a Nash equilibrium point existence is guaranteed

if the strategy space is the following: Pi = {pi : γs
i−min ∈ (1, 2 β)}. The best

response vector of all users r10(p) =(r10
1 (p), r10

2 (p), · · · , r10
N (p)), where

r10
i (p) = min(pmax

i , pi−max),

and

pmax
i =

−6 21/3 a + 22/3(27 bi +
√

108 a3 + 729 b2
i )2/3

6 (27 bi +
√

108 a3 + 729 b2
i )1/3

a =
LR

M c
, bi =

2 LR β Is
i

M c
(2.5.29)

is a standard vector function, therefore by [2], the Nash equilibrium point is

unique.

Lemma 2.5.6. a) In NPGP under Nakagami fast flat-fading channel model with

utility function uc
i = ui− c pi, where ui is given in (2.2.46), a Nash equilibrium

point existence is guaranteed if the strategy space is the following: Pi = {pi :

γi ∈
(
γi−min, γi−max

)}, where

γi−min = 2

√
2 + 5M −

√
M (8 + 17M)

and

γi−max = 2
√

2 + 4M
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The best response vector of all users r11(p) = (r11
1 (p), r11

2 (p), · · · , r11
N (p)), where

r11
i (p) = min(pmax

i , pi−max),

and

pmax
i ≈

√
LR

2 M c

√
−1 +

√
1 +

4 (8 + 16M) I2
i M c

LR
(2.5.30)

is a standard vector function, therefore by [2], the Nash equilibrium point is

unique.

b) Under the Nakagami slow flat-fading channel model with utility function uc
i =

ui − c pi, where ui is given in (2.2.50), a Nash equilibrium point existence is

guaranteed if the strategy space is the following: Pi = {pi : γi ∈
(
1,
√

3 ξ
)}. The

best response vector of all users r12(p) = (r12
1 (p), r12

2 (p), · · · , r12
N (p)), where

r12
i (p) = min(pmax

i , pi−max),

and

pmax
i =

√
L R

2 M c

√
−1 +

√
1 +

12 ξ I2
i M c

LR
(2.5.31)

is a standard vector function, therefore by [2], the Nash equilibrium point is

unique.

Proof : a) The maximizer transmit power pmax
i is the feasible solution of ∂ ui

∂ pi
−c =

0, where ∂ ui

∂ pi
is given in (2.5.16), this results in a polynomial of degree 2M +4.

It is tedious to find a closed-form for the feasible solution of this polynomial.

By assuming γi >>
√

8, the maximizer transmit power level pmax
i can be a

approximated by the feasible solution of the following equation.

p4
i +

LR

M c
p2

i −
(8 + 16M) LR I2

i

M c
= 0 (2.5.32)

The only feasible solution of the equation above is as given by (2.5.30).
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b) The maximizer transmit power level pmax
i is the feasible solution of the following

equation.

p4
i +

LR

M c
p2

i −
3ξ L R I2

i

M c
= 0 (2.5.33)

The only feasible solution of the equation above is as given by (2.5.31). It is

simple to check that r12(p) with the maximizer power in (2.5.31) satisfies all

the conditions of a standard vector function. Henceforth, the Nash equilibrium

point is unique.

Observing lemmas 2.5.1-2.5.3, we see that the maximizing SIR γmax
i is the same

for all users : γmax
i = M +1, under fast Rayleigh and fast Rician fading channels. On

the other hand γmax
i = 2 β, under slow Rayleigh and slow Rician fading channels,

while γmax
i =

√
8 + 16M under fast Nakagami fading channels, and γmax

i =
√

3 ξ

under slow Nakagami fading channels. For nonfading channels it was shown in [8]

that γmax
i = 12.4. This implies, as expected, that users in a fading channels have

to target higher SIRs in order to overcome the fading effect as compared to the

nonfading channels.

Next, we introduce an algorithm that converges to the Nash equilibria of NPG

and NPGP. We need to keep in mind that the strategy space denoted by Pi in the

algorithm depends on the channel model. Since it was proved in [2] that synchronous

and asynchronous algorithms with standard best response function converge to the

same fixed point, we focus on asynchronous algorithms in this chapter as they rep-

resent the best model of distributed algorithms. Our algorithm is the same as in [8]

except that the strategy space is modified to the forms given in lemmas 2.5.1-2.5.3

in order to guarantee the existence of Nash equilibria.

Assume user j updates its power level at time instances that belong to a set

Tj, where Tj = {tj1, tj2, · · · }, with tjk < tjk+1 and tj0 = 0 for all j ∈ N . Let
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T = {t1, t2, · · · } where T = T1

⋃
T2

⋃ · · ·⋃ TN with tk < tk+1 and define p to be the

smallest power vector in the modified strategy space P = P1

⋃
P2

⋃ · · ·⋃ PN .

Algorithm 2.5.1. Consider a non-cooperative game G as given in (2.3.3) and gen-

erate a sequence of power vectors as follows:

1. Set the power vector at time t = 0: p(0) = p, let k = 1

2. For all j ∈ N , such that tk ∈ Tj:

(a) Given p(tk−1), calculate pmax
j (tk) = arg max

pj∈Pj

uj(pj, p−j(tk−1))

3. If p(tk) = p(tk−1) stop and declare the Nash equilibrium power vector as p(tk),

else let k := k + 1 and go to 2.

The following algorithm finds the best pricing factor c for NPGP. We need to keep

in mind that the strategy space should be chosen according to lemmas 2.5.4-2.5.6.

Algorithm 2.5.2. 1. Set c = 0 and broadcast c to all users currently in the cell.

2. Use Algorithm 2.5.1 to obtain uc
j for all j ∈ N at equilibrium.

3. Increment c := c + ∆c, where ∆c is a positive constant, and broadcast c to all

users, and then go to 2

(a) If uc+∆c
j ≥ uc

j for all j ∈ N go to 3, else stop and declare the best pricing

factorc = cBest

2.6 Simulation Results

We study the effects of time-varying (fast and slow fading) channels, on the equilib-

rium utilities and powers which are the outcomes of the NPG and NPGP algorithms
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(algorithms 2.5.1 and 2.5.2) studied in [8]. We use the same definition of utility

function (see (2.1.1)) with Pc modified to fit the channel model in the following

cases: Fast/Slow Rician fading channel model, fast/slow Rayleigh fading channel

model and fast/slow Nakagami fading channel. The system studied is a single-cell

DS-CDMA cellular mobile system with 9 stationary users using the same data rate R

and the same modulation scheme, non-coherent BFSK. The system parameters used

in this study are given in Table 2.1. The distances between the 9 users and the BS

are d = [310, 460, 570, 660, 740, 810, 880, 940, 1000] in meters. The path attenuation

between user j and the BS using the simple path loss model [16] is hj = 0.097/d4
j ,

where 0.097 approximates the shadowing effect. In a fast fading channel, Pc is given

by:

Pc(γ̆j) = (1− 1

γ̆j

)M for all j = 1, 2, · · · , N (2.6.1)

where γ̆j = γj in a Rayleigh channel, γ̆j = γs
j in a Rician channel and γ̆j =

21−m (m/γj)
−m in a Nakagami channel. Fig. 2.1 shows that under Rayleigh, Ri-

cian, or Nakagami fast flat-fading channels with spreading gain W/R = 100, users

do not reach a desired Nash equilibrium point, since all users except for the nearest

user to the BS have reached the highest power level in the strategy space. More

clearly, in Fig. 2.2 one can see that users obtain very low utilities as a result of NPG

compared to deterministic path gains. Fig. 2.3 and Fig. 2.4 show that with the same

parameters as in Fig. 2.1 and Fig. 2.2 but with spreading gain W/R = 1000 the

results are better since a Nash equilibrium was reached, and comparable to that of

deterministic channel gains. The equilibrium utilities and equilibrium powers of the

NPGP are shown in Fig. 2.5 and Fig. 2.6, respectively. Results show that the Pareto

improvement over NPG for Rayleigh, Rician, and Nakagami channels was similar to

the case of deterministic channel gains.

Next we present the effects of a slow flat-fading channel (a2) on the equilibrium

utilities and powers which are the outcomes of NPG algorithm 2.5.1 and compare
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Table 2.1: the values of parameters used in the simulations.

L, number of information bits 64
M length of the codeword 80
W , spread spectrum bandwidth 106, 107 Hz
R, data rate 104 bits/sec
σ2, AWGN power at the BS 5× 10−15

N , number of users in the cell 9
s2, specular component 1
W/R, spreading gain 100, 1000
m, fading figure 2
pi−max, maximum power in ith user’s strategy space 2

them to those obtained under (a1) as one can see in Fig. 2.7-Fig. 2.12. As expected,

these figures, illustrate that users can achieve better performance in slow flat-fading

channels than that in fast flat-fading ones.

2.7 Summary

We presented the noncooperative power control game (NPG) and noncooperative

power control game with pricing (NPGP) introduced in [8] for realistic channel mod-

els. We studied the impact of power statistical variation in Rayleigh, Rician, and

Nakagami fast/slow flat-fading channels on the powers and utilities vectors at equi-

librium. The results showed that the equilibrium was reached in both games only at

higher processing gains (W/R > 100). Utilities for Rayleigh, Rician, and Nakagami

flat-fading channel gains at equilibrium are lower (at higher equilibrium power vector

) than the utilities for deterministic channel gains. However, in order to overcome

the fading effects, the SIRs obtained at equilibrium must be higher for all users at

equilibrium in the Rician, Rayleigh, and Nakagami flat-fading channels than under

deterministic channels.
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Figure 2.1: Equilibrium powers of NPG for Rician flat-fading channel gain (+),
Rayleigh flat-fading channel gain (o), Nakagami flat-fading (M) and deterministic
channel gain (*) versus the distance of a user from the BS in meters with W/R = 100.
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Figure 2.2: Equilibrium utilities of NPG for Rician flat-fading channel gain (+),
Rayleigh flat-fading channel gain (o), Nakagami flat-fading (M) and deterministic
channel gain (*) versus the distance of a user from the BS in meters with W/R = 100.
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Figure 2.3: Equilibrium powers of NPG for Rician flat-fading channel gain (+),
Rayleigh flat-fading channel gain (o), Nakagami flat-fading (M) and deterministic
channel gain (*) versus the distance of a user from the BS in meters with W/R =
1000.
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Figure 2.4: Equilibrium utilities of NPG for Rician flat-fading channel gain (+),
Rayleigh flat-fading channel gain (o), Nakagami flat-fading (M) and deterministic
channel gain (*) versus the distance of a user from the BS in meters with W/R =
1000.
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Figure 2.5: Equilibrium powers of NPGP for Rician flat-fading channel gain (+),
Rayleigh flat-fading channel gain (o), Nakagami flat-fading (M) and deterministic
channel gain (*) versus the distance of a user from the BS in meters with W/R =
1000.
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Figure 2.6: Equilibrium utilities of NPGP for Rician flat-fading channel gain (+),
Rayleigh flat-fading channel gain (o), Nakagami flat-fading (M) and deterministic
channel gain (*) versus the distance of a user from the BS in meters with W/R =
1000.
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Figure 2.7: Equilibrium powers of NPG for Rayleigh fast flat-fading channel gain (o)
and slow flat-fading channel (+) versus the distance of a user from the BS in meters
with W/R = 1000.
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Figure 2.8: Equilibrium utilities of NPG for Rayleigh fast flat-fading channel gain
(o) and slow flat-fading channel (+) versus the distance of a user from the BS in
meters with W/R = 1000.

48



Chapter 2. Game Theoretic Power Control Algorithms in Flat-Fading Channels

10
2

10
3

10
−6

10
−5

10
−4

10
−3

10
−2

distance between BS and terminal (meters)

eq
ui

lib
riu

m
 u

til
iti

es
 (

bi
ts

/J
ou

l)

Slow Fading
Fast Fading

Figure 2.9: Equilibrium powers of NPG for Rician fast flat-fading channel gain (o)
and slow flat-fading channel (+) versus the distance of a user from the BS in meters
with W/R = 1000.

10
2

10
3

10
6

10
7

10
8

10
9

10
10

distance between BS and terminal (meters)

eq
ui

lib
riu

m
 u

til
iti

es
 (

bi
ts

/J
ou

l)

Slow Fading
Fast Fading

Figure 2.10: Equilibrium utilities of NPG for Rician fast flat-fading channel gain (o)
and slow flat-fading channel (+) versus the distance of a user from the BS in meters
with W/R = 1000.
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Figure 2.11: Equilibrium powers of NPG for Nakagami fast flat-fading channel gain
(o) and slow flat-fading channel (+) versus the distance of a user from the BS in
meters with W/R = 1000.
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Figure 2.12: Equilibrium utilities of NPG for Nakagami fast flat-fading channel gain
(o) and slow flat-fading channel (+) versus the distance of a user from the BS in
meters with W/R = 1000.
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Chapter 3

Machine Learning Theory and

Game Theory

In this Chapter we use machine learning theory to evaluate the performance of game

theoretic power control algorithms for wireless data in arbitrary channels, i.e., when-

ever no presumed channel model is available. To show the validity of applying

machine learning theory in this context, we studied a slow flat-fading channel, and

more specifically, we simulated the case of Rayleigh flat-fading channel for the same

setup as [8]. With the help of a relatively small number of training samples, the

results suggest the learnability of the utility function classes defined by changing the

users power (adjusted parameter) for each user’s utility function.

The remaining of this Chapter is organized as follows: In Section 3.1 we describe

the utility function and the system used in this Chapter, while in Section 3.2 we de-

scribe the two power control algorithms, namely NPG and NPGP. A brief discussion

of distribution-free learning theory is presented in Section 3.3. The application of

distribution-free learning theory to NPG and NPGP under a slow flat-fading channel

model is introduced in Section 3.4. Discussion of a Rayleigh slow flat-fading chan-
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nel and simulation results are outlined in Section 3.5. Finally, the summary of this

Chapter is presented in Section 3.6.

3.1 Utility Function and System Model

Since we are studying the same setup as in [8], the utility function will be the same

as in Chapter 2. For convenience however, we re-introduce the system model and

the utility function as follows: Suppose we have a single-cell system with N users,

where each user transmits packets of M total bits with L information bits and with

power p Watts per bit. The rate of transmission is R bits/sec for all users. Let

Pc(γ) represent the probability of correct reception of all bits in the frame at the BS

at a given SIR γ. The channel is assumed to be slow flat-fading channel (wireless

channel changes independently from packet to packet) in addition to AWGN at the

receiver in the BS. All users are using BFSK as a modulation scheme. And the utility

function is given by:

u =
LR

M p
Pc (3.1.1)

With the assumption of no error correction, perfect detection, and that each bit is ex-

periencing independent noise. For user i, Pc =E[(1− P̃ (e|γi, xi))
M ] where P̃ (e|γi, xi)

is the bit error rate (BER) at a given SIR γi and given by (2.2.4) , and xi is given

by (2.2.2).

3.2 NPG and NPGP

Both NPG and NPGP games in this Chapter are the same ones in Chapter 2. In

order to avoid repetition we only introduce the formal expressions of these games as
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follows:

NPG : max
pj∈Pj

uj(pj, pj), ∀ j ∈ N (3.2.1)

As we said in Chapter 2, usually Nash equilibrium point of NPG is not efficient, to

obtain a Pareto dominant over pure NPG, NPGP was proposed in [8]. NPGP with

linear pricing function can be expressed as:

NPGP : max
pj∈Pj

{uj(p)− c pj} , ∀ j ∈ N (3.2.2)

In the next Section we present a brief discussion of distribution-free learning theory,

where we focus on the learnability of the utility function class, depending on learning

samples received at the BS.

3.3 Distribution-Free Learning

Distribution-free learning theory enables us to evaluate the performance of game

theoretic power control algorithms for wireless data without the need to have a

prior knowledge of the channel model. Of course, this may only be done under the

condition that the utility function class is “learnable.” The learnability of the utility

function class is highly dependent on the channel model as will be apparent shortly.

See Appendix C for a brief description of some of the vocabulary of machine learning

theory that we need in this Chapter.

If a function (concept) class has a finite P-dimension ( VC-dimension), then such

function (concept) class is said to be a distribution-free learnable [23], that is we can

learn the target function (concept) using the learning samples drawn according to

an unknown probability measure. The learning problem under study is as follows:

assume X is a given set (in this work we take X = [0,∞], i.e., the space of the

coefficients αi) , and U (called the utility function class) is a family of functions such
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that u : X → [0, 1] ∀u ∈ U . It should be noted here that limiting ourselves to the

interval [0, 1] does not necessarily mean that the function u ∈ [0, 1], but rather that

it is bounded [24]. Suppose P represent the set of all probability laws (represent

all possible channel models) on X. Assume that u ∈ U is the utility function (can

be thought of as a random variable since it is a function of αi) that corresponds

to the learning multisample x = [x1, x2, · · · , xn] ∈ Xn (fading coefficients), drawn

according to the probability law F n ∈ P (channel model), with the assumption that

F n is differentiable with PDF fn. Then the average utility function U (the function

we need to learn) is given by:

U := EF (u) =

∫

X
u(x)fn(x)dx (3.3.1)

while the empirical utility function Uemp is given by:

Uemp :=
1

n

n∑

l=1

u(xl) (3.3.2)

For ε > 0, define δ(n, ε, P ) as follows [23]:

δ(n, ε, P ) := P n

{
x ∈ Xn : sup

u∈U
|Uemp − U | > ε

}
, n = 1, 2, · · · (3.3.3)

where P n denotes the product probability on Xn, and define

δ∗(ε, n) := sup
P∈P

δ(n, ε, P )

The family of function classes U has the property of distribution-free uniform con-

vergence of empirical means if δ∗(n, ε) → 0 as n →∞ for each ε > 0 [23]. Which is

a result of the following theorem whose proof may be found in [23].

Theorem 3.3.1. Suppose the family U has a finite P-dimension with value equal to

d. Consider 0 < ε < e/(2 log2 e) ≈ 0.94. Then

δ∗(n, ε) ≤ 8

(
16e

ε
ln

16e

ε

)d

exp(−n ε2/32) ∀n

Therefore U has the property of distribution-free uniform convergence of empirical

means.
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One can see from the above theorem that the learnability of U is highly dependent

on the P-dimension (d) for a given accuracy (ε), where a large value of d could

lead to a prohibitive sample complexity (n) to achieve the accuracy with confidence

1− δ∗(n, ε). In the next Section we study the learnability of the utility function class

defined under NPG and NPGP by evaluating the P-dimension with the assumption

that the channel is modeled as a slow flat-fading channel.

3.4 Application to NPG and NPGP in a Slow

Flat-Fading Channel

In this Section we apply distribution-free learning theory where the channel is mod-

eled as a slow flat-fading channel. Using this model, the SIR (γi) of the ith user is

given by [15]:

γi =
W

R

pi hi α
2
i∑N

k 6=i pk hk α2
k + σ2

(3.4.1)

where W is the spread-spectrum bandwidth, R is the data rate (bits/sec), pk is the

transmitted power (the adjusted parameter) of the kth user, hk is the path gain

between the BS and the kth user, σ2 is the variance of the AWGN channel, and

αk is a slow flat-fading coefficient of the path between the BS and kth user. For

both NPG and NPGP, it is assumed that each user knows the background noise

and the interference from other users at each time instance he updates his transmit

power level. This allows the user to adjust his own parameter (power) to obtain the

maximum possible utility function. This then enables us to write (3.4.1) in the form:

γi = Ci pi α
2
i , (3.4.2)

where

Ci =
W

R

hi∑N
k 6=i pk hk α2

k + σ2
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A simple interpretation of (3.4.2) is that the interference and the background noise

are considered constant at each time instance the user adjusts its power (see Al-

gorithm 2.5.1). Suppose that each user is using noncoherent binary shift keying

(BFSK) to transmit each data bit, i.e, Pe = 1
2

e−γ/2 . The channel is assumed to be

a slow flat-fading channel, in other words, the fading coefficient αi is constant for

each frame time interval. This enables us to write Pc(γi) = (1 − Pe(γi))
M . So, we

can rewrite (3.1.1) for the ith user in the following form:

ui =
L R

M pi

(1− e−γi/2)M (3.4.3)

Where Pe was replaced by 2Pe to give the utility function (ui) the properties that

ui → 0 as pi → 0 and ui → 0 as pi →∞ [8]. Let us split up the ith utility function

into the following functions ∀i ∈ N :

f1 = 1− e−γi/2, (3.4.4)

f2 = fM
1 , (3.4.5)

f3 =
1

pi

, (3.4.6)

and finally

f4 = f2 f3 (3.4.7)

Notice that ui = L R
M

f4. Now, we need to find the first-order partial derivative of

{fk} with respect to pi and αi in order to show the learnability of ui in (3.4.3).

∂f1

∂αi

=
∂f1

∂γi

∂γi

∂αi

= (−f1 + 1)(Ci pi αi) (3.4.8)

∂f1

∂pi

=
∂f1

∂γi

∂γi

∂pi

= (−1

2
f1 +

1

2
)(Ci α

2
i ) (3.4.9)

∂f2

∂αi

=
∂f2

∂f1

∂f1

∂αi

= M fM−1
1 (−f1 + 1)(Ci pi αi) (3.4.10)
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∂f2

∂pi

=
∂f2

∂f1

∂f1

∂pi

= M fM−1
1 (−1

2
f1 +

1

2
)(Ci α

2
i ) (3.4.11)

∂f3

∂αi

= 0 (3.4.12)

∂f3

∂pi

= −f 2
3 (3.4.13)

∂f4

∂αi

= f3
∂f2

∂αi

+ f2
∂f3

∂αi

= M f3 fM−1
1 (−f1 + 1)(Cipi αi) (3.4.14)

∂f4

∂pi

= f3
∂f2

∂pi

+ f2
∂f3

∂pi

= f3 M fM−1
1 (−1

2
f1 +

1

2
)(Ci α

2
i )− f2 f 2

3 (3.4.15)

As we can see from the above first-order partial derivatives, f1, f2, f3, f4 are a Pfaffian

chain of length q = 4 and of degree at most D = 2 in αi and pi. The importance

of this observation is that our problem at hand turns out to be similar to a neural

network architecture in which the shaping function is a polynomial (γi = Ci pi α
2
i )

and the activation functions ({fk}4
k=1) are Pfaffian chain. For such neural network

architecture, the upper bound of the P-dimension (d) is given by ([23], Theorem

10.8):

d ≤ 2l(l(q + 1)2/2 + log2 Q + (2(q + 1) + 1) log2 l

+ (q + 2) log2(2(Q + D)) + log2(2e)) (3.4.16)

Where d is the P-dimension of the function class U , Q is degree of γi in pi, αi and

f1, f2, f3, f4, and l is the number of adjustable parameters of each user (in the case

under study the parameters are pi and Ci, that is l = 2). Substituting the numerical

values of D, q, and l, we obtain d ≤ 247. These results can be extended to NPGP in

a straight-forward manners to obtain the same values of D, q and l. Henceforth, the
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utility function classes defined under NPG and under NPGP have the same upper

bound on the P-dimension.

3.5 Discussion of Rayleigh Slow Flat-Fading Chan-

nel and Simulation Results

As a specific case of slow flat-fading channel model we present results for the case

where αi is modeled as a Rayleigh random variable (as an example of the validity of

the results in the previous Section) with PDF given by:

p(αi) =
αi

σ2
r

exp(−α2
i /2σ

2
r), i = 1, 2, · · · , N (3.5.1)

In the following calculations again it is assumed that σ2
r = 1/2. Using the results of

Section 2.2.1, the average utility function of the ith user is given by:

Ui(p) =
L R

M pi

(
1 +

1

γi

M∑

k=1

(
M

k

)
2 (−1)k

k

)
(3.5.2)

where γi is the ratio of the mean of the received power of the ith user to the mean

of the interference at the BS and given by:

γi =
W

R

pi hi∑N
k 6=i pk hk + σ2

(3.5.3)

While the empirical value of the utility function Uempi
is given by:

Uempi
=

1

n

n∑

l=1

ui(α̌l), (3.5.4)

where α̌l = [αl,1, αl,2, · · · , αl,N ]. The system studied is a single-cell with 9 stationary

users (N = 9) using the same data rate R and the same modulation scheme, nonco-

herent BFSK. The system parameters used in this study are given in Table 2.1. The

58



Chapter 3. Machine Learning Theory and Game Theory

10
3

10
6

10
7

10
8

distance between BS and terminal (meters)

eq
ui

lib
riu

m
 u

til
iti

es
 (b

its
/J

ou
l)

Figure 3.1: Equilibrium utilities of NPG for Rayleigh slow flat-fading channel by
using (3.5.2) (o) and by simulation with samples drawn according to Rayleigh dis-
tribution (+) versus the distance of a user from the BS in meters with W/R = 1000.

distances between the 9 users and the BS are d = [310, 460, 570, 660, 740, 810, 880,

940, 1000]. The path attenuation between user j and the BS using the simple path

loss model [16] is hj = 0.097/d4
j . Using (3.4.16) and Theorem 3.3.1 with accuracy

ε = 0.04 and confidence 1 − δ∗(ε, n) ≈ 0.99 (see theorem 3.3.1 for the definition of

δ∗(ε, n) ) the sample complexity required was n ≤ 47000.

Fig. 3.1 and Fig. 3.2 show, respectively, the equilibrium utilities and the equi-

librium powers (o) obtained by NPG using the average utility function in (3.5.2)

compared to the empirical values obtained by simulating the Rayleigh slow flat-

fading channel (+). In the simulation, the sample complexity (the number of samples

drawn from the channel according to a Rayleigh distribution) was 47, 000 as men-

tioned above. NPG was run for each sample from the channel, then the empirical

means of the equilibrium utilities were calculated according to (3.5.4). As one can

see, the figures show that the empirical results (+) fit the results obtained by aver-

aging with respect to the known distribution (Rayleigh distribution in our case) (o).

This shows the learnability of the utility function classes U with reasonable sample

complexity.
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Figure 3.2: Equilibrium powers of NPG for Rayleigh slow flat-fading channel by using
(3.5.2) (o) and by simulation with samples drawn according to Rayleigh distribution
(+) versus the distance of a user from the BS in meters with W/R = 1000.

3.6 Summary

In this Chapter we studied a noncooperative power control game (NPG) and a nonco-

operative power control game with pricing (NPGP) introduced in [8]-[7] using more

realistic channels similar to those in [22]. We proposed the use of distribution-free

learning theory to evaluate the performance of game theoretic power control algo-

rithms for wireless data CDMA cellular systems in arbitrary channels. We studied

in detail the case when the channel is modeled as a slow flat-fading channel. We

evaluated an upper bound for the P-dimension of the utility function class and pre-

sented simulation results for the Rayleigh case, which showed the learnability of the

utility class function defined by adjusting the power for each user.
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Chapter 4

Outage Probability In Interference

Limited Wireless Fading Channels

In this Chapter we consider a game-theoretic power control algorithm in interference-

limited fading wireless channels, and propose a distributed (non-cooperative) algo-

rithm to optimize the induced Rayleigh and Nakagami fading outage probability by

maximizing the certainty equivalent margin (CEM). We then find a closed-form of

the outage probability in Nakagami flat-fading channels with fading figure m = 2 (see

appendix B), then prove that the problem of minimizing the fading induced outage

probability for both Rayleigh and Nakagami channels is equivalent to the problem of

maximizing CEM in term of power allocation. We then propose a distributed game

theoretic power control algorithm, and using this non-cooperative game, we prove

that the best policy in interference limited fading wireless channels is for all users

to send at the minimum power in their corresponding strategy spaces. This result

considerably simplifies the implementation of the proposed game.

In this Chapter the problem posed in [12] to optimize the outage probability

and the certainty-equivalent margin for Rayleigh wireless fading channels, is solved
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in a non-centralized manner. We also provide a simpler proof (compared to that

of [12]) of the tight relationship between the two problems: Minimizing the fading

induced outage probability, and maximizing the CEM. We then present a closed-

form of the outage probability in a Nakagami flat-fading channel. Using the outage

probability formula we prove that both problems mentioned above remain equivalent

in Nakagami flat-fading channels.

The remaining of this Chapter is organized as follows: In Section 4.1 we present

the system setup used in this Chapter. Section 4.2 is devoted to evaluating a closed-

form of the induced outage probability in an interference-limited Nakagami flat-

fading channel. The tight relationship between the optimization of the outage prob-

ability and the optimization of the certainty-equivalent margin is emphasized in 4.3.

Non-cooperative power control game (NPG) is discussed in Section 4.4. Simulation

results are outlined in Section 4.5, and the summary of this Chapter is presented in

Section 4.6.

4.1 System Model

The system we are investigating is the same as that studied in [12], where the

solutions for optimizing the system outage probability and the system certainty-

equivalent margin in Rayleigh flat-fading channels were obtained based on a central-

ized power control algorithm. In this Chapter however, we propose a non-centralized

power control game theoretic-algorithm for the same system in Rayleigh and Nak-

agami flat-fading channels. For convenience, we cast the problem as follows: Suppose

we have N Tx/Rx pairs in a cellular mobile system. The ith transmitter is supposed

to send messages at a power level pi from his convex strategy space Pi to the ith re-

ceiver. A transmitter-receiver pair does not necessarily indicate physically separated

receivers [12]. The received power level at the ith receiver from the kth transmitter
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is given by:

Gi,kFi,kpk (4.1.1)

where Gi,k > 0 is the path gain from the kth transmitter to the ith receiver. This

gain may represent spreading gain and/or cross correlation between codes in CDMA

systems. It can also represent coding gain, log-normal shadowing, and antenna

gains. Fi,k, i, k = 1, 2, ..., N are exponentially id (independent distributed) random

variables with mean equal to 1 to represent the statistical power variation in a wireless

Rayleigh flat-fading channel. On the other hand in a Nakagami flat-fading channel,

Fi,k, i, k = 1, 2, ..., N are Gamma id random variables with mean also equal to

1. This means that the power received from the kth user at the ith receiver is

exponentially (Gamma) distributed with expected value

E {Gi,kFi,kpk} = Gi,kpk (4.1.2)

In interference-limited fading channels, the background AWGN is assumed to be

negligible compared to the interference power from the users. Henceforth, the signal-

to-interference ratio of the ith user at the corresponding receiver is given by:

SIRi =
Gi,iFi,ipi∑N

k 6=i Gi,kFi,kpk

. (4.1.3)

SIRi is thus a random variable, a ratio of an exponentially (Gamma) distributed

random variable to a summation of independent exponentially (Gamma) distributed

random variables with different means. The outage probability Oi is defined as the

probability that the SIR of an active user i, will go below a threshold SIRth, so that

for user i:

Oi = Pr{SIRi ≤ SIRth}

= Pr{Gi,iFi,ipi ≤ SIRth

N∑

k 6=i

Gi,kFi,kpk} (4.1.4)
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This probability was evaluated in [12] for a Rayleigh flat-fading channel and is given

by:

Oi = 1−
N∏

k 6=i

1

1 + SIRth
Gi,kpk

Gi,ipi

(4.1.5)

The outage probability of the system, O is defined as:

O = max
1≤i≤N Oi (4.1.6)

Thus O plays the role of a figure of merit of the cellular system and the power control

algorithm. The certainty-equivalent margin of the ith user is defined as the ratio of

his/her certainty-equivalent SIR to the corresponding threshold SIR. Mathematically,

CEMi =
SIRce

i

SIRth

(4.1.7)

where, the certainty-equivalent SIR (SIRce
i ) of the ith user is defined as the ratio

of his/her mean received power at the corresponding receiver to the mean of the

interference from the other users in the system, i.e.,

SIRce
i =

Gi,ipi∑N
k 6=i Gi,kpk

(4.1.8)

The certainty-equivalent SIR of the system SIRce is defined as:

SIRce = min
1≤i≤N SIRce

i (4.1.9)

Therefore, the certainty-equivalent margin of the system CEM is given by:

CEM = min
1≤i≤N CEMi (4.1.10)

The CEM plays the role of yet another cellular system figure of merit for the power

control algorithm and the complete system.
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4.2 Outage Probability in an Interference Limited

Nakagami Flat-Fading Channel

In this Section we derive a closed-form of the outage probability in an interference

limited Nakagami flat-fading channels.

Let αi,k be the fading coefficient between the kth transmitter and the ith receiver,

then αi,k has a Nakagami PDF (see Appendix B):

fαi,k(ω) =
2 mm

Γ(m) Ωm
ω2m−1 exp(−m

Ω
ω2) (4.2.1)

The following lemma presents a closed-form of the outage probability in a flat-fading

Nakagami channels.

Lemma 4.2.1. In a Nakagami flat-fading channel with Ω = 1 and m = 2, the outage

probability of the ith user Oi is given by:

Oi = 1−
(

N −
N∑

k 6=i

[
1

1 +
SIRth Gi,k pk

Gi,i pi

])
N∏

k 6=i

[
1

1 +
SIRth Gi,k pk

Gi,i pi

]2

(4.2.2)

Proof : For simplicity, define Yi,k := Gi,kFi,kpk, where Fi,k = α2
i,k, and hence Yi,k is

a Gamma distributed random variable, that is:

fYi,k(ω) =
ξm
i,k

Γ(m)
ωm−1 exp(−ξi,k ω) (4.2.3)

where ξi,k = m
Ω Gi,k pk

. In the following calculations we set m = 2 and Ω = 1.

Henceforth, the outage probability Oi of the ith user is given by:

Oi = Pr{Yi,i ≤ SIRth

N∑

k 6=i

Yi,k}

=

∫ Xi,k

0

fYi,i(ω)dω (4.2.4)
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where we defined Xi,k := SIRth

∑N
k 6=i Yi,k. As one can see, Xi,k is the sum of

independent Gamma distributed random variables with different means. To simplify

the problem in (4.2.4), we first find the conditional outage probability Oc
i (xi,k) =

Pr(Oi|Xi,k = xi,k) where xi,k is a realization of the random variable Xi,k. Therefore,

we have the following:

Oc
i (xi,k) = ξ2

i,i

∫ xi,k

0

ω exp(−ξi,i ω)dω

= 1− (1 + ξi,i xi,k) exp(−ξi,i xi,k). (4.2.5)

Hence, outage probability Oi can be found as:

Oi =

∫ ∞

0

Oc
i (ω) fXi,k(ω)dω

= E{Oc
i (Xi,k)}

= E{1− (1 + ξi,i Xi,k) exp(−ξi,i Xi,k)}. (4.2.6)

Using the following intermediate equations:

∫ ∞

0

ωn exp(−aω)dω =
Γ(n + 1)

an+1
, (4.2.7)

E {exp(−ξi,i SIRth Yi,k)} =

[
1

1 +
SIRth Gi,k pk

Gi,i pi

]2

, (4.2.8)

and

E{Yi,k exp(−ξi,i SIRth Yi,k)} = Gi,k pk

[
1

1 +
SIRth Gi,k pk

Gi,i pi

]3

(4.2.9)

we end up with the following formula of the outage probability Oi,

Oi = 1−
N∏

k 6=i

[
1

1 +
SIRth Gi,k pk

Gi,i pi

]2

−
N∑

k 6=i

SIRth Gi,k pk

Gi,i pi

[
1

1 +
SIRth Gi,k pk

Gi,i pi

]3

×
N∏

l 6=i,l 6=k

[
1

1 +
SIRth Gi,l pl

Gi,i pi

]2

(4.2.10)
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To make (4.2.10) look like (4.2.2), we substitute the following equations in (4.2.10):

N∏

l 6=i,l 6=k

[
1

1 +
SIRth Gi,l pl

Gi,i pi

]2

=

(
1 +

SIRth Gi,k pk

Gi,i pi

)2 N∏

l 6=i

[
1

1 +
SIRth Gi,l pl

Gi,i pi

]2

and

N∑

k 6=i

SIRth Gi,k pk

Gi,i pi

[
1

1 +
SIRth Gi,k pk

Gi,i pi

]
=

N∑

k 6=i

(
1−

[
1

1 +
SIRth Gi,k pk

Gi,i pi

])
(4.2.11)

=

(
N − 1−

N∑

k 6=i

[
1

1 +
SIRth Gi,k pk

Gi,i pi

])

which concludes the proof.

4.3 Relation Between Outage Probability and

Certainty-Equivalent Margin

4.3.1 Rayleigh Flat Fading channel

In this subsection we present the following proposition first introduced in [12], and

provide our own simpler proof.

Proposition 4.3.1. The problems of minimizing the fading-induced outage probabil-

ity Oi and maximizing the certainty equivalent CEMi of the ith user in a Rayleigh

wireless fading channel are equivalent in terms of power allocation.

Proof : First, recall that the problem under study is to minimize the outage prob-

ability of the system in a distributive fashion, i.e., each user transmits at a power

level that minimizes his/her outage probability. Mathematically,

min
pi∈Pi

Oi = min
pi∈Pi

1−
N∏

k 6=i

1

1 + SIRth
Gi,kpk

Gi,ipi

(4.3.1)
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and this in turn is equivalent to

max
pi∈Pi

N∏

k 6=i

1

1 + SIRth
Gi,kpk

Gi,ipi

(4.3.2)

or

min
pi∈Pi

N∏

k 6=i

(
1 + SIRth

Gi,kpk

Gi,ipi

)
(4.3.3)

Using the monotonicity of the Logarithmic function, minimizing (4.3.3) is equivalent

to solving the following problem:

min
pi∈Pi

N∑

k 6=i

log

(
1 + SIRth

Gi,kpk

Gi,ipi

)
. (4.3.4)

Now, using the inequality log(x) ≤ x− 1, (4.3.4) can be bounded as:

min
pi∈Pi

∑N
k 6=i log

(
1 + SIRth

Gi,kpk

Gi,ipi

)

≤ min
pi∈Pi

N∑

k 6=i

SIRth
Gi,kpk

Gi,ipi

. (4.3.5)

Finally, it is fairly simple to see that the right side of the inequality in (4.3.5) is

exactly the same as:

max
pi∈Pi

Gi,ipi

SIRth

∑N
k 6=i Gi,kpk

= max
pi∈Pi

CEMi (4.3.6)

4.3.2 Nakagami Flat Fading Channel

Similar to Rayleigh flat-fading channels, we have the following proposition for Nak-

agami flat-fading channels.
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Proposition 4.3.2. The problems of minimizing the fading induced outage probabil-

ity Oi and maximizing the certainty equivalent CEMi of the ith user in a Nakagami

wireless fading channel are equivalent in terms of power allocation.

Proof : For simplicity, let us define Hi,k := SIRth
Gi,k pk

Gi,i pi
. Minimizing the outage

probability Oi given in (4.2.2) is equivalent to the following problem:

max
pi∈Pi

{(
N −

N∑

k 6=i

[
1

1 + Hi,k

])
N∏

k 6=i

[
1

1 + Hi,k

]2
}

(4.3.7)

or

max
pi∈Pi

{
ln

(
N −

N∑

k 6=i

[
1

1 + Hi,k

])
+ 2

N∑

k 6=i

ln

(
1

1 + Hi,k

)}

= max
pi∈Pi

{
ln

(
1 +

N∑

k 6=i

(
1− 1

1 + Hi,k

))
+ 2

N∑

k 6=i

ln

(
1− Hi,k

1 + Hi,k

)}

≤ max
pi∈Pi

{
N∑

k 6=i

(1− 1

1 + Hi,k

)− 2
N∑

k 6=i

Hi,k

1 + Hi,k

}

= max
pi∈Pi

{
N∑

k 6=i

− Hi,k

1 + Hi,k

}
(4.3.8)

where we used the inequality ln(x) ≤ x − 1 again to get the inequality in (4.3.8).

Now one can see that the problem in (4.3.8) is equivalent to:

max
pi∈Pi

{
N∑

k 6=i

1 + Hi,k

Hi,k

}
= max

pi∈Pi

{
N − 1 +

N∑

k 6=i

Gi,i pi

SIRth Gi,k pk

}
(4.3.9)

and since N − 1 is a constant common for all users, therefore (4.3.9) is equivalent to:

min
pi∈Pi

{∑N
k 6=i SIRth Gi,k pk

Gi,i pi

}
. (4.3.10)

Finally, this problem is clearly equivalent to the problem of maximizing CEMi, and

by this we conclude the proof of proposition 4.3.2
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In the next Section we present a simple non-cooperative game G2, and show

that G2 results in an optimal power allocation to maximize the system certainty-

equivalent margin CEM , minimize the system outage probability O, and minimize

the total transmitted power.

4.4 Power Control Algorithm to Optimize The

Outage Probability

In this Section we introduce a non-cooperative power control game, in which user

i attempts to find the optimal transmit power level pi from his/her strategy space

Pi that enables him/her to obtain a maximum possible certainty equivalent margin

CEM∗
i , instead of maximizing CEMi directly as given below:

G1 : max
pi∈Pi

CEMi,

= max
pi∈Pi

Gi,ipi

SIRth

∑N
k 6=i Gi,kpk

,∀ i = 1, 2, ..., N (4.4.1)

The reason for avoiding maximizing CEMi directly is that the game G1 in (4.4.1)

has an objective function CEMi which is linear in pi given the power vector p−i of all

users except for the ith user. This will lead user i to send at the maximum power in

his/her strategy space, as will all users. This selfish act will result in all users having

very small CEMs. Due to this reason we propose the following non-cooperative power

control game G2 defined as follows:

G2 : max
pi∈Pi

CEM∗
i (n), n = 1, 2, · · ·

subject to

pi(n) = min

(
pi−max,

CEM∗
i (n) SIRth

∑N
k 6=i Gi,kpk

Gi,i

)
(4.4.2)
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Seemingly, game G2 is a multistage game where in the nth stage, user i transmits

at a power level pi(n) that enables him/her to attain a constant CEM∗
i (n) (e.g.

CEM∗
i (n) = 1), then if transmit power level pi(n) is feasible, i.e., pi(n) < pi−max, user

i seeks a higher value of CEM∗
i at the (n + 1)th stage of the game. Mathematically

speaking, user i sets CEM∗
i (n + 1) > CEM∗

i (n) and finds pi(n + 1) such that

CEM∗
i (n + 1) =

Gi,ipi(n+1)

SIRth
∑N

k 6=i Gi,kpk
and so forth until he/she is satisfied with the value

of CEM∗
i (n). However, it turns out that game G2 is a one shot game, that is, it has

a Nash equilibrium point with all users able to attain their maximum CEM∗
i in the

first stage (n = 1) as we show in the following lemma. The lemma also guarantees

the existence, uniqueness, and optimality of the Nash equilibrium point:

Lemma 4.4.1. The non-cooperative game G2 with strategy space Pi = [pi−min, pi−max]

for user i and with pi−min > 0, has a unique Nash equilibrium operating point. Also,

this Nash equilibrium point is optimal in the sense that it corresponds to the minimum

total transmitted power of all users. Users in game G2 will attain their maximum

possible CEM∗
i in the first trial.

Proof : At each time instance, user i updates his/her transmit power pi in order to

satisfy the following equation:

CEM∗
i =

Gi,ipi

SIRth

∑N
k 6=i Gi,kpk

, (4.4.3)

for a target CEM∗
i . Exploiting the linearity of equation (4.4.3), we rewrite it in a

matrix form as follows:

A p = p, (4.4.4)

where the entries of the matrix A are given by:

A(i, j) =





SIRth CEM∗
i Gi,j

Gi,i
, if i 6= j

0, if i = j
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And p = (p1, p2, ..., pN) is the vector of transmit powers of all users. Since Gi,j > 0,

matrix A is a nonnegative irreducible matrix. By the Perron-Frobenius theorem, the

largest eigenvalue in magnitude of matrix A is real and positive [3]. Therefore, if it

happens that 1 is this eigenvalue of A, then the solution p will be the eigenvector

that corresponds to eigenvalue 1. Otherwise, the only solution of equation (4.4.4)

is the trivial solution p = 0. Since p = 0 is not a feasible solution, each user will

transmit at the lowest power level in his/her strategy space. Therefore, the Nash

equilibrium point of game G2 is unique and corresponds to an optimal point that

minimizes the total transmitted power of all users.

Equation (4.4.4) holds true for any CEM∗
i ≥ 1 including the maximum value

that users can attain at the equilibrium point. This implies that the cellular users

will attain their maximum possible CEM∗
i in their first trial, i.e., G2 is a one-shot

game.

It is easy to notice that if user i increases his power unilaterally to improve his/her

CEMi and Oi, at least one other user in the network will be harmed.

Lemma 4.4.1 implies that in interference-limited wireless Rayleigh and Nakagamai

flat-fading channels, the best policy is for all users to transmit at the minimum power

in their corresponding strategy spaces. The question that may arise is therefore:

How do we guarantee the quality of service (QoS), e.g. SIR at the BS? The following

lemma answers this question.

Lemma 4.4.2. If users in an interference-limited wireless fading channels are not

able to attain a satisfactory QoS (SIR) by transmitting at their minimum power

vector pmin = (p1−min, p2−min, ..., pN−min) in their corresponding strategy spaces, they

will not be able to attain a satisfactory QoS by transmitting at any other power vector

pl = (pl
1, p

l
2, ..., p

l
N) larger than pmin, pl > pmin component wise.

Proof : Let N= (1, 2, ..., N) be the indexing set of all active users in the cell. Sup-
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pose CEMmin
i is the CEM value user i attained by assuming that all users are

transmitting at the minimum powers in their corresponding strategy spaces, that is,

∀ i ∈ N :

CEMmin
i :=

Gi,i pi−min

SIRth

∑N
k 6=i Gi,k pk−min

, (4.4.5)

and suppose that CEM l
i is the value of CEM the ith user attains assuming all users

transmitting at pl, henceforth, ∀ i ∈ N we have:

CEM l
i :=

Gi,i p
l
i

SIRth

∑N
k 6=i Gi,k pl

k

(4.4.6)

To prove lemma 4.4.2, it is enough to prove that there is a subset of users KN ⊂ N ,

such that:

CEM l
n ≤ CEMmin

n ,∀n ∈ KN (4.4.7)

Suppose this is not true, therefore

CEM l
i > CEMmin

i . (4.4.8)

Define dl,min
i as:

dl,min
i := CEM l

i − CEMmin
i

=
1

SIRth

[
Gi,i p

l
i∑N

k 6=i Gi,k pl
k

− Gi,i pi−min∑N
k 6=i Gi,k pk−min

]
. (4.4.9)

Without loss of generality, ∀ i ∈ N let pl
i = δi pi−min, where δi > 1. Then, (4.4.9)

can be written as:

dl,min
i =

Gi,i pi−min

SIRth

[
δi∑N

k 6=i δk Gi,k pk−min

− 1∑N
k 6=i Gi,k pk−min

]
(4.4.10)

The inequality in (4.4.8) implies that dl,min
i > 0 for all i ∈ N , therefore

δi

N∑

k 6=i

Gi,k pk−min >

N∑

k 6=i

δk Gi,k pk−min (4.4.11)
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For simplicity define xi,k := Gi,k pk−min, then (4.4.11) can be expressed as:

δi

N∑

k 6=i

xi,k >

N∑

k 6=i

δk xi,k (4.4.12)

If we set i = 1 in the above equation we obtain the following result:

δ1 > δm,m = 2, 3, ..., N, (4.4.13)

while if we set i = 2, we obtain:

δ2 > δm,m = 1, 3, ..., N, (4.4.14)

From equation (4.4.13), we have δ1 > δ2, while from (4.4.14) we find δ2 > δ1, leading

to a contradiction. This proves the statement in equation (4.4.7), and concludes the

proof of lemma 4.4.2.

4.5 Simulation Results

The cellular system is assumed to have N = 50 Tx/Rx pairs. The path gains Gi,k

were generated according to a uniform distribution on the interval [0, 0.001] for all

i 6= k ∈ N and Gi,i = 1 ∀ i ∈ N . Game G2 was run for different values of the

threshold signal-to-interference ratios (SIRth) in the interval [3, 10].

In Fig. 4.1 we show the system certainty-equivalent margin values (CEM) re-

sulting from game G2 versus the threshold signal-to-interference ratios, SIRth under

both Rayleigh and Nakagami flat-fading channels. While in Fig. 4.2, we present the

resulting system outage probability, O of a Rayleigh fading channel(∗) and a Nak-

agami fading channel (◦) versus the threshold SIR (SIRth) compared to the minimum

bound 1/(1 + CEM) ( solid line) and the upper bound 1 − e−1/CEM (dashed line)

derived in [12]. In this figure, as one can see in the Rayleigh case, the upper bound

overlaps with the equilibrium outage probability which is the output of game G2.
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The results shown in Fig. 4.1 and Fig. 4.2 happened to be very close to the results

obtained using Perron-Frobenius theorem [12] (in Rayleigh fading channel) but at a

lower power allocation. This is obvious from tables 4.1 - 4.4. In these tables we show

CEMi and Oi for the first 10 users as evaluated by the Perron-Frobenius theorem

in [12] and as equilibrium outcomes of the NPG game G2 of both channel mod-

els: Rayleigh flat-fading channel and Nakagami flat-fading channel. The averages

of CEMi and Oi presented in the tables are calculated for all users in the system.

We observed that the average value of CEM obtained through NPG game G2 was

higher than that obtained by the Perron-Frobenius theorem for all values of SIRth.

The average value of O obtained through NPG game G2 was sometimes lower and

sometimes higher than that obtained by Perron-Frobenius theorem. By examining

tables 4.1 - 4.4, one can see that by transmitting at Perron-Frobenius eigenvector

(power vector), many users attain lower CEM values than they obtained when all

users transmitted at the minimum power vector. This agrees with what was proved

in lemma 4.4.2. Finally, notice that in Fig. 4.2 results show that users can achieve

better performance in a Nakagami fading channel with (m = 2) than in a Rayleigh

channel. This was expected since a Nakagami fading channel with fading figure

m = 2 represents a less severe fading channel than a Rayleigh fading channel which

is a Nakagami fading channel with fading figure m = 1.

4.6 Summary

We proved the tight relationship between the two optimization problems: minimizing

the system outage probability and maximizing the system certainty-equivalent mar-

gin under Rayleigh and Nakagami flat-fading wireless channels. A closed-form of the

outage probability under Nakagami flat-fading channel was also provided. We then

proposed an asynchronous distributed non-cooperative power control game-theoretic
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Table 4.1: Equilibrium values of CEMi and Oi for the first 10 users using in a
Rayleigh flat-fading channel Perron-Frobenius theorem and the NPG game G2 in-
troduced in this Chapter at SIRth = 3

Results using Perron-Frobenius theorem [12] Results of game G2
i pi CEMi Oi pi CEMi Oi

1 0.1292 13.7107 0.0703 0.0100 14.9809 0.0645
2 0.1162 13.7107 0.0703 0.0100 16.6629 0.0582
3 0.1476 13.7107 0.0703 0.0100 13.0747 0.0736
4 0.1482 13.7107 0.0703 0.0100 12.9549 0.0742
5 0.1290 13.7107 0.0703 0.0100 14.9275 0.0647
6 0.1192 13.7107 0.0703 0.0100 16.3274 0.0594
7 0.1297 13.7107 0.0703 0.0100 15.0442 0.0643
8 0.1312 13.7107 0.0703 0.0100 14.6970 0.0657
9 0.1327 13.7107 0.0703 0.0100 14.4091 0.0670
10 0.1361 13.7107 0.0703 0.0100 14.2906 0.0675
average 13.7107 0.0703 average 13.7823 0.0704

algorithm to optimize the system certainty-equivalent margin and the system out-

age probability. Using the proposed non-cooperative game G2, we proved that the

best power allocation in interference limited Rayleigh and Nakagami fading wireless

channels is the minimum power vector in the total strategy spaces of active users in

the system. Power was more effectively and more simply allocated according to this

proposed non-centralized algorithm than the centralized algorithm in [12].
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Table 4.2: Equilibrium values of CEMi and Oi for the first 10 users in a Rayleigh flat-
fading channel using Perron-Frobenius theorem and the NPG game G2 introduced
in this Chapter at SIRth = 10

Results using Perron-Frobenius theorem [12] Results of game G2
i pi CEMi Oi pi CEMi Oi

1 0.1439 4.0985 0.2159 0.0100 4.0243 0.2194
2 0.1541 4.0985 0.2159 0.0100 3.7254 0.2347
3 0.1266 4.0985 0.2159 0.0100 4.5414 0.1971
4 0.1497 4.0985 0.2159 0.0100 3.8603 0.2275
5 0.1375 4.0985 0.2159 0.0100 4.1930 0.2116
6 0.1378 4.0985 0.2159 0.0100 4.1877 0.2118
7 0.1096 4.0985 0.2159 0.0100 5.3148 0.1711
8 0.1514 4.0985 0.2159 0.0100 3.8264 0.2293
9 0.1398 4.0985 0.2159 0.0100 4.1414 0.2139
10 0.1384 4.0985 0.2159 0.0100 4.1889 0.2118
average 4.0985 0.2159 average 4.1255 0.2156

Table 4.3: Equilibrium values of CEMi and Oi for the first 10 users in a Nakagami
flat-fading channel using Perron-Frobenius theorem and the NPG game G2 intro-
duced in this Chapter at SIRth = 3

Results using Perron-Frobenius theorem Results of game G2
i pi CEMi Oi pi CEMi Oi

1 0.1368 13.7415 0.0580 0.0100 14.2272 0.0561
2 0.1501 13.7415 0.0580 0.0100 12.9034 0.0618
3 0.1305 13.7415 0.0580 0.0100 14.6840 0.0543
4 0.1360 13.7415 0.0580 0.0100 14.2485 0.0560
5 0.1270 13.7415 0.0580 0.0100 15.0958 0.0528
6 0.1539 13.7415 0.0580 0.0100 12.5887 0.0633
7 0.1499 13.7415 0.0580 0.0100 12.8494 0.0620
8 0.1402 13.7415 0.0580 0.0100 13.7151 0.0581
9 0.1577 13.7415 0.0580 0.0100 12.2655 0.0649
10 0.1552 13.7415 0.0580 0.0100 12.5932 0.0633
average 13.7415 0.0580 average 13.8343 0.0581
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Table 4.4: Equilibrium values of CEMi and Oi for the first 10 users in a Nakagami
flat-fading channel using Perron-Frobenius theorem and the NPG game G2 intro-
duced in this Chapter at SIRth = 10

Results using Perron-Frobenius theorem Results of game G2
i pi CEMi Oi pi CEMi Oi

1 0.1539 4.0590 0.1906 0.0100 3.7011 0.2078
2 0.1432 4.0590 0.1906 0.0100 3.9928 0.1936
3 0.1384 4.0590 0.1906 0.0100 4.1278 0.1876
4 0.1553 4.0590 0.1906 0.0100 3.6718 0.2094
5 0.1378 4.0590 0.1906 0.0100 4.1369 0.1872
6 0.1305 4.0590 0.1906 0.0100 4.3997 0.1766
7 0.1593 4.0590 0.1906 0.0100 3.5804 0.2143
8 0.1553 4.0590 0.1906 0.0100 3.6847 0.2087
9 0.1456 4.0590 0.1906 0.0100 3.9305 0.1965
10 0.1483 4.0590 0.1906 0.0100 3.8569 0.2000
average 4.0590 0.1906 average 4.0948 0.1903
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Figure 4.1: Minimum equilibrium certainty-equivalent-margin in Rayleigh and Nak-
agami fading channels versus the threshold signal-to-interference ratio.
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Figure 4.2: Maximum equilibrium Rayleigh fading induced outage probability (∗),
the lower bound of the outage probability 1

1+CEM
(solid line), the upper bound

1 − e−1/CEM (dashed line) and the maximum outage probability in a Nakagami
channel (◦) versus the threshold signal-to-interference ratio.
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Chapter 5

New Power Control Game

Theoretic Algorithms

In Chapters 2 and 3 we used a utility function (number of bits received correctly at

receiver per one Joule expanded from the battery ) that was originally proposed by

[5]. One limitation of this utility function is difficulty of writing the optimizing trans-

mit power in terms of the interference from other users and quantities of interest for

the users (e.g. desired SIR) in a closed formula. Expressing the optimizing transmit

power in a compact and closed formula leads to a fast algorithm that implement the

game, since a user just needs to plug in the local measurement broadcasted from the

BS in his formula to find the optimizer transmit power. Because otherwise, the user

at each instance he/she updates his/her transmit power based on local information

from the BS he/she needs to search through all his power strategy space to find

the optimizer. For this reason, we use a different utility function that we describe

shortly.

In this Chapter, we study a game-theoretic distributed power control algorithm

for wireless data in code division multiple access (CDMA) communication systems.
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In [26], the authors proposed a cost function which is the difference between a utility

function and a pricing function. The proposed utility function is proportional to the

capacity of the channel, while the pricing function is linear in the user’s transmit

power.

The existence and uniqueness of a Nash equilibrium point was established. More-

over, the authors in [26] offered different schemes of pricing and two methods of

updating the user’s transmit power. One limitation however of the cost function

in [26] is that under market-based pricing, and if the users desire SIRs such that

their utility factors are the same, the transmit power level will increase as the mobile

comes closer to the BS as we will show in the sequel. We propose a target function

composed of the difference between a utility function and a pricing function. The

pricing function used is a linear function of the transmit power with a slope (pricing

factor) chosen in a market-based mechanism, where the base station (BS) decides

the pricing factor and communicates it to the users in the cell. Finally, we establish

the existence and uniqueness of a Nash equilibrium operating point in an S-modular

games framework.

Our work in this Chapter was in fact inspired by the work in [26] for two reasons:

firstly, the target function we propose takes care of the limitation mentioned above,

and secondly, the proposed target function attains the optimum transmit power at

a lower value than the cost function in [26].

The remaining of this Chapter is organized as follows: In Section 5.1 we present

the system setup used in this Chapter. The existence and uniqueness of Nash equilib-

rium is established in Section 5.2. A comparison of the performance of our proposed

objective function and that of [26] is presented in 5.3. Simulation results are outlined

in Section 5.4, and the summary of this Chapter is presented in Section 5.5.
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5.1 System Setup

The system under study is an uplink CDMA communication system in a single cell

with N active users sharing the radio channel. A user i is at distance di meters from

the BS with path gain hi = 0.097/d4
i , where the constant 0.097 is to approximate

the effect of log-normal shadowing. The ith user accesses the radio channel by

transmitting to the BS at a power level pi selected from his strategy space (action

profile) Pi. The transmission rate of user i is Ri. The proposed target function is

the difference between a utility function and a pricing function. The pricing function

is a linear function of the user’s transmit power level with a slope (pricing factor)

evaluated in a market-based mechanism, in other words, it is chosen by the BS and

then communicated to the users in the cell. The proposed target function is given

by:

Li(pi, p−i, λ) = ui arctan(1 + γi)− λ pi (5.1.1)

where λ > 0 is the pricing factor broadcasted by the BS to all users, ui is the utility

factor of the ith user selected locally based on the desired SIR, which also measures

the willingness of user i to pay. Vector p−i is the vector of the transmit powers of all

users except the ith user, and γi is the signal-to-interference ratio (SIR) defined by:

γi =
Gi hi pi∑N

k 6=i hk pk + σ2
(5.1.2)

where Gi = W/Ri is the spreading gain of user i and W is the chip rate (spread spec-

trum bandwidth ) that is common for all users, and σ2 is the background AWGN

power at the receiver in the BS. The optimization problem of each user is the follow-

ing: Assume N = {1, 2, · · · , N} is the indexing set of the users currently in the cell.

A user i is supposed to find the optimizing transmit power level that maximizes the

target function Li(pi, p−i, λ) defined in (5.1.1) as given in the following distributed

game Gλ
1 :

Gλ
1 : max

pi∈Pi
(ui arctan(1 + γi)− λ pi) , ∀ i ∈ N (5.1.3)
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For the sake of simplicity, we may refer to Li(pi, p−i, λ) by only Li. In the next

Section we establish the existence of a Nash equilibrium point of game Gλ
1 in the

S-modular games framework.

5.2 Existence of Nash Equilibrium

The optimization problem of the ith user defined in game Gλ
1 is to find the transmit

power level po
i from strategy space Pi that maximizes the utility function defined in

(5.1.1). To find the maximizing po
i and the conditions for attaining po

i , we evaluate

the first-order partial derivative of the cost function (5.1.1) with respect to pi as

follows:

∂Li

∂pi

=
Gi ui hi

I−i

1

1 + (1 + γi)2
− λ (5.2.1)

where I−i :=
∑N

k 6=i hk pk + σ2 is the sum of the interference from other users and the

AWGN power at the BS. The maximizing transmit power po
i is thus given by:

po
i =

1

Gi hi

[νi − I−i] (5.2.2)

where ν2
i := Gi ui hi

λ
I−i−I2

−i. Note that the second-order derivative ∂2Li

∂p2
i

< 0, ∀ i ∈ N ,

which means that po
i is unique when it exists. By subtracting 1

Gi
po

i from both sides

of (5.2.2), it can be written as:

po
i =

1

(Gi − 1) hi

[νi − I] (5.2.3)

where I =
∑N

k=1 hk pk+σ2 is the measure of the number of users requesting admission

to the system, i.e., it quantifies the level of demand in the system.

Note 5.2.1. A necessary condition for the ith user to be active is that:

ui >
λ I−i

Gi hi

[1 + (1 +
γi

Gi

)2], ∀ i ∈ N (5.2.4)
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This is fairly simple to see since the ith user is active if only po
i > 0, ∀ i ∈ N ,

and this implies that

νi > I ⇒ ν2
i > I2

and with simple mathematical manipulations we get the result in note 5.2.1. The

importance of equation (5.2.4) is that if the minimum required SIR of user i is γi = γ∗i

then he/she can unilaterally choose his/her utility factor ui = ρi λ I−i

Gi hi
[1 + (1 +

γ∗i
Gi

)2],

with ρi > 1 to guarantee attaining this minimum SIR. Note that the utility factor

ui is a function of the interference from all other users I−i. Henceforth, if the I−i

is large, i.e., a large number of users are trying to be admitted to the system, user

i has to choose ui large enough to get his/her minimum SIR as long as his needed

maximizing transmit power level po
i is in his/her strategy space, else he/she may

choose not to transmit at all. Next, we propose the best response of user i in game

Gλ
1 as follows:

Proposition 5.2.1. For game Gλ
1 defined in (5.1.3), the best response of user i,

given the power vector of the other users p−i is given by:

ri(p−i) = min (po
i , pi−max) , ∀ i ∈ N (5.2.5)

where pi−max is the maximum allowed power in the ith user’s strategy space Pi.

Proof : From equation (5.2.2), po
i is the unconstrained maximizer of the target func-

tion Li, i.e., po
i =

argmax
pi∈R+ Li. And since the second-order derivative of Li with re-

spect to pi is negative ∀pi ∈ R+, then this maximizer is unique. Now, assume that

po
i is not feasible, that is, po

i /∈ Pi, then user i will get his/her maximum at pi−max

because the target function is increasing on the set {pi : pi < po
i}. This implies that

pi = pi−max is the best response of user i given p−i.

In the following Section we offer a discussion of S-modular games to help in

establishing the existence of Nash equilibrium points for game Gλ
1 .
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5.2.1 S-Modular Games and Gλ
1

We present a brief description of S-modular games in order to establish the existence

and uniqueness of a Nash equilibrium operating point. S-modular games were first

introduced to the literature by Topkis in 1970 [27] (see Appendix A). The advantage

of S-modular games is that the strong conditions of quasiconvexity and quasiconcav-

ity of target functions (cost or utility functions, respectively) are not needed for the

establishment of Nash equilibrium points. See Section A.3 for the definition of the

notion (NDD) and S-modular games.

The impact of the NDD property in supermodular games is that the utility func-

tion of all users has a best response correspondence that converges to a fixed point,

which is a Nash equilibrium operating point. The following theorem guarantees the

existence of a Nash equilibrium point in S-modular games [27]:

Theorem 5.2.1. The Nash equilibria set of S-modular game is not empty. Also, the

Nash equilibria set has a smallest and largest elements.

Proof : The proof can be found in [27].

This theorem states that the Nash equilibria set S has the form, S =[ps,pl],

where ps and pl are the smallest and largest (component wise) power vectors in the

equilibria set, i.e. the equilibria set S is bounded from below and above. However,

it does not guarantee that all points in S are equilibrium points [8], although the

equilibrium points set p is a subset of S, i.e. p ⊂ S.

In our case, Gλ
1 has a parameter λ, the pricing factor, that is outside the control

of any user in the CDMA cellular system. Such a parameter is called an exogenous

parameter in the S-modular games context, and the corresponding S-modular game

is sometimes called a parameterized game with complementarities. See Appendix A

for the definition of such games. The next theorem describes the behavior of ps(ω)
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and pl(ω), the smallest and largest elements of the equilibria set S, respectively, with

respect to the exogenous parameter ω.

Theorem 5.2.2. Both ps(ω) and pl(ω) are nondecreasing with ω in a parameterized

game with complementarities.

Proof : The proof can be found in [28].

Theorem 5.2.2 tells us that both ps(λ) and pl(λ) are non-increasing with λ in the

game Gλ
1 . This is intuitive since increasing the price decreases the willingness of the

users to transmit at higher power levels. The following lemma states an important

result:

Lemma 5.2.1. The game Gλ
1 defined in (5.1.3) is a supermodular game or a param-

eterized game with complementarities if each user in the system has the following

strategy space Pj ⊂ [p
′
j,∞), ∀j = 1, 2, · · · , N , where p

′
j is the transmit power level

such that γ
′
j =

Gj hj p
′
j

I−j
=
√

2. Accordingly, game Gλ
1 has a Nash equilibria set.

Proof : First, we prove that the target function Lj(pj, p−j, λ) has NDD property

in (pj, p−j) , ∀ pj ∈ Pj. By evaluating the second-order derivative of Lj(pj, p−j, λ)

with respect to pj and pi as follows:

∂2Lj(pj, p−j, λ)

∂pj ∂pi

= χj,i (γ2
j − 2), ∀ i 6= j (5.2.6)

where

χj,i =
Gj uj hj hi

I2
−j [1 + (1 + γj)2]2

we find that χj,i > 0, ∀pj ∈ R+, and the sign of the second-order derivative is

determined by (γ2
j − 2), and this is positive for all γj > γ

′
j =

√
2. Second, we

prove that Lj has NDD property in (pj, ω), where we make the change of variable
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ω = −λ. Then we evaluate the second-order derivative of Lj with respect to pj and

ω as follows:

∂2Lj(pj, p−j, λ)

∂pj ∂ω
= 1, ∀pj ∈ Pj,∀ j ∈ N (5.2.7)

As one can see that
∂2Lj

∂pj ∂ω
> 0, ∀pj ∈ P j and according to definition A.3.3, the game

Gλ
1 is a supermodular game or a parameterized game with complementarities. Thus,

by theorem 5.2.1 it has a Nash equilibria set.

The following theorem guarantees the uniqueness of a Nash equilibrium operating

point of game Gλ
1 .

Theorem 5.2.3. If a power control algorithm with a standard best response function

has a Nash equilibrium point, then this Nash equilibrium point is unique

Proof : The proof can be found in [2].

Theorem 5.2.3 allows us to state the following lemma:

Lemma 5.2.2. The game Gλ
1 has a unique Nash equilibrium operating point.

Proof : Lemma 5.2.1 and theorem 5.2.1 show that the game Gλ
1 has a Nash equilib-

rium point, and what we need to prove is that this Nash equilibrium point is unique.

Let us denote the vector of best responses of all users by ~r(p) = (r1(p−1), r2(p−2),

· · · , rN(p−N)). By theorem 5.2.3, uniqueness can be guaranteed by proving that

the vector of best responses of all users is a standard vector function, or simply a

standard function. To prove that ~r(p) is a standard vector function we only need to

check the three conditions in definition A.2.1.

The proof of positivity is trivial, since Pi ⊂ R+ and ri(p−i) ∈ Pi, ∀ i ∈ N . The

monotonicity results from the definition of the supermodular game that has the NDD
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property in (pi, p−i), ∀ i ∈ N . To prove the scalability, it is enough to prove that

po
i (p−i) is a scalable function and then the scalability of ~r(p) comes through. Let us

rewrite equation (5.2.2) as follows:

po
i (p−i) =

1

Gi hi

[
νi(p−i)− I−i(p−i)

]
(5.2.8)

then,

po
i (δ p−i) =

δ

Gi hi

[√
Gi ui hi

δ λ
I−i(p−i)− I2

−i(p−i)− I−i(p−i)

]
, δ > 1 (5.2.9)

and obviously,

po
i (δ p−i) < δ po

i (p−i) =
δ

Gi hi

[√
Gi ui hi

λ
I−i(p−i)− I2

−i(p−i)− I−i(p−i)

]
(5.2.10)

and this implies the scalability of ~r(p), therefore ~r(p) is a standard function. Since

~r(p) is a standard function, the equilibrium point p is unique by theorem 5.2.3.

If we scale the resulted NE power vector by a constant 0 < ρ < 1 we get higher

utilities for all users, in other words NE operating point is not Pareto optimal.

Now, we consider an asynchronous power control algorithm which converges to

the unique Nash equilibrium point p of game Gλ
1 . In this algorithm the users update

their powers in the same manner as in [8]. This algorithm generates a sequence of

power vectors that converges to p = ps(λ) = pl(λ), the lowest and the largest power

vector in S. Assume user j updates its power level at time instances in the set

Tj = {tj1, tj2, · · · }, with tjk < tjk+1 and tj0 = 0 for all j ∈ N . Let T = {t1, t2, · · · }
where T = T1

⋃
T2

⋃ · · ·⋃ TN with tk < tk+1 and define p to be the power vector

picked randomly from the total strategy space P = P1

⋃
P2

⋃ · · ·⋃ PN .

Algorithm 5.2.1. Consider the game Gλ
1 as given in (5.1.3) and generate a sequence

of power vectors as follows:

1. Set the power vector at time t = 0: p(0) = p, let k = 1
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2. For all j ∈ N , such that tk ∈ Tj:

(a) Given p(tk−1), choose uj >
λ I−j

Gj hj
[1 + (1 +

γ∗j
Gj

)2], then calculate po
j(tk) =

argmax
pj∈Pj

Lj (pj, p−j(tk−1), λ)

(b) Let the transmit power pj(tk) = rj(tk) = min(po
j(tk), pj−max)

3. If p(tk) = p(tk−1) stop and declare the Nash equilibrium power vector as p(tk),

else let k := k + 1 and go to 2.

5.3 Proposed Target Function Compared to Pre-

vious Target Functions

In this Section we compare the performance of our proposed target (utility) function

with the performance of the cost function defined in [26].

Lemma 5.3.1. The cost function of [26]:

Jj(pj, p−j) = λ pj − uj log(1 + γj) (5.3.1)

when all users choose the same utility factor uj = ui = u, ∀ j, i ∈ N in a market-

based pricing, will result in a user closer to the BS transmitting at a higher power

level than a distant user.

Proof : In [26] all users are transmitting data at the same rate, that is Ri = R and

Gi = G, ∀i ∈ N . We shall use the following indexing: i < k ⇒ hi > hk, i.e., the ith

user is closer than the kth user to the BS. The minimizing transmit power of the ith

user p∗i is given by [26]:

p∗i =
G

(G− 1) hi

(
ai − 1

G

N∑

k=1

hk pk

)
(5.3.2)
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where ai = ui hi

λ
− σ2

G
. For simplicity define β1 := G

G−1
and β2 := 1

G−1

∑N
k=1 hk pk,

therefore we have:

p∗i = β1 (
ui

λ
− σ2

Ghi

)− β2

hi

(5.3.3)

and

p∗k = β1 (
uk

λ
− σ2

Ghk

)− β2

hk

(5.3.4)

By subtracting (5.3.3) from (5.3.4) we get:

p∗k − p∗i =
β1

λ
(uk − ui) + (

β1 σ2

G
+ β2) (

1

hi

− 1

hk

) (5.3.5)

Now, if we set uk = ui we obtain:

p∗k − p∗i = (
β1 σ2

G
+ β2) (

1

hi

− 1

hk

) (5.3.6)

Observing (5.3.6), one can see that (β1 σ2

G
+ β2) > 0, while ( 1

hi
− 1

hk
) < 0 and this

implies p∗k < p∗i

Lemma 5.3.2. The proposed cost function Lj(pj, p−j, λ) in (5.1.1) with equal trans-

mission rates for all users (Ri = R) does not suffer the limitation described in lemma

5.3.1, i.e. with ui = uk, i, k ∈ N users closer to BS send at a lower power than the

distant users.

Proof : By using the same indexing as above, i.e., i < k ⇒ hi > hk, and

(G− 1) (po
k − po

i ) =
νk − I

hk

+
I − νi

hi

(5.3.7)

we find that it is enough to prove that

νk − I

hk

>

∣∣∣∣
I − νi

hi

∣∣∣∣ =
νi − I

hi

where |x| is the absolute value of x, or equivalently prove that:

νk

hk

− νi

hi

> I (
1

hk

− 1

hi

) (5.3.8)
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to conclude the proof. Using the fact that I−k > I−i and from equation (5.2.2) we

find that νk > νi, henceforth

νk

hk

− νi

hi

> νi (
1

hk

− 1

hi

) > I (
1

hk

− 1

hi

)

and this holds for all ui and uk that satisfy the condition in note 5.2.1. This concludes

the proof.

This allows us to introduce the following remark:

Remark 5.3.1. A generic game with a target function composed of a utility function

f(γi) (concave on R+) and a linear pricing function as follows:

Lg
i (pi, p−i, λ) = ui f(γi)− λ pi, (5.3.9)

does not suffer the limitation described in lemma 5.3.1, if with hk < hi, it satisfies

the following condition:

uk

ui

>
γi f

′
(γi)

γk f ′(γk)
, (5.3.10)

where f
′
(γi) is the derivative of f(γi) with respect to γi.

Proof : First, we need to find the optimizing power pg
i of user i by evaluating the

first-order derivative of Lg
i (pi, p−i, λ) with respect to pi and setting it to zero:

∂ Lg
i (pi, p−i, λ)

∂ pi

=
γi

pi

f
′
(γi)− λ = 0 (5.3.11)

Then the optimizing power pg
i of user i is given by:

pg
i =

ui

λ
γi f

′
(γi) (5.3.12)

Then the ratio of the optimizing power pg
k of the kth user to the optimizing power

pg
i of the ith user is given by:

pg
k

pg
i

=
uk

ui

γk f
′
(γk)

γi f
′(γi)

> 1, (5.3.13)

91



Chapter 5. New Power Control Game Theoretic Algorithms

and this is equivalent to the following:

uk

ui

>
γi f

′
(γi)

γk f ′(γk)
(5.3.14)

5.4 Simulation results

In this Section we compare the performance of game Gλ
1 in terms of the resulting

Nash power vector, the outcome of algorithm 5.2.1, and the attained SIRs of all users.

Then we compare these results with those obtained by the following distributed game,

Gλ
2 :

Gλ
2 : min

pi∈Pi
(λ pi − ui log(1 + γi)) (5.4.1)

The target function we are minimizing in the game Gλ
2 is the cost function in [26].

As we mentioned earlier, we are studying an uplink wireless CDMA link in a single

cell. The number of active users in the cell is N = 9 with the following distances

from the BS, d = [310, 460, 570, 660, 740, 810, 880, 940, 1000] in meters. The system’s

parameters and their values used in this study are given in Table 5.1.

In Fig. 5.1 and Fig. 5.3 we show the equilibrium powers as a result of games Gλ
1

and Gλ
2 versus the distance of the users from the BS. The vector of utility factors

assigned to the users in these figures is ~u = [1, 2, 5, 8, 10, 15, 20, 30, 42] and all users

are assumed to transmit at the same transmission rate Ri = 104,∀i ∈ N . These two

figures show that the Nash equilibrium point of game Gλ
1 is Pareto dominant with

respect to Nash equilibrium point of game Gλ
2 . In Fig. 5.2 and Fig. 5.4 we present

the resulting SIRs at equilibrium of both games versus the distance of the users from

the BS. These two figures show that the Pareto dominance of game Gλ
1 was not a

compromise on the attained SIRs. Clearly, Fig. 5.2 shows that the farthest 6 users
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were able to obtain higher SIRs through game Gλ
1 than they got through game Gλ

2 .

While in Fig. 5.4 the same conclusion applies for the farthest 4 users from the BS.

In general we can say that game Gλ
1 is more fair than game Gλ

2 with users far away

from the BS.

In the previous figures, results were obtained by assigning the same fixed values

of the utility factors ui, ∀ i ∈ N in both games Gλ
1 and Gλ

2 . In Fig. 5.5 and Fig. 5.6,

we show the results obtained by executing both games with each user unilaterally

choosing his utility factor as follows: In game Gλ
1 , user i chooses his utility factor ui

such that:

ui =
ρi λ I−i

Gi hi

[1 + (1 +
γ∗i
Gi

)2], (5.4.2)

where γ∗i is the ith minimum desired SIR in γ∗ = [5, 15, 10, 20, 15, 15, 15, 25, 18] and

ρi is the ith component of ρ = 20 γ∗. In game Gλ
2 , user i chooses his utility factor ui

as follows [26]:

ui =
ρi λ I−i

Gi hi

[1 + γ∗i ] (5.4.3)

Fig. 5.5 shows that the Pareto dominance of Nash equilibrium point of game Gλ
1

with respect to Nash equilibrium point of game Gλ
2 is more clearly emphasized than

in Fig. 5.1 and Fig. 5.3. The reason for this, is that for the same requirements of

the minimum SIRs γ∗i in both games, users in game Gλ
2 choose higher utility factors

than users in game Gλ
1 as one can see from equations (5.4.2) and (5.4.3). Here we

give the values of the utility factors of all users at equilibrium for the two games:

Under game Gλ
1 , ~u = [ 0.0012, 0.0173, 0.0272, 0.0979, 0.1159, 0.1664, 0.2318, 0.5043,

0.4641]. While, under game Gλ
1 , ~u = [2.6, 112.6, 151.5, 1107.1, 1027.6, 1496.1, 2103.1,

7454.9, 5043.1]. One needs to know that high utility factors imply that users will use

high transmit powers to achieve their goals. In Fig. 5.6 we present the attained SIRs

by both games at equilibrium and the minimum required SIRs by all users versus

the distance between the users and the BS. Under game Gλ
1 all users (the closer and
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Table 5.1: the values of parameters used in the simulations.

W , spread spectrum bandwidth 106, 107 Hz
σ2, AWGN power at the BS 5× 10−15

N , number of users in the cell 9
W/R, spreading gain 100, 1000
pi−max, maximum power in Pi, ∀i ∈ N 1 watt

the distant ones) were able to make a good connection with the BS, while under Gλ
2

the farthest two users were not able to attain their minimum SIRs.

In Fig. 5.1-Fig. 5.6 we run the simulations under the assumption that all users

are sending data at the same transmission rate Ri = 104, ∀ i ∈ N . In Fig. 5.7

and Fig. 5.8, the simulations were conducted in a more realistic environment, where

users are sending data at different transmission rates ~R = [ 104, 103, 103, 102, 101, 105,

105, 105, 103], but they are assumed to have the same spreading bandwidth W = 107.

In this case each user’s choice of the transmit power depends on his/her desired SIR,

his distance from the BS, and the transmission rate. A low transmission rate Ri

of user i implies high spreading gain Gi and this results in a low level transmit

power pi required to attain some minimum target SIR γ∗i . In Fig. 5.7, we show the

equilibrium powers of both games Gλ
1 and Gλ

2 versus the distance of the users from

the BS in meters. The high dependence of equilibrium powers at the transmission

rates is very clear in both games with large Pareto dominance obtained by game Gλ
1

with respect to Gλ
2 . All users with their different transmission rates were able to top

their minimum required SIRs through game Gλ
1 , while 3 users failed to achieve their

minimum required SIRs through game Gλ
2 as one can see in Fig. 5.8.
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Figure 5.1: Equilibrium powers of the game Gλ
1 (∗) and equilibrium powers of the

game Gλ
2 (o) versus the distance between the users and the BS with spreading gain

G = 102 and pricing factor λ = 102 .

5.5 Summary

In this Chapter a game-theoretic distributed power control algorithm for wireless

data in CDMA communication systems was studied. We proposed a target function
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Figure 5.2: Equilibrium SIRs of the game Gλ
1 (∗) and equilibrium SIRs of the game

Gλ
2 (o) versus the distance between the users and the BS with spreading gain G = 102,

pricing factor λ = 102 and transmission rates Ri = 104, ∀ i ∈ N .
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Figure 5.3: Equilibrium powers of the game Gλ
1 (∗) and equilibrium powers of the

game Gλ
2 (o) versus the distance between the users and the BS with spreading gain

G = 103, pricing factor λ = 101 and transmission rates Ri = 104, ∀ i ∈ N .

which is composed of the difference between a utility function and a pricing function.

We established the existence and uniqueness of a Nash equilibrium point using the

S-modular games framework. Then, we compared the performance of the proposed

target function with the performance of the cost function in [26]. We found that the
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Figure 5.4: Equilibrium SIRs of the game Gλ
1 (∗) and equilibrium SIRs of the game

Gλ
2 (o) versus the distance between the users and the BS with spreading gain G = 103,

pricing factor λ = 101 and transmission rates Ri = 104, ∀ i ∈ N .
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Figure 5.5: Equilibrium powers of the game Gλ
1 (∗) and equilibrium powers of the

game Gλ
2 (o) versus the distance between the users and the BS with spreading gain

G = 103, pricing factor λ = 101 and transmission rates Ri = 104, ∀ i ∈ N .

Nash equilibrium point resulting from our proposed target function exhibits Pareto

dominance with respect to the Nash equilibrium point of the cost function in [26].

Pareto dominance in the resulting Nash power vector was not achieved at the expense
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Figure 5.6: Equilibrium SIRs of the game Gλ
1 (∗), equilibrium SIRs of the game

Gλ
2 (o) and the minimum desired SIRs of the users (¦) versus the distance between

the users and the BS with spreading gain G = 103, pricing factor λ = 101 and
transmission rates Ri = 104, ∀ i ∈ N .
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Figure 5.7: Equilibrium powers of the game Gλ
1 (∗) and equilibrium powers of the

game Gλ
2 (o) versus the distance between the users and the BS with spreading band-

width W = 107, pricing factor λ = 101 and transmission rates ~R = [ 104, 103, 103,
102, 101, 105, 105, 105, 103].

of the attained SIRs.
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Figure 5.8: Equilibrium SIRs of the game Gλ
1 (∗), equilibrium SIRs of the game Gλ

2

(o) and the minimum desired SIRs of the users (¦) versus the distance between the
users and the BS with spreading bandwidth W = 107, pricing factor λ = 101 and
transmission rates ~R = [104, 103, 103, 102, 101, 105, 105, 105, 103] .
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Chapter 6

New Distributed Joint Rate and

Power Control Games

The new generations of CDMA communications systems (G3, BG3 and G4) and

adhoc networks are expected to support multirate services (multimedia applications,

email, Internet, etc.) in addition to telephone service (fixed rate service) which

was the only service offered by G1 and G2. Each user in these new generations

of communications systems has different QoSs (e.g. SIR, FER and data rate) that

he/she is willing to fulfill by accessing the common radio interface. This establishes

a strong need for new algorithms that enable the efficient spectral use of the common

radio interface.

The different QoSs needs of each user restrict attention to more realistic algo-

rithms that optimize multiple objectives: power consumption, SIR, FER and data

rate. Multi-objective algorithms are important because they give a comprehensive

picture of the performance of the system. In other words, sometimes if we just con-

sider algorithms for only optimizing the power consumption as researchers have been

doing so far, results may be misleading as the attained SIR may not be enough to
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support the data rate required by the user who may then prefer not to transmit.

Due to the strong relation between the SIR and the data rate at which a user can

send information as was shown by Shannon [25], it is natural to propose joint power

and rate control algorithms for wireless data. This idea was conducted and studied

in non game-theoretic framework as in [30],[31].

Prior work that have emerged to address this problem have used a centralized

algorithm (c.f [33]). Because of the difficulty in implementing the centralized algo-

rithms, and to avoid the extensive number of control signals that cause delays in

the system operation, a need for distributed algorithms arose. Game theory was

shown to be an appropriate tool for finding power control algorithms such as [5]-[10]

and rate flow control algorithms such as [35, 36] and [32, 37]. In this Chapter we

show that game theory is also an appropriate tool for finding a distributed algorithms

that solve a joint rate and power control optimization problem. In a distributed joint

rate and power control algorithm, each user efficiently chooses his transmission rate

and power level in an attempt to optimize a target function. This target function

maps the level of the quality-of-service (QoS) of the user onto the real line. We are

aware of only one paper that addresses the problem of jointly optimizing the rate

and power in a game-theoretic distributed fashion [38]. Unfortunately, the authors in

[38] forced the transmission rates of all users to be equal to guarantee the uniqueness

of Nash equilibrium point. Moreover, the resulting unique Nash equilibrium point is

not Pareto optimal (efficient).

To solve the problem of jointly optimizing the rate and the power in a distributed

fashion, we propose two layered non-cooperative games that take place at the user

level as follows: The first game G1 is responsible for allocating the optimal transmis-

sion rates for all users, then providing the second game with a vector of constants

M = (M1,M2, · · · ,MN) for a reason that will become clear shortly. The second

game G2 is responsible for evaluating the optimal transmit power levels that support
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the resulting Nash equilibrium transmission rates of game G1 using M. The target

function that sets the rules for the users in G1 is the difference between two functions,

a utility function and a pricing function. The pricing function is a linear function of

the user’s transmission rate with a slope (pricing factor) evaluated in a market-based

mechanism. In other words, it is chosen by the BS and then communicated to the

users in the cell. While in game G2, the pricing function is a linear function with a

slope Mi, ∀i = 1, 2, · · · , N as we describe in the sequel.

The remaining of this Chapter is organized as follows: In Section 6.1 we intro-

duce the system model and our approach to solve the joint rate and power control

optimization problem. Existence of Nash equilibria is established in both games in

Section 6.2. we present our simulation results in Section 6.3. Finally, the summary

of this Chapter is presented in Section 6.4.

6.1 System Model and Our Approach

The setup in this Chapter is as follows: Suppose we have N Tx/Rx pairs (users) in a

mobile cellular network. The receivers are not necessarily physically separated. The

ith transmitter is supposed to send messages at a power level pi from its convex strat-

egy space Pi to the ith receiver. User i sends data at a rate ri from its convex strategy

space Ri. The received power level at the kth receiver from the ith transmitter is

given as Gk,ipi, where Gk,i > 0 is the path gain from the ith transmitter to the kth

receiver. This gain may represent spreading gain and/or cross correlation between

codes in CDMA systems. It can also represent coding gain, log-normal shadowing

and antenna gains, or any gain that captures the effect of a fading channel. The

index set of users in the network is denoted by N = {1, 2, · · · , N}.

The game G1 chosen to optimally allocate the transmission rates for the users
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optimally is given by:

G1 : max
ri∈Ri

{Li(ri, r−i, λ) = ui log(1 + Ki ri) + βi log(ri − ri−min)− λ ri} (6.1.1)

Where Ki = (
∑N

k 6=i rk)
−1, λ > 0 is the pricing factor broadcasted by the BS to

all users (market-based pricing scheme), and ui is the utility factor of the ith user

selected locally based on the desired transmission rate, which also measures the

willingness of user i to pay. Finally, βi is a constant selected such that βi << ui, and

ri−min is the minimum required transmission rate.

The first term of the utility function is chosen to maximize the transmission

rate of user i, while the second term works as a barrier to prevent the ith user’s

transmission rate from going below the minimum required rate, and also to help the

fair allocation of the transmission rates among the users. The goal of the pricing

function λ ri is to prevent a greedy use of the available radio channel capacity.

The game G2 responsible for allocating the transmit power levels that support

the resulting Nash equilibrium rates ro
i ,∀i = 1, 2, · · · , N of game G1 has the following

form:

G2 : max
pi∈Pi

{
gi(pi, p−i,Mi) = log(γi)−Mi pi

}
(6.1.2)

where Mi is given by:

Mi = (Ii exp(ro
i ))

−1, (6.1.3)

and Ii =
∑N

k 6=i Gi,k pk+σ2

Gi,i
is the effective interference that user i needs to overcome.

Vectors r−i and p−i are the vectors of the transmission rates and transmit powers

of all users except for the ith user, and γi is the signal-to-interference ratio (SIR)

defined by:

γi =
Gi,i pi∑N

k 6=i Gi,k pk + σ2
(6.1.4)
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In an application where the spectrum and the power are limited resources, it is

recommended to use a spectrally and power efficient modulation technique like M-

QAM. An empirical link rate model for M-QAM of user i is given by [34]:

ri = µ log(1 + θi γi) (6.1.5)

Where θi = −1.5/ln(5 BERi) with BERi is the target bit-error-rate of user i. The

constant µ is related to the base of the logarithm and other system constants (e.g.

the channel bandwidth). In this Chapter we use the following approximation of

(6.1.5) at high SIR [33]

ri = log(γi), (6.1.6)

where ri is normalized by the channel bandwidth with units nats/s/Hz. A user can

change his transmission rate by adapting different modulation formats (e.g. 2-QAM,

4-QAM, ...). Therefore, the transmission rate of each user belongs to a discrete

set, but in this Chapter we assume that the transmission rates are continuous for

simplicity. In the next Section we establish the existence, uniqueness, and optimality

of a equilibrium point (ro, po) of both games.

6.2 Existence of Nash Equilibrium

In this Section we study in detail both non-cooperative rate control game with pricing

(NRGP) G1 and non-cooperative power control game with pricing (NPGP) G2.

6.2.1 Non-Cooperative Rate Control Game with

Pricing (NRGP)

The optimization problem of the ith user defined in game G1 is to find the transmis-

sion rate ro
i from the strategy space Ri that maximizes the utility function defined
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in (6.1.1). To find the maximizing ro
i we evaluate the first-order partial derivative of

the target function (6.1.1) with respect to ri as follows:

∂Li

∂ri

=
ui Ki

1 + Ki ri

+
βi

ri − ri−min

− λ (6.2.1)

The maximizing transmission rate of user i, ro
i is thus given by:

ro
i = −1

2
Bi +

√
1

4
B2

i + Ci (6.2.2)

where Bi = 1
Ki
− (ri−min + ui

λ
+ βi

λ
) and Ci = ri−min

Ki
− ui ri−min

λ
+ βi

Ki λ
. Note that the

second-order derivative ∂2Li

∂r2
i

< 0,∀ i ∈ N , which means that Li is a strictly concave

function of ri. Therefore, Li is a quasiconcave function optimized on a convex set Ri,

and game theory results guarantee the existence of a Nash equilibrium point [29].

Note 6.2.1. The maximizing transmission rate ro
i is feasible only if ui satisfies the

following condition:

ui <
1

Ki

(
λ +

βi

ri−min

)

This results from the fact that Ci should be positive in order to guarantee that

ro
i is feasible (positive). The impact of this upper bound on the utility factor ui is

preventing user i from being very greedy and selfish in using the spectrum, since

increasing the utility factor beyond the upper bound will result in a negative trans-

mission rate which is not feasible and hence canceling such greedy user from the game.

In the remainder of this Section we prove the uniqueness of this Nash equilibrium

point. We first need the following result.

Proposition 6.2.1. For game G1 defined in (6.1.1), the best response of user i,

given the transmission rates vector of the other users r−i is given by:

ρi(r−i) = min (ro
i , ri−max) , ∀ i ∈ N (6.2.3)

where ri−max is the maximum allowed transmission rate in the ith user’s strategy

space Ri.
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Proof. First, we define the best response function ρi(r−i) of the ith user as the best

action that user i can take to attain the maximum pay off given the other users’

actions r−i. That is, ρi(r−i) = {ri : Li(ri, r−i) ≥ Li(r
′
i, r−i),∀ r

′
i ∈ Ri}, where this set

contains only one point.

From equation (6.2.2), ro
i is the unconstrained maximizer of the target function

Li, i.e., ro
i =

argmax
ri∈R+ Li. And since the second-order derivative of Li with respect to

pi is negative ∀ri ∈ R+, then this maximizer is unique. Now, assume that ro
i is not

feasible, that is, ro
i /∈ Ri, then user i will get his/her maximum at ri−max because the

target function is increasing on the set {ri : ri < ro
i }. This implies that ri = ri−max

is the best response of user i given r−i.

The following theorem guarantees the uniqueness of the Nash equilibrium oper-

ating point of game G1.

Theorem 6.2.1. [2] If a power control algorithm with a standard best response func-

tion has a Nash equilibrium point, then this Nash equilibrium point is unique

Proof. The proof can be found in [2].

Theorem 6.2.1 allows us to state the following lemma:

Lemma 6.2.1. In game G1, the best response vector of all users given by:

ρ(r) = (ρ1(r), ρ2(r), · · · , ρN(r))

is a standard vector function. Therefore, by theorem 6.2.1, game G1 has a unique

Nash equilibrium point ro = (ro
1, ro

2, · · · , ro
N).

The proof can be argued the same way as lemma 5.2.2.
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6.2.2 Non-cooperative Power Control Game with

Pricing (NPGP)

The optimization problem of user i defined in game G2 defined by (6.1.2) is to find the

maximizing transmit power level po
i of the utility function from the convex strategy

space Pi . To find the maximizing po
i we evaluate the first-order partial derivative of

the target function (6.1.2) with respect to pi as follows:

∂gi

∂pi

=
1

Ii γi

−Mi, (6.2.4)

By substituting for the value of Mi, the maximizing transmit power level is thus

given by:

po
i = Ii exp(ro

i ) (6.2.5)

The transmit power level po
i represents the minimal power required to support the

optimal transmission rate ro
i , i.e., there is no wasted transmit power. Note that

the second-order derivative of gi with respect to pi is ∂2gi

∂p2
i

= −1/p2
i < 0,∀ i ∈ N .

Therefore, gi is a strictly concave function, and using the same argument for Li in

G1, there exists a Nash equilibrium point po = (po
1, po

2, · · · , po
N) in game G2. This

Nash equilibrium point is Pareto optimal in the sense that it represents the lowest

aggregate transmit power levels to support the resulting Nash transmission rates of

game G1 as we show in lemma 6.2.2.

In what follows we prove the uniqueness of the Nash equilibrium point of game

G2. We propose the following best response of user i in game G2:

Proposition 6.2.2. For game G2 defined in (6.1.2), the best response of user i,

given the transmit power levels vector of the other users p−i is given by:

νi(r−i) = min (po
i , pi−max) , ∀ i ∈ N (6.2.6)

where pi−max is the maximum transmit power level in the ith user’s strategy space Pi.
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Proof. The proof is similar to that of proposition 6.2.1.

Then, the uniqueness of Nash equilibrium operating point can be proved the

same way as in game G1 since the best response vector of users in G2 given as

ν(r) = (ν1(r), ν2(r), · · · , νN(r)) is also a standard function.

The following Lemma guarantees Pareto optimality (efficiency) of the equilibrium

point (ro, po) of both games G1 and G2.

Lemma 6.2.2. The Nash equilibrium point (ro, po) of both NRGP and NPGP games

G1 and G2, respectively is Pareto optimal. Mathematically speaking, for G1, @ r∗ =

(r∗1, r∗2, · · · , r∗N) : Lj(r
∗) ≥ Lj(r

o), ∀ j ∈ N and Lm(r∗) > Lm(ro) for some m ∈ N ,

with r∗ > ro component wise. For G2, @ p∗ = (p∗1, p∗2, · · · , p∗N) : gj(p
∗) ≥ gj(p

o),

∀ j ∈ N and gn(p∗) > gn(po) for some n ∈ N , with p∗ < po component wise.

Proof. We already know from (6.2.1) that

fj(r
o) ,

uj Ko
j

1 + Ko
j ro

j

+
βj

ro
j − rj−min

− λ = 0 (6.2.7)

where Ko
j = (

∑N
k 6=j ro

k)
−1, therefore (6.2.7) can be written as:

fj(r
o) =

uj∑N
k=1 ro

k

+
βj

ro
j − rj−min

− λ = 0 (6.2.8)

Without loss of generality, let r∗k = ρk ro
k, ∀k ∈ N where ρk > 1,∀k ∈ N . Then we

have the following:

Lj(r
∗) = uj log(1 +

ρj ro
j∑N

k 6=j ρk ro
k

) + βj log(ρj ro
j − rj−min)− λ ρj ro

j (6.2.9)

In order to find out how Lj(r
∗) behaves with ρj, we need to find the first-order

derivative of Lj(r
∗) with respect to ρj as follows:

∂Lj(r
∗)

∂ρj

= ro
j

(
uj∑N

k=1 ρk ro
k

+
βj

ρj ro
j − rj−min

− λ

)

= ro
j fj(D

ρro),∀ j ∈ N (6.2.10)
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where Dρ = diag(ρ1, ρ2, · · · , ρN). One can check easily that fj(D
ρro) < fj(r

o) =

0, ∀ j ∈ N . Henceforth,
∂Lj(r∗)

∂ρj
< 0, ∀ j ∈ N , that is, Lj(r

∗) is decreasing over

ρj > 1 for all users, and by this we conclude the proof of ro being a Pareto optimal

NE point of NRGP game G1. Then we prove that po is a Pareto optimal NE point

of G2. It is enough to prove that po
j ∈ Pj is the minimum required transmit power

to support ro
j ∈ Rj for all j ∈ N . This is fairly simple to conclude by examining

(6.2.5), which can be written as:

γo
j =

po
j

Ij

= exp(ro
j ), ∀ j ∈ N (6.2.11)

And from (6.1.6), we can say that po is indeed the minimum power vector that can

support ro. By this we conclude the proof of lemma 6.2.2.

It was proved in [2] that synchronous and asynchronous algorithms with stan-

dard best response functions converge to the same point. Therefore, we consider an

asynchronous power and rate control algorithms which converge to the unique Nash

equilibrium point (ro, po) of games G1 and G2. In these algorithms, users update their

transmission rates and powers in the same manner as in [8]. Assume user j updates

its transmission rate at time instances in the set Tj = {tj1, tj2, ...}, with tjk < tjk+1

and tj0 = 0 for all j ∈ N . Let T = {t1, t2, ...} where T = T1

⋃
T2

⋃
...

⋃
TN with

tk < tk+1 and define r to be the transmission rates vector picked randomly from the

total strategy space R = R1

⋃
R2

⋃
...

⋃
RN .

Algorithm 6.2.1. Consider the game G1 given in (6.1.1) and generate a sequence

of transmission rates vectors as follows:

1. Set the transmission rate vector at time t = 0: r(0) = r, let k = 1

2. For all j ∈ N , such that tk ∈ Tj:

(a) Given r(tk−1), calculate ro
j (tk) =

argmax
rj∈Rj

Lj(rj, r−j(tk−1), λ)
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(b) Let the transmission rate rj(tk) = ρj(tk) = min(ro
j (tk), rj−max)

3. If r(tk) = r(tk−1) stop and declare the Nash equilibrium transmission rates

vector as r(tk), else let k := k + 1 and go to 2.

4. For all j ∈ N , calculate Mj and provide it to algorithm 6.2.2.

Algorithm 6.2.2 below finds the optimal transmit power levels po to support ro.

Suppose user j updates its power level at time instances in the set T p
j = {tj1, tj2, ...},

with tjk < tjk+1 and tj0 = 0 for all j ∈ N . Let T p = {t1, t2, ...} where T p =

T p
1

⋃
T p

2

⋃
...

⋃
T p

N with tk < tk+1 and define p to be the power vector picked ran-

domly from the total strategy space P = P1

⋃
P2

⋃
...

⋃
PN .

Algorithm 6.2.2. The game G2 as given in (6.1.2) generates a sequence of power

vectors as follows:

1. Set the power vector at time t = 0: p(0) = p, let k = 1

2. For all j ∈ N , such that tk ∈ T p
j :

(a) Given p(tk−1), then calculate po
j(tk) =

argmax
pj∈Pj

gj(pj, p−j(tk−1),Mj)

(b) Let the transmit power pj(tk) = νj(tk) = min(po
j(tk), pj−max)

3. If p(tk) = p(tk−1) stop and declare the Nash equilibrium power vector as p(tk),

else let k := k + 1 and go to 2.

The solution point for both algorithms is (ro, po) in the strategy space R × P .

6.3 Simulation Results

In this Section we study the performance of the two joint game-theoretic distributed

power and rate control algorithms for wireless data systems with N = 50 Tx/Rx
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Figure 6.1: Normalized equilibrium rates of the game G1 (◦) and the normalized
minimum required rates of the users (+) versus the user index with pricing factor
λ = 103 and utility factors ui = 105.

pairs. The path gains Gi,k were generated according to a uniform distribution on

the interval [0, 0.001] for all i 6= k ∈ N and Gi,i = 1 ∀ i ∈ N . The additive-

white-gaussian noise (AWGN) variance was set σ2 = 5 × 10−10. Game G1 was run

for different values of the minimum transmission rates for different users. In Fig.

6.1, we present the normalized resulting transmission rates of game G1 (◦) and the

minimum normalized required transmission rates of all users (+) versus the user

index. Results show that all users were able to attain reasonable transmission rates

with low transmit power levels resulting from game G2 as shown in Fig. 6.2.

6.4 Summary

In this Chapter two joint game-theoretic distributed rate and power control algo-

rithms for wireless data systems were proposed. We presented target functions which
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Figure 6.2: Equilibrium powers of the game G2 (◦) required to support the equi-
librium rates versus the user index with pricing factor λ = 103 and utility factors
ui = 105.

are composed of the difference between a utility function and a pricing function to

set the rules of the games among the users. We established the existence, uniqueness

and Pareto optimality (efficiency) of the Nash equilibrium point of both games. All

50 users in the studied example were able to attain transmission rates that are higher

than their minimum required transmission rates at low transmit power levels.
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Chapter 7

Conclusions and Future work

In this Chapter we conclude our results presented in this dissertation and present

possible future extension of these results.

7.1 Conclusions

A tremendous demand for wireless services as in the new generations of CDMA

communications systems (3G, B3G and 4G) and adhoc networks has been increasing.

As these new generations are expected to support multirate services (multimedia

applications, email, Internet, etc.) in addition to telephone service (fixed rate service)

which was the only service offered by 1G and 2G. Unlike 1G and 2G, different users

in 3G, B3G and 4G have different QOSs, moreover each user may have different

QoSs (e.g. SIR, FER and data rate) that he/she is willing to fulfill by accessing

the common radio interface. This establishes a strong need for new algorithms that

enable the efficient spectral use of the common radio interface.

The different QoSs needs of each user restrict attention to more realistic algo-

rithms that optimize multiple objectives: power consumption, SIR, FER and data
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rate. Multi-objective algorithms are important and very informative about the per-

formance of algorithms and protocols.

As one more step toward more realistic multiple objectives optimization algo-

rithms, we proposed joint power and rate control algorithms for wireless data in

game theoretic framework. The joint optimization problem was handled by two lay-

ered games: First game takes care of efficiently allocating the transmission rates of

all users. The second is responsible for allocating the minimum power vector that

support the resulting transmission rate vector from the first game. The two games

however are connected by a scalar that is evaluated by the first game and delivered

to the second game to work as a pricing factor. Then we established the existence,

uniqueness and Pareto optimality of the resulting Nash equilibrium point of both

games. The only game theoretic joint rate and power control algorithm [38] prior to

our work has the rates of all users forced to be equal to guarantee the uniqueness of

Nash equilibrium point, and also Nash equilibrium point was Pareto inefficient.

In terms of power control algorithms, we proposed two new games: First game

was inspired by [26] to address the transmit power optimization for CDMA uplink

(multi-access). The proposed utility was a modification of the cost function proposed

by [26] to solve two limitations associated with the cost function: First limitation

is that if all users in a market-based pricing has the same utility factors, then users

closer to the BS need to transmit at higher power levels than a distant users. Second

limitation is that transmit powers at equilibrium are unnecessary large. Second game

was inspired by [12] to optimize the fading induced outage probability and maximize

the certainty equivalent margin in interference limited CDMA uplink under two

channel models, namely Rayleigh and Nakagami channels.

Also, we extended already existed game theoretic algorithms proposed by [8] to

more realistic channels. Where the authors only studied NPG and NPGP games for

wireless data in nonfading channels.

113



Chapter 7. Conclusions and Future work

Finally, We applied statistical learning theory, in particular distribution- free

learning theory to study the performance of the NPG and NPGP games in realistic

wireless fading channels whenever the channel model is not available a priori.

7.2 Future Work

One of the expansions of this research is to consider BER in addition to rate and

power as a multi objectives optimization problem. The motivation for this expansion

is that usually there is a trade of between the transmission rate and the BER, so

involving explicitly BER in the optimization problem will give more realistic picture

of the performance of the algorithm. Involving BER in multi objectives optimization

problem may start from equation 6.1.5.

Another expansion can be modifying our joint rate power control algorithms in

realistic fading wireless channels. In our algorithms we captured the fading effect,

path attenuation, shadowing effect and cross correlation between spreading codes by

the constants Gi,k (see Chapter 6). Therefor, it will be interesting to see how the

statistical variations of the powers may affect our results.

Finally, the results of Chapter 4 can be extended by testing the relationship

between maximizing the certainty- equivalent-margin (CEM) and minimizing the

outage probability in an interference limited Nakagami (m > 2) and Rician fading

wireless channels in terms of power allocation. This helps finding out if the results

in Chapter 4 are only special for Rayleigh (Nakagami with m = 1) and Nakagami

(m = 2) fading channels or still valid in general. If results of Chapter 4 turns out to

be general for Nakagami, Rayleigh and Rician fading channels, then the best policy

for all users in an interference limited wireless is to set their transmit power levels

at the minimum level to guarantee a good QoS at the BS.
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Appendix A

Game Theory

In this appendix we describe and define some of the vocabulary of game theory that

is needed in this dissertation.

A.1 Quasiconcavity and Quasiconvexity

Economists has been interested in quasinconcave functions because it represents the

best model of an ordering over a set of alternatives (strategy space) that a decision-

maker has.

Consider a multivariable function l(x) defined on a convex set C. Let U b be an

upper level set for any given real number b defined by

U b = {x ∈ C : l(x) ≥ b}

Definition A.1.1. The function l(x) is quasiconcave if U b is convex set for any b.

On the other hand, let Lb be a lower level set, i.e.,

Lb = {x ∈ C : l(x) ≤ b}
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Definition A.1.2. Function l(x) is quasiconvex if Lb is convex set for any b.

If the function l(x) is concave (convex) then it is quasiconcave (quasiconvex). For

proof and more information see [39]

A.2 Standard Vector Function

we introduce the definition of an arbitrary standard vector function φ(p) as follows:

Definition A.2.1. [2] A vector function φ(p) = (φ1(p), φ2(p), · · · , φl(p)) is called a

standard vector function if it satisfies the following:

1. Positivity: φ(p) > 0, i.e., each element φi(p), 1 ≤ i ≤ l is positive.

2. Monotonicity: if p > p̂ then φ(p) ≥ φ(p̂) (component wise), φi(p) ≥ φi(p̂).

3. Scalability: ∀δ > 1, δφ(p) ≥ φ(δ p) (component wise), δφi(p) ≥ φi(δ p).

Best response based games in which the best response of all players (users) is a

standard vector function are preferable because the algorithms that implement these

games are guaranteed to converge to a fixed unique point (Nash equilibrium point).

A.3 S-Modular Games

In S-modular games the strict condition of quasiconcavity and quasiconvexity are not

needed to guarantee the existence of Nash equilibria. A game is said to be S-modular

if it is supermodular or submodular game. Before introducing the formal definition

of S-modular games, we need to introduce the notion of nondecreasing difference

(NDD) property of an arbitrary function ϕj(pj, p−j) [27], [8]:
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Definition A.3.1. A function ϕj(pj, p−j) has the NDD property in (pj, p−j) if

∀ p∗−j, p−j such that p∗−j > p−j (component wise) then ϕj(pj, p
∗
−j)−ϕj(pj, p−j) is non-

decreasing in pj. Equivalently if ϕj(pj, p−j) is twice differentiable, then ϕj(pj, p−j)

has NDD property if
∂2ϕj(pj ,p−j)

∂pj ∂pi
> 0, ∀i 6= j. And ϕj(pj, p−j) has decreasing differ-

ence (DD) in (pj, p−j) if ϕj(pj, p
∗
−j)− ϕj(pj, p−j) is decreasing in pj.

Let us then introduce the formal definition of S-modular games [27], [8], [18]:

Definition A.3.2. ∀ pj ∈ Pj ⊂ R+, if ϕj(pj, p−j) is a utility function of user j,

then ϕj(pj, p−j) is supermodular if ϕj(pj, p−j) has NDD property in (pj, p−j). If

ϕj(pj, p−j) is a cost function of user j, then ϕj(pj, p−j) is submodular if ϕj(pj, p−j)

has decreasing difference (DD) in (pj, p−j). If a game with target function ϕj(pj, p−j)

is supermodular or submodular, it is called an S-modular game.

If ϕj(pj, p−j) is a utility function that has the NDD property in (pj, p−j), then

user j needs to increase his/her transmit power level pj to maximize ϕj(pj, p−j) given

that the other users have chosen to increase their transmit power levels. In other

words, each user’s tendency is to increase his transmit power level in response to the

other users’ decisions of increasing their transmit power levels.

Sometimes a game may have a parameter that users have no control over (e.g.

pricing factor in market-based pricing scheme). Such parameter is called an exoge-

nous parameter in the S-modular games context, and the corresponding S-modular

game is called a parameterized game with complementarities. The supermodularity

definition for a parameterized game with complementarities may be found in [28],[8]:

Definition A.3.3. A game Gω
1 with an exogenous parameter ω is called a super-

modular game or a parameterized game with complementarities if the utility function

ϕj(pj, p−j, ω) has a NDD in (pj, p−j) and in (pj, ω).

Parameterized games with complementarities offer a very rich framework to study
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non-cooperative games with pricing in Economics and power and rate control al-

gorithms for wireless and wireline data as we mentioned in the Chapter 1 of this

dissertation.

119



Appendix B

Channel Models

This appendix is devoted to introducing some of the most popular channel models

that researchers use to describe small-scale fading channels a user faces in wireless

networks such as mobile cellular CDMA systems.

B.1 Rayleigh Channel

In the following situations [40, 41]:

• Macrocell deployment with BS is placed far away from the scatterers and the

mobile station (MS) is surrounded by infinitely many scatterers

• In an indoor environment, with rich scattering environment (walls, furniture,

etc.)

The channel is modeled as a Rayleigh channel. Mathematically speaking, the fading

coefficient α has Rayleigh PDF

fα(ω) =
ω

σ2
r

e−(1/2σ2
r)ω2

(B.1.1)
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Figure B.1: Rayleigh probability density function with different fading power.

Where σ2
r = E[α2]/2 is the measure of the spread of the distribution (See Fig. B.1).

In other words, In Rayleigh channel the main contribution of the received signal is

from scattering.

Rayleigh PDF has only one parameter, that is σr. Henceforth, the ability of

Rayleigh PDF to describe the channel mentioned above is limited by this parameter

(one degree of freedom), another model that better model this channel with two

parameters (two degrees of freedom) is the Nakagami model.

B.2 Nakagami Channel

Nakagami PDF has two parameters, namely Ω = E[α2] that measures the spread of

the density function and m which is called the fading figure represents the reciprocal
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of the amount of fading around the desired signal, i.e.,

m =
Ω2

E[(α2 − Ω)2]
, 1/2 ≤ m ≤ ∞

Therefore m captures the severity of the channel where m = ∞ represents a non-

fading channel. For m = 1, Nakagami density function reduces to Rayleigh density

function. A channel with m < 1 is more severe channel than a Rayleigh channel,

on the other hand a channel m > 1 represents less severe channel than Rayleigh.

For m = 1/2 the Nakagami channel is called Half-Gaussian fading channel, which is

the most severe Nakagami fading channel (see Fig. B.2). Nakagami PDF has this

formula

fα(ω) =
2mm

Γ(m)Ωm
ω2m−1 e(−m

Ω
)ω2

(B.2.1)
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Figure B.2: Nakagami probability density function with different fading figures.
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B.3 Rician Channel

Rician channels are those channels where the main contribution of the received signal

comes from a fixed scatterers or from a direct path between the MS (mobile station)

and BS, line-of-sight (LOS). Such channels can be found in metropolitan areas where

microcell deployment exists. In microcell deployment, the height of the transmit

antenna at the BS is comparable to the height of street lamps, and the coverage radius

is few hundred meters, and hence such deployment exhibit a LOS path between a

BS and MS. The Rician PDF is given by:

fα(ω) =
ω

σ2
r

e
−(ω2+s2

2σ2
r

)
I0(

ω s

σ2
r

) (B.3.1)

where s2 represents the power in the nonfading signal components, and is sometimes

called a specular component of the received signal or the noncentrality parameter

of the PDF [15, 42]. I0(z) is the zero-order, modified first-kind Bessel function. As

one can notice, Rician PDF has also two parameters, namely s and σr. Note that

with s = 0 Rician density function reduces to Rayleigh PDF, i.e., there is no LOS

(See Fig. B.3). In the next Section we discus briefly the time variation of the fading

channel.

B.4 Slow and Fast Fading Channels

A fading channel is slow if the signalling interval of the signal Ts is less than the

coherence time of the channel ∆tc, where ∆tc ≈ 1/Bd and Bd is the doppler spread

of the channel. On the other hand, the channel is fast if Ts > ∆tc. Therefore, in

fast fading channels a significant spectral broadening of the transmitted signal is

observed (Bd is large) [15].
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Figure B.3: Rician probability density function with different values of noncentrality
parameter.

B.5 Frequency Selective and Frequency Nonselec-

tive Channel

If a signal with bandwidth Bw is transmitted through a fading channel with coher-

ence bandwidth ∆fc such that Bw < ∆fc, then the channel is said to be frequency

nonselective (flat fading) channel. That is, all spectral components of the transmit-

ted signal will undergo the same fading effects (no distortion). While if Bw > ∆fc,

then the channel is frequency selective channel, and hence different spectral com-

ponents of the transmitted signal will undergo different fading effects (distortion).

Channel coherence bandwidth is related to multipath delay spread Tm as given by

∆fc ≈ 1/Tm. So, a good channel for reliable transmission will have small multi-

path delay spread Tm (flat fading channel) and small Doppler spread Bd (slow fading

channel).
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Machine Learning Theory

The elements of machine learning theory are [23]:

• A measurable space (X ,S), where X is a set (observation set) and S is a σ-

algebra of subsets of X .

• A family of probability measures P on (X ,S).

• A family of measurable functions F with respect to S such that f : X → [0, 1],

∀ f ∈ F , or

• A concept class ℵ ⊆ S such that % : X → {0, 1}, ∀% ∈ ℵ.

C.1 Concept Learning

In concept learning the problem is to learn a target concept %∗ ∈ ℵ (e.g. binary

classification problem) based on a learning multisample Ψ = (x1, x2, · · · , xn) (obser-

vations) drawn from the observation set X according to a probability measure P ∈ P
which is usually unknown. The learnability of the target concept %∗ depends on a
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complexity measure of the concept class ℵ called the VC (Vapnik-Chervonenkis)-

dimension (V C − dim(ℵ)), and it is defined as:

Definition C.1.1. Let (X ,S) be a measurable space, and ℵ ⊆ S. Suppose Ψ =

(x1, x2, · · · , xn) ⊂ X , then the set Ψ is said to be shattered by the concept class ℵ
if ∀ψ ⊆ Ψ, ∃ a set A ∈ ℵ such that A

⋂
Ψ = ψ. Then V C − dim(ℵ) is the largest

cardinality (n) of Ψ such that ∃Ψ that is shattered by ℵ.

C.2 Function Learning

The problem in function learning is almost the same as in concept learning with the

difference however is that the target is to learn a function f ∗ : X → [0, 1] where

f ∗ ∈ F . Also, the learnability of the target function f ∗ depends on P (Pollard)-

dimension of the function class F (P − dim(F)). P-dimension of the function class

F (P − dim(F)) is defined as :

Definition C.2.1. Assume (X ,S) is a measurable space and F is a set of measurable

functions with respect to S. Then Ψ = (x1, x2, · · · , xn) ⊆ X is P-shattered by the

function class F if ∃ a real vector θ = [0, 1]n such that for every ∀ e = {0, 1}n (binary

vector) ∃ a corresponding function fe ∈ F such that

fe(xi)




≥ θi, if ei = 1

< θi, if ei = 0

then P − dim(F) equals the maximum cardinality of the set Ψ that is P-shattered

by the function class F .
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