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Abstract

Multiagent systems with hybrid interacting dynamics are groups of systems whose in-

dividual components have hybrid dynamics that affect each other’s behavior at both the

continuous and discrete levels. These systems are found in a wide range of applications

including multivehicle systems, networks of sensors, actuators and embedded control sys-

tems, and communication networks. In this dissertation we study the modeling and control

of these systems from various different perspectives. Motivated by a control problem in

the design of future communication networks, we study a multiagent system whose agents

move across a network of discrete locations competing for resources they obtain from such

locations. The resources they compete for are continuous while the movements of agents

in the network are discrete due to the discrete nature of their environment. The ultimate

objective is to be able to control agents and nodes such that their interacting dynamics

vii



converge to a point that optimizes the usage of the network’s resources. This motivates

the formulation of a hybrid dynamical model for agents and nodes to be able to capture

the continuous dynamics of the resource allocation, and the discrete dynamics of moving

agents and changing network conditions. Additionally we apply resource allocation theory

on the design of the continuous dynamics of agents and nodes. We then explore dynamical

properties of Interconnected Hybrid Systems (IHS), which is a framework we propose to

model general multiagent systems with hybrid interacting dynamics. In particular we ob-

tain conditions for the existence and uniqueness of the executions of IHS and apply these

conditions in the design of the general structure of the discrete dynamics of the agents in

the resource allocation problem. Then we explore the application of randomized optimiza-

tion algorithms to the optimal control of individual and multiagent hybrid systems. In the

case of individual hybrid systems we compare the randomized approach to existing gra-

dient based techniques obtaining comparable performance to this model-based technique.

In the multiagent case we apply the same algorithm to the resource allocation problem,

achieving the initial design objective of controlling the movements of agents towards a

configuration that optimizes the usage of resources in the network. Finally, we explore the

use of abstractions for the model simplification of individual hybrid systems, and discuss

its applicability to the resource allocation problem. The abstraction we propose substitutes

the continuous dynamics of a hybrid system for clocks, creating a timed automaton that is

simpler than the original system but retains the reachability and stability properties of the

original system, and keeps track of the time that takes the original system to converge to

an equilibrium set.
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Chapter 1

Introduction

1.1 Motivation and Current Work

Advances in computation and communication technologies provide interesting possibili-

ties for substituting complex and expensive devices, with more cost-effective distributed

systems of multiple simple devices. The advantage of these distributed systems is that they

can perform complicated tasks by generating a group behavior through the coordination

of the agent’s actions, usually using only local policies and information that is available

through limited communication and sensing. This results in greater efficiency and robust-

ness of the system, compared to that of a single device. However, the control of multiple

entities with common goals raises new challenges that include, but are not limited to, the

design of local policies that enable a stable (and maybe optimal) group behavior, the reli-

able information sharing under communication constraints, and consensus among agents

with potentially different measurements.

There exists extensive literature on multi-agent systems. One major thrust of the re-

search on cooperative control is that of safe group navigation. Different approaches have

been proposed to address this problem. They include formation control [38,42,46,70,80],
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Chapter 1. Introduction

flocking and swarming algorithms [20, 27, 69] and platooning [31, 64]. Another fre-

quently discussed problem is that of positioning agents in a given environment. Results in

this direction include facility location via distributed optimization [17], perimeter track-

ing [14], formations using implicit functions [13], and coordination using Internet-like

protocols [58]. Researchers have also studied general consensus problems [41,44,45,57],

sensor network applications [21,43], and distributed task assignment using load balancing

schemes [19].

Most of the surveyed literature on multi-agent systems deals with agents that have con-

tinuous dynamical descriptions. Some of these results even consider switching dynamics

in the communication topology [41, 44, 45, 57, 69]. However very few researchers have

addressed systems that involve agent models with discrete dynamics that are related to

events or switching modes of operation [19, 32, 39]. This type of dynamics may be found

in multi-vehicle applications where the individual vehicles are capable of changing oper-

ating conditions (switching from pursuing an opponent to evading it), or in multi-agent

systems where agents change their location in discrete form (moving from one room to

another).

In particular, the motivation for this work comes from a novel Internet architecture de-

signed to deal with retransmissions, delays, and communication failures that occur when a

mobile device moves across multiple networks or has an intermittent network connection.

These problems arise because the current implementation of the Internet delivers packets

to static locations, assumption that is no longer valid when the communication task in-

volves mobile devices because such devices may connect/disconnect without prior notice,

and may even move across different networks during the communication task [28].

This architecture postulates an abstract network that treats the nodes and the traffic as

digital entities, separating the functional components of the network from the hardware

that enables them. In this fashion, a logical (intelligent) network is created on top of the

physical network, enabling functions like persistent identification of different objects and

2



Chapter 1. Introduction

smarter routing to avoid retransmissions. The functional components of the network are

conceptualized as software agents (e.g. routing agents, storage agents, DNS implementa-

tion agents, etc.), and the hardware is seen as a resource to be used by these agents, such

that their tasks can be efficiently executed (Figure 1.1).

Figure 1.1: Network example: Each platform in the network can run several processes
concurrently. The network is abstracted as a graph and the processes as agents (black
circles) that can move among the nodes.

In this setting, each particular node in the physical network is capable of simultane-

ously hosting more than one agent. Moreover, agents can move around searching for nodes

with more resources in order to complete their tasks in the best possible way. Agents are

viewed as greedy entities competing with each other for the completion of their tasks (ben-

efit), by consuming hardware resources required for the task execution. The objective is

to use the resources of the network so that the aggregate benefit of all the agents in the

network is maximized.

This challenge sets the stage for an optimization problem that, due to the nature of

the network, must be solved in a decentralized form by a multi-agent system. Each node

3
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needs to distribute its resources among the agents that it hosts. Agents need to decide

whether they must migrate to a different node if this action increases their benefit. These

actions must be executed without a centralized authority controlling the whole network,

meaning that the desired solution of this problem should be in the form of local and semi-

local policies (based on information about the node currently occupied and its immediate

neighbors).

So the multi-agent system that motivates this dissertation is a set of heterogeneous

agents whose goal is to optimize a utility function via the utilization of resources avail-

able in the environment. The environment is composed of discrete locations connected

by paths used by the agents to locate resources at such locations. Different locations may

have different types and amounts of available resources, and each location (a node) al-

locates its resources according to requests from its resident agents. The agents request

resources according to their particular tasks, which are encoded in their utility functions.

The resources are allowed to vary in discrete form and according to environment related

events. The agents are therefore capable of two types of decisions: requesting more (or

less) of a resource from a location they already occupy, and moving from one location to

another in order to obtain more resources. The ultimate goal of the cooperative system is

to optimize the aggregate of the agent’s utility functions using only local policies i.e., to

control decisions at the agent level, such that the usage of the environment resources is

globally optimized by the multi-agent system.

1.2 Contributions

In this dissertation we approach the continuous resource allocation problem (RAP) for

agents moving on a discrete environment from several different directions. We formulate

an optimization problem that expresses the design objective of the RAP, and propose a

hybrid framework to design the dynamics of agents and nodes in the system. We also
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propose a model for general multiple interacting hybrid systems, and study their basic dy-

namical properties (existence and uniqueness of executions). Motivated by the complex-

ity of these models, we explore the application of randomized optimization techniques

to individual hybrid systems, and study the application of this result on the RAP using

simulations. Finally, with complexity as motivation again, we formulate an asymptotic

abstraction technique for individual hybrid systems, and discuss how it can be applied on

the simplification of the dynamic model of the RAP.

In order to understand the RAP, we start this dissertation by formulating optimization

problem that expresses the design objective of the problem. This optimization turns out

to be a mixed-integer nonlinear programming problem that grows exponentially with the

number of nodes in the network. This problem is however decomposed into two hierar-

chical optimization problems, a global integer optimization related to the position of the

agent in the network, and a local nonlinear optimization related to the resource allocation

of each node’s resources among the agents that occupy such node. The key assumption

that results in this decomposition restrict the agents to access resources in the nodes they

occupy only.

The hybrid framework we propose for the RAP describes each agent and each loca-

tion as a hybrid system [12]. This allows us to capture the continuous dynamics of the

allocation of resources among different agents, and the discrete dynamics of the move-

ment of agents among different locations as well as changes in the environment. With this

framework we intend to design all the components of the agents/location hybrid models.

In particular, we apply Internet congestion control like algorithms [1,29,62,77], to design

stable continuous dynamics for all agents and nodes in the network.

The model for general multiple interacting hybrid systems consists of a set of hybrid

systems where interactions occur at both the continuous and discrete levels. The contin-

uous interactions are achieved by making each agent’s continuous input a function of the

continuous states of its neighbors in similar form as it is done in current multi-agent sys-

5
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tem literature surveyed above. The discrete interactions are achieved through the transition

guards of each agents: a discrete transition on a single agent depends on the continuous

states of this agent and the hybrid states of its neighbors. Using this model we recast

various hybrid systems concepts to the multi-agent case including reachability and hybrid

execution, and study existence and uniqueness properties of the multi-agent executions ex-

tending the work in [37]. The main result in this part is a set of conditions for the existence

and uniqueness of the execution of a multi-agent system that are expressed in terms of the

local models of each agent composing the system. In this form, the global behavior of the

multi-agent system can be predicted by studying the dynamic description of the individual

composing agents. This part is concluded with the application of the theoretical results to

the RAP.

Motivated by the complexity of both models above, we explore the application of ran-

domized algorithms [72, 76] to the optimal control of individual hybrid systems and the

optimal design of the discrete dynamics of agents and nodes in the RAP. Randomized al-

gorithms are attractive for complicated problems because they are model-free techniques,

and therefore do not depend on the complexity of the system description. In this arena

we obtained and evaluated a general randomized algorithm for optimal control of individ-

ual hybrid systems. The algorithm is theoretically simple and independent of the model’s

complexity. The performance of this algorithm is comparable to that obtained using gra-

dient based algorithms [4, 10, 18]. However the algorithms can be used for more general

cases than those considered in [4, 10, 18]. We applied the same technique to the design

of the discrete dynamics of agents and nodes in the RAP. The discrete dynamics were

designed based on the conditions for existence and uniqueness of Interconnected Hybrid

Executions, and then optimized using the randomized approach. The numerical results we

obtained suggest that the optimization algorithm makes the agent move among nodes in

the network seeking better resources, and ultimately optimizing the performance of the

whole network.

6



Chapter 1. Introduction

Finally, we propose an asymptotic abstraction for hybrid systems that simplify their

reachability and stability analysis tasks. Abstraction techniques [2, 47, 74] can be thought

of as selective retention of information pertinent to a specific task or objective. In this dis-

sertation we first explore the obtention of a discrete asymptotic abstraction for a individual

hybrid systems. In this abstraction, continuous dynamics are discarded completely and

substituted for information about the time the system takes to reach an equilibrium point.

This simplifies the reachability and stability analysis for complicated hybrid systems. We

then discuss the application of this technique to the simplification of the dynamic models

of agents and nodes relying on the stable design obtained using Internet congestion control

like algorithms [1, 29, 62, 77].

The contributions of this dissertation can be summarized as follows:

• An optimization problem formulation for the design objective of the continuous

resource allocation among agents moving on a discrete environment.

• A hybrid framework for the design of the dynamic descriptions for agents and nodes

in the RAP.

• A general model for multiple interacting hybrid systems that allows us to study their

dynamical properties.

• The application of randomized optimization techniques to the optimal control of

(individual) hybrid systems and its subsequent application to the RAP.

• The formulation of a discrete asymptotic abstraction for (individual) hybrid systems

and a discussion of its applicability to the RAP.

7
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1.3 Document Organization

The remainder of this document is organized as follows: Chapter 2 presents relevant hybrid

concepts used along this dissertation. Chapter 3 presents the optimization formulation and

the hybrid modeling framework for the multi-agent resource allocation problem described

above. Chapter 4 present the general model for multiple interacting hybrid systems and the

conditions for existence and uniqueness of their executions. Chapter 5 presents the results

on the application of randomized algorithm for optimal control of individual hybrid sys-

tems and the optimal design of the agents and nodes’ dynamics in the RAP while Chapter

6 describes our work on abstractions for hybrid systems. Finally Chapter 7 outlines our

conclusions.

8



Chapter 2

Hybrid Systems’ Concepts

We now introduce concepts from hybrid systems theory that will be used along the rest of

this document. We provide formal definitions for a controlled hybrid dynamical system

extracted from [12], and for concepts such as hybrid time trajectory, hybrid input, hybrid

state trajectory, and hybrid executions. We consider a general description for a hybrid

system that includes autonomous and controlled transitions, as well as continuous and

discrete inputs.

Definition 2.1 (Controled hybrid dynamical system) Let a Controlled Hybrid Dynami-

cal System (CHDS) [12] be a tupleH = [Q,Σ,G,Z,S] where:

• Q is the set of discrete states.

• Σ = {Σq}q∈Q where Σq = (Xq, fq, Uq,R
+) is a dynamical system that corresponds

to q ∈ Q with Xq being the continuous state space, fq the continuous dynamics, Uq

the set of continuous controls, and R
+ = [0,∞) the time set.

• S = {Sq}q∈Q is the set of discrete transition labels ofH. Symbol sq ∈ Sq determines

the discrete state after a transition from q ∈ Q. There exist two types of transitions:

9
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Transitions triggered by external events or control inputs (called controlled transi-

tions) and transitions that are triggered by functions of the state of the system (called

autonomous transitions).

• G = {Gq}q∈Q is the set of guard conditions for H. Gq is a map that determines

when a transition from q ∈ Q is possible. A guard condition for a controlled transi-

tion is denoted as GC
q . This guard must satisfy a condition on the state of the system

and on the existence of an event or control input i.e, GC
q : Sq → E ×Xq where E is

the set of possible events or discrete control inputs of H. A guard condition for an

autonomous transition, denoted GA
qi

needs to satisfy a condition on the state of the

system only i.e, GA
q : Sq → Xq.

• Z = {Zq}q∈Q is the set of transition maps ofH, where Zq : Gq × Sq →
⋃

p∈Q{Xp}
determines the continuous state ofH after a transition sq ∈ Sq.

Finally, H =
(
⋃

q∈QXq

)

×Q is the hybrid state space ofH. Note that S may include

the no transition element {id}.

The concepts we define below allow us to describe the evolution of a hybrid dynamical

system. The time trajectory provides the time information needed to detail the continuous

and discrete components of the hybrid evolution. The state trajectory contains informa-

tion about the evolution of the hybrid state of the system, while the hybrid input stores

the continuous and discrete inputs history. Finally the hybrid execution gathers all this

information in a single sequence that satisfies minimum conditions for the system to be

correctly specified.

A Hybrid Time Trajectory [36,60] is a sequence τ := {τ 0, τ 1, . . . , τN} such that τn ≤
τn+1 for all n ∈ {0, 1, . . . , N−1}, where 1) τ 0 ∈ τ is the time whenH starts its evolution,

2) τn ∈ τ is the time at which H makes a discrete transition from qn to qn+1 for n =

{0, 1, . . . , N − 1}, and 3) τN ∈ τ is the time when H ends its evolution. τ is infinite if

10
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N =∞ and is finite otherwise. Let the set 〈τ〉 , {1, 2, ..., N} if N is finite and {1, 2, ...}
if N =∞. We also define |τ | =∑n∈〈τ〉\N (τ

n+1 − τn).

Definition 2.2 (Hybrid State Trajectory [60]) A hybrid state trajectory H = (τ, q, x)

consists of hybrid time trajectory τ , a sequence of discrete states q = {q0, q1, . . . , qN} and

a sequence of differentiable maps x = {x0, x1, . . . , xN}, where q0 is the initial discrete

state, x0 = x0(0) is the initial continuous state, qn : [τn−1, τn)→ Q is a constant map for

all n ∈ {1, . . . , N}, and xn = xn(t) : [τn−1, τn)→ Xqn is a differentiable function for all

n ∈ {1, . . . , N} and all t ∈ [τn−1, τn).

A Hybrid Switching Sequence [36, 60] is a sequence (τ, s) = {(τ 0, s0), (τ 1, s1),
. . . , (τN , sN)} of pairs of switching times τn and discrete (autonomous or controlled)

transition labels sn ∈ S, where sn is the transition from qn to qn+1 that takes place at the

time τn for all n ∈ {0, 1, . . . , N − 1}. Note that τ is a hybrid time trajectory, and s is

called a location schedule.

Definition 2.3 (Hybrid Input [60]) A hybrid input I := (τ, s, u) consists of a hybrid

switching sequence (τ, s) and a piecewise continuous input u = {u1, u2, . . . , uN}, where

un(t) ∈ Uqn for all n ∈ {1, . . . , N} and all t ∈ [τ n−1, τn).

Definition 2.4 (Hybrid Execution [36, 60]) A hybrid execution of a CHDS is a collec-

tion χ(h0) = (τ, q, s, x, u), composed by a hybrid input I and a hybrid state trajectory H
such that (τ, s, u, q, x) satisfies:

• h0 = (q0, x0(0)) is an initial condition ofH

• Continuous Dynamics: For all t ∈ [τ n−1, τn), ẋn(t) = fqn
(

xn, un, t
)

and xn(t) ∈
Xqn for all n ∈ {1, 2, . . . , N};

• Discrete Dynamics (Autonomous or Controlled): For all n ∈ {0, 1, . . . , N − 1},
qn+1 = sn ∈ Sqn , xn(τn) ∈ G∗qn , and

(

qn+1, xn+1(τn)
)

∈ Zqn .

11



Chapter 2. Hybrid Systems’ Concepts

Where (·)∗ denotes (·)A or (·)C depending on the type of discrete transition (autonomous

or controlled respectively).

χS(h0) denotes the set of all executions with initial condition h0, and similarly χF (h0)

denotes the set of all finite executions and χ∞(h0) denotes the set of all infinite executions

with initial condition h0. Init denotes the set of all initial conditions. We say that χ(h0) =

(τ, q, s, x, u) ∈ χF (h0) maps h0 to ~h if τ = {τ 0, τ 1, . . . , τN} and h = (qN , xN (τN)).

Definition 2.5 (Reachable Set [36]) A hybrid state h ∈ Reach(h0) if there exists a finite

execution χ(h0) ∈ χF (h0) that maps h0 to h. The set of states h that can be reached from

any initial condition ReachH =
⋃

h0∈Init
Reach(h0) is called Reachable set ofH.

We finalize this section noting that a hybrid system can be represented by a directed

graph [36], such that each discrete mode inQ is mapped to a vertex, which will contain the

label of the mode, its state space and its continuous flow equation. Similarly, each edge,

that represents a discrete transition label will have a guard and a reset function attached to

it (For an example see Figure 2.1). The directed graph related to the hybrid systemH will

be denoted as GH.
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Figure 2.1: Example of a hybrid system represented using a graph.

12



Chapter 3

Continuous Resource Allocation among

Multiple Agents Moving on Discrete

Environments

3.1 Introduction

Motivated by the network design problem described in Chapter 1, we consider in this

chapter the problem of controlling a multi-agent system whose agents move across dis-

crete locations. The agents attempt to extract resources from the environment while the

environment, which may vary as the system evolves, distributes its resources according

to the agents requests. The environment is modeled as a network of discrete nodes. Our

ultimate goal, as required by the network design problem in Chapter 1, is to design the

dynamical policies that determine the behavior of agents and nodes, such that the usage of

resources in the network is optimized. We propose a hybrid model to describe both agents

and nodes. Several components of this model are design variables that may be obtained

analytically. We then formulate an optimization problem that may be decomposed into

13
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two hierarchical optimization problems: An integer optimization problem that considers

the distribution of agents among the nodes of the network, and a convex optimization prob-

lem within each node that corresponds to the distribution of resources of each node among

its resident agents. We show that the optimization problem within each node is a special

case of the formulation that models congestion control algorithms in the Internet. We then

use available results to solve a portion of the proposed hybrid description for agents and

nodes. Moreover, we show that the resulting continuous dynamics are globally asymptot-

ically stable, with their equilibrium point coinciding with the solution of the optimization

problem. As a consequence, the proposed continuous dynamics yield an interconnected

system that is stable on each possible configuration of agents and nodes.

Our problem is concerned with a set of heterogeneous agents whose goal is to optimize

a utility function via the utilization of resources available in the environment. The envi-

ronment is composed of discrete locations connected by paths used by the agents to locate

resources at such locations. Different locations may have different types and amounts of

available resources, and each location (a node) allocates its resources according to requests

from its resident agents. The agents request resources according to their particular tasks,

which are encoded in their utility functions. The resources are allowed to vary in discrete

form and according to environment related events. The agents are therefore capable of two

types of decisions: requesting more (or less) of a resource from a location they already oc-

cupy, and moving from one location to another in order to obtain more resources. The

ultimate goal of the cooperative system is to optimize the aggregate of the agent’s utility

functions using only local policies i.e., to control decisions at the agent’s level, such that

the usage of the environment resources is globally optimized by the multi-agent system.

In Chapter 1 we surveyed the state of the art on multi-agents systems. Most of the

available results on this area consider agents with almost exclusive continuous dynamics

[13,14,17,20,27,31,38,41,42,44–46,57,58,64,69,70,80], limiting the discrete dynamics to

switching in the communication topologies. Very few researchers have considered discrete

14
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event dynamics in the study of multi-agent systems [19].

The problem we address in this chapter has an important difference compared to the

cited results: we consider agents that participate in a continuous resource allocation prob-

lem moving among discrete locations. Therefore, the agents’ description have to incorpo-

rate both continuous time and discrete event dynamics. The environment is modeled as a

graph where the nodes represent the discrete locations and the edges represent the paths

that the agents use to obtain information about other nodes and to move between locations.

The agents and nodes are modeled as hybrid systems. The general hybrid model we use

allows us to capture both the continuous evolution of the resource allocation tasks (node

and agent dynamics), and the discrete events related to the changes on resource availability

in the locations (node dynamics) and the movement of agents among the locations in the

environment (agent dynamics).

Since the final goal is to optimize the usage of the network resources, we formulate

an optimization problem, which turns out to be a mixed integer nonlinear optimization

problem. We then obtain an equivalent hierarchical optimization problem composed of

a (global) network integer optimization problem at the higher level of the hierarchy, and

several decentralized (one for each node in the network) convex optimization problems

at the lower level. Since the convex optimization problem within each node is a special

case of the optimization problem used to model various Internet congestion control al-

gorithms [29, 35, 62] we perform several simplifications to the design of the agents and

nodes dynamics. First, the continuous dynamics are designed separately from the discrete

dynamics. Moreover, the continuous dynamics for both the agents and nodes are designed

based on the dynamic model for the Internet congestion control algorithms [1, 35, 62, 77].

This implies that there is a globally asymptotically stable (continuous) equilibrium point

for each possible (discrete) agent distribution in the network, and that these equilibria co-

incide with the solution of the optimization problem for that particular distribution. It is

important to note that the results in this chapter provide a complete design for the continu-
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ous dynamics of agents and nodes, but leave open the design of the discrete transition rules.

In Section 3.7 we discuss the possible solution approach to this important component of

the system.

The optimization problem formulated in this paper may be solved using model-based

techniques, such as combinatorial optimization [16], or mixed integer programming [25]

approaches. These techniques, however, present a major problem in terms of computa-

tional complexity, since they are NP -Complete in the number of integer variables [59]

which in our case may become very large. Instead, we propose a hierarchical approach

exploiting the structure of the problem, which allows us to decentralize the continuous de-

cision variables, leaving only the discrete ones for centralized optimization. While this hi-

erarchical solution is similar in spirit to the dual decomposition approach proposed in [78],

the discrete component of our problem makes it different from that handled by dual de-

composition [78], which only considers continuous decision variables.

3.2 Hybrid Model and Design Objective

3.2.1 Problem description

A set of agents is moving on an environment composed of discrete locations. Each location

(node) has different types and amounts of resources that may be allocated to the agents,

while the agents use such resources for the completion of different tasks. The agents are

greedy entities competing for the resources in the network, which means that each agent

attempts to maximize its usage of resources considering only its own benefit. Agents are

capable of requesting resources from the node that hosts them, as well as migrating to

different nodes in the network seeking resources to complete their task. Task satisfaction

is measured by a utility function that provides a real value as a function of the resources

that the agent uses.
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Each node distributes the resources among the agents it hosts, according to the requests

of these agents. The nodes may, however, experience changes in their resource amounts.

The paths (edges) that connect different locations are used by the agents to move between

nodes and/or to obtain information about resources in nearby locations, may change over

time. The final objective is to design the nodes’ and agents’ dynamics such that the usage

of resources in the environment (network) is optimized with respect to the requirements of

the agents. A pictorial representation of the problem is shown in Figure 3.1. We impose

the assumptions below:

Figure 3.1: Multi-agent system example: Each location in the network distributes its local
resources among its residing agents. The locations are abstracted as nodes in a graph
(gray ovals), the paths available for movement of agents and communication of states
between different nodes are represented by edges in the graph. The agents are represented
with black circles and the resources they use by gray bars. Agents move between nodes
(identified with arrows on top) expecting better resources at a destination node

Let G = (V , E) be a graph with nodes indexed by V = {1, 2, ..., Nv} and edges

E = {(v, w) : v, w ∈ V , v 6= w, and v connected to w}. We call the graph undirected if

(v, w) ∈ E whenever (w, v) ∈ E . A graph is connected if there is a path between any pair

of nodes in the graph, where a path from v to w is a sequence of different nodes starting

at v and ending at w such that consecutive nodes are connected. We call neighborhood of

v to the set Nv = {w ∈ V : (v, w) ∈ E}.

Assumption 3.1 (Network) The network is an undirected graph G = (V , E) where Nv =

|V| is constant.
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Assumption 3.2 (Resources) There exist Nr types of resources in the network indexed by

the set R = {1, 2, ..., Nr}, where Nr is fixed. For each node i ∈ V the vector of available

amount of resources to be allocated among the agents located on node i ∈ V is denoted by

Ri = (ri,1, ri,2, ...ri,Nr
), where ri,j ∈ R is the amount of resource of type j ∈ R available

at node i ∈ V . We assume that ri,j may vary iver time for all i ∈ V and for all j ∈ R,

taking on values from a finite set Ξ ⊂ R according to the dynamics specified in Definition

3.2.

Assumption 3.3 (Agents) There is a fixed number of agents Na, indexed by the set A =

{1, 2, ..., Na}. The state of each agent k ∈ A is an ordered tuple (xk,1, xk,2, ..., xk,Nr
, qk),

where xk,j ∈ R represents the amount of resource of type j ∈ R allocated to agent k ∈ A,

and qk ∈ V denotes the location of agent k ∈ A in the network. Note that 0 ≤ xk,j < ∞
for all k ∈ A and for all j ∈ R.

If Assumption 3.1 is relaxed, the number of nodes may change over time and it may

be possible to have asymmetric communication and agent movement capabilities between

nodes. If Assumption 3.3 is relaxed, we may allow variations in the number of agents

over time. Note however that Assumption 3.2 is strongly related to Assumption 3.1 be-

cause if 0 ∈ Ξ, then Ri = ~0 emulates the disappearance of node i from the network.

The assumption that Ri varies over time may then be used to represent the appearance or

disappearance of nodes in the network.

Practical problems modeled under this framework could potentially generate a large

set of resources’ types to be allocated, but this set will still be finite. Agent satisfaction

depends upon their location in the network and the resources allocated to them, so the

relevant information for the agents is contained in the state description introduced in As-

sumption 3.3.

Also note that if a dwell time exists between changes in the sets of agents and nodes,

Assumptions 3.1-3.3 would still provide a valid description of the system in between these
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changes. We now consider node’s neighborhoods in the network as follows:

Definition 3.1 (Neighborhoods of a node) Let the Node-Neighborhood of node i ∈ V be

Ni∈V = {w ∈ V : (i, w) ∈ E} i.e., the Node-Neighborhood of a node is composed by the

nodes that are connected to it by an edge in the network. Let Vi be the set of agents located

at node i ∈ V , i.e. Vi = {k ∈ A : qk = i}, which we also call Agent-Neighborhood of

node i.

3.2.2 System’s dynamics

In order to capture the complete behavior of agents and nodes in the network, we model

each of them as a hybrid dynamical system. This framework seems to be appropriate

for the problem because both agents and nodes present continuous and discrete possible

behaviors: Agents competing for resources within a given node can be modelled using

continuous dynamics, while agents jumping within different locations in the network must

be modelled by discrete dynamics. Similarly when nodes are assigning different amounts

of resources to the agents they may be modelled using continuous dynamics, while nodes

switching between modes of distribution that depend on the number of agents residing

in the node have to be modelled using discrete dynamics. We use the controlled hybrid

dynamical system from Definition 2.1.

Let N
Na = {α ∈ N : α ≤ |A| = Na}, i.e. the set natural numbers smaller than the

cardinality of A. In what follows we use subindexes to denote dependence of variable on

sets of nodes, agents and/or resources, e.g. αi with i ∈ V denotes dependence of α on the

set of nodes, while αk,j with k ∈ A and j ∈ R denotes dependence of α on the set of

agents and resources. We use the notation (αn)n∈S with S = {1, 2, ..., |S|} to denote the

vector (α1, α2, ..., α|S|).

Definition 3.2 (Node dynamics) Each node i ∈ V is described as a Controlled Hybrid

Dynamical SystemHi = [Qi,Σi,Gi,Zi,Si] that satisfies the following conditions:
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• There exists one qi ∈ Qi for each (Ri, ci) ∈ ΞNr × N
Na for all i ∈ V , where ci

represents the number of agents that occupy node i ∈ V . Note that Qi is guaranteed

to be finite.

• The set of continuous dynamics is defined as Σi = {Σqi}qi∈Qi
. The continuous

dynamics Σqi are to be designed subject to the following conditions: Xqi = Xi for

all qi ∈ Qi (the continuous state space is the same for all discrete modes), and

uqi :
∏

k∈Vi
Hk → Uqi for all uqi ∈ Uqi for all qi ∈ Qi (the continuous controls of a

node are functions of the states of the agents located at that node).

• The sets Gi, Zi, Si are defined as: Gi = {Gqi}qi∈Qi
, Si = {Sqi}qi∈Qi

, and Zi =

{Zqi}qi∈Qi
.

• The discrete transitions are purely controlled, and triggered by the occurrence of an

external event. Therefore the discrete transition guard is a condition on the occur-

rence of an event and on the state of the node dynamical description Gqi : Sqi →
Ei ×Xqi for all Sqi for all qi ∈ Qi, where Ei is the set of possible event for Hi.

• Ei contains two types of events: 1) Changes in the resources Ri for node i, and 2)

Changes in the setsNi or Vi (changes in other nodes connected to the node or in the

agents hosted by the nodes).

Definition 3.3 (Agent dynamics) Each agent k ∈ A is described as a Controlled Hybrid

Dynamical SystemHk = [Qk,Σk,Gk,Zk,Sk] that satisfies the following conditions:

• There exists one qk ∈ Qk for each i ∈ V . Note that Qk is guaranteed to be finite.

• The set of continuous dynamics is defined as Σk = {Σqk}qk∈Qk
. The continuous

dynamics Σqk are to be designed subject to the following restrictions: Xqk = Xk

for all qk ∈ Qk (the continuous state space is the same for all discrete modes), and

uqk : Hqi → Uqk s.t. i = qk for all uqk ∈ Uqk for all qk ∈ Qk (the continuous controls
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are functions of the state of the node that agent k occupies). Note in Assumption 3.3

that the continuous part of the state of the agent (xk,1, xk,2, ..., xk,Nr
) ∈ Xk.

• The sets Gk, Zk, Sk are defined as: Gk = {Gqk}qk∈Qk
, Sk = {Sqk}qk∈Qk

, and

Zk = {Zqk}qk∈Qk
.

• The discrete transitions are purely controlled and triggered by the occurrence of an

external event. Therefore the discrete transition guard is a condition on the occur-

rence of an event and on the state of the node dynamical description Gqk : Sqk →
Ek ×Xqk for all Sqk for all qk ∈ Qk, where Ek is the set of possible events for Hk.

• Ek is a set of logic valued functions for all k ∈ A. The functions are left unspecified

at this moment because of being part of the design parameters. If the output of

ek ∈ Ek is true, then an event is generated, otherwise no event is generated.

Definitions 3.2 and 3.3 describe the dynamic behavior of the nodes and the agents. The

dynamics of a node evolve as follows: Given an initial hybrid condition – a discrete and a

continuous state: (qi, xqi) for i ∈ V – the continuous state evolves according to the active

continuous dynamics (Σqi) until the occurrence of a discrete event, caused by a change in

the resources of the node Ri or by the arrival (departure) of an agent to (from) the node.

This event causes the system to change to a new discrete state q ′i, where the evolution of

the system continues according to the new continuous dynamics Σq′i
.

The dynamics of an agent evolve in a similar fashion to those of a node, with the

following caveats: The discrete states in the hybrid model of the agent represent the nodes

in the network that may host the agent. Similarly, the discrete transitions represent the

migration of an agent to a different node. Thus the events Ek of an agent k ∈ A, which

are discrete valued functions, must be designed to allow the agent to choose the best node

in the network as a function of its requirements. Finally, note that the interactions between

nodes and agents happen at both the continuous and discrete levels: 1) The continuous
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input of the nodes dynamics are functions of the continuous states of the agents, and vice-

versa. 2) The discrete dynamics of the nodes are influenced by the movements of agents

between nodes, while the discrete dynamics of the agents are influenced by the availability

of resources in the nodes.

3.2.3 Design objective

The objective is to design the nodes and agents dynamical equations such that the usage of

the resources in the environment (network) is optimized with respect to the requirements

of the agents. In order to express these requirements in a more formal way,

Definition 3.4 (Utility functions) Each agent k ∈ A has a utility function Wk(xk) :

R
Nr → R where xk = (xk,1, xk,1, ..., xk,Nr

)T for all k ∈ A. The utility function is of

the form:

Wk(xk) =
∑

j∈R

wk,j(xk,j), ∀k ∈ A (3.1)

where wk,j(xk,j) : R → R is strictly concave, non-decreasing, and differentiable function

of xk,j for all k ∈ A and all j ∈ R. Moreover, we assume that wk,j(xk,j) → −∞ as

xk,j → 0.

This assumption is not overly restrictive; the least information that each agent should

have is its own utility function. Moreover, it is reasonable to assume that the more re-

sources an agent obtains, the more benefit it achieves (strictly increasing utility function).

The concavity and differentiability assumptions allow us to apply convex optimization

techniques [11, 56] without restricting the problem solution, and the requirement that

wk,j(xk,j) → −∞ as xk,j → 0 allows us to avoid the possibility of any agent getting

zero resources. Therefore, the design objective can be stated as:
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Figure 3.2: Example of the dynamical behavior of agents and nodes. Agents are modeled
as hybrid automata. Each discrete state in an automaton corresponds to a possible location
of an agent in the network (Agents on top). Each transition between modes represents a
change of location made by an agent (agent at the bottom). The dynamics of the nodes are
also modeled as hybrid systems. Each mode represents a number of agents residing at a
node paired with the availability of resources that varies in discrete manner. The agents on
top are located on a node, and therefore have a fixed discrete state, while the continuous
dynamics of agents and the nodes that hosts them are interacting. The agent at the bottom
is moving between nodes, so a discrete transition is occurring.
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Problem 3.1 Design the node and agent dynamics for all the components of the hybrid

multiagent system described in Assumptions 3.1-3.3 and Definitions 3.2-3.4, such that it

is asymptotically stable with equilibrium state (qk, xk) for all k ∈ A, and the equilibrium

maximizes the aggregate utility of all the agents in the network as given by
∑

k∈AWk(xk).

3.3 Equivalent Hierarchical Optimization Problem

In order to gain insight into the design problem, we first analyze an optimization problem

that is based on the network objective (maximization of
∑

k∈AWk(xk)) and the constraints

imposed by the system dynamics (Assumptions 3.1-3.3 and Definitions 3.2-3.4). Note

that to formulate an optimization problem, we must consider a fixed configuration of the

network as in the following result:

Lemma 3.1 Given a fixed configuration of the network G (Fixed number of nodes, number

of agents, amount of resources), the state (qk, xk)k∈A that maximizes the aggregate utility

function
∑

k∈AWk(xk) in Problem 3.1, is the solution, under the same configuration, to

the following optimization problem:

max
{

(qk)k∈A∈V
Na ,

(xk)k∈A∈
∏

k∈A Xk

}

∑

k∈A

Wk(xk) (3.2)

subject to

xk,j ≥ 0, for all (k, j) ∈ A×R (3.3a)

qk ∈ V , for all k ∈ A (3.3b)
∑

{k∈A:qk=i}

xk,j ≤ ri,j , for all (i, j) ∈ V ×R (3.3c)

Proof: (3.2) follows from Problem 1, (3.3a) and (3.3b) from Assumption 3.3, and

(3.3c) from Assumption 3.2.
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The optimization problem in Lemma 3.1 is a mixed integer-nonlinear programming

problem, and as a consequence NP -Complete in the number of the discrete states [59],

which in our case is given by the expression Nd = NNa
v that grows exponentially with

the number of nodes in the network. Therefore, the numerical solution of this problem

becomes computationally intractable as the number of nodes in the network increases. We

are not, however, interested in solving this problem directly. Instead, we would like to

use the formulation in Lemma 3.1 to help us identify the desired characteristics of the

dynamics of the nodes and the agents.

First, note that the resources of a node are allocated among the agents located in that

node (Assumption 3.2), which means that the agents only have access to the resources of

the nodes that hosts them, as implied by (3.3c). We show that this observation allows us

to convert the mixed integer-nonlinear optimization problem into a hierarchical problem,

with two subproblems: A convex optimization problem within each node in the network,

and an integer optimization problem on the global behavior of the network.

Let D̄ = (q̄k)k∈A be a fixed possible distribution of agents, i.e a fixed choice of qk for

all k ∈ A. Let VNa , be the set of all possible distributions of agents in the network.

Lemma 3.2 Given a fixed possible distribution of agents D̄ = (q̄k)k∈A, the solution of

(3.2)-(3.3) is given by the solution for each (i, j) ∈ V × R of the concave optimization

problem:

max
{(xk,j)k∈Vi∈

∏

k∈Vi
Xk}

∑

{k∈Vi}

wk,j(xk,j) (3.4)

subject to

xk,j ≥ 0, for all k ∈ Vi (3.5a)
∑

{k∈Vi}

xk,j ≤ ri,j (3.5b)
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Proof: Assigning a fixed value i ∈ V to each qk allows us to discard equation (3.3b),

rewrite equation (3.2) as

∑

{i∈V}

[

max
{(xk)k∈A∈

∏

k∈A Xk:qk=i}

∑

{k∈A:qk=i}

Wk(xk)

]

because agents at node i ∈ V only have access to resources of node i ∈ V . Equations

(3.3a) and (3.3c) are also rewritten as a set of equations indexed by V that are independent

of the choice of qk for all k ∈ A, obtaining for each i ∈ V:

max
{(xk)k∈Vi∈

∏

k∈Vi
Xk}

∑

{k∈Vi}

Wk(xk), subject to

xk,j ≥ 0, for all (k, j) ∈ Vi ×R
∑

{k∈Vi}

xk,j ≤ ri,j , for all j ∈ R

but the objective equation can be rewritten using (3.1) as:

max
{(xk)k∈Vi∈

∏

k∈Vi
Xk}

∑

j∈R

(

∑

{k∈Vi}

wk,j(xk,j)

)

(3.7)

Since wk,j(xk,j) is a strictly concave function of xk,j for each (k, j) ∈ A × R, the terms

inside the parentheses of equation (3.7), and the complete utility function are all con-

cave functions of their arguments. Similarly (3.3a)-(3.3c) are concave in their arguments.

Therefore we can consider Nr independent concave optimization problems within each

node indexed byR.

Theorem 3.1 The optimization problem (3.2)-(3.3), is equivalent to the following hierar-

chical optimization problem:

max
D̄∈VNa

∑

(i,j)∈V×R

Wi,j(D̄) (3.8)

where for each (i, j) ∈ V ×R:

Wi,j(D̄) = max
{(xk,j)k∈Vi∈

∏

k∈Vi
Xk}

∑

{k∈Vi}

wk,j(xk,j) (3.9)
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subject to

xk,j ≥ 0, for all k ∈ Vi : (i, j) ∈ V ×R (3.10a)
∑

{k∈Vi}

xk,j ≤ ri,j , s.t. (i, j) ∈ V ×R (3.10b)

Proof: Equations (3.9)-(3.10) are identical to (3.4)-(3.5). Then by Lemma 3.2, (3.9)-

(3.10) are solution for the optimization problem (3.2)-(3.3) if the distribution of agents is

considered fixed. Therefore to obtain an equivalent description to problem (3.2)-(3.3), the

agent location has to be added as a decision variable to the problem in Lemma 3.2. Note

that because the agents are constrained to use resources from the node they occupy, the

total benefit in the network
∑

k∈AWk(xk) is identical to the sum of the benefit that each

node in the network generates through the agents it hosts i.e.

∑

k∈A

Wk(xk) =
∑

(i,j)∈V×R

∑

{k∈Vi}

wk,j(xk,j)

If both sides of this equations are maximized with respect to x and then with respect to q

we obtain the equivalence between (3.2) and (3.8)-(3.9).

The solution of the problem in Theorem 3.1 takes on the following conceptual form (as

depicted in Figure 3.3): A centralized algorithm generates a set of possible distributions

of agents in the network, and communicates this information to the nodes in the network,

who solve the convex optimization problem (3.9)-(3.10) for each one of these possible

configurations. As a result, they obtain a set of benefit values, one for each possible

configuration, that are communicated back to the centralized algorithm which selects the

configuration that yields the optimum performance for the complete network. While, this

type of solution provides insight to the potential behavior of the final design of the system

as shown in section 3.5, it is however undesirable and may even be unfeasible because

of its centralized nature (a feasible solution using a centralized randomized algorithm is

discussed in [55]).
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Distribute

agents


Add and

compare


U

U
 U


Figure 3.3: Conceptual view of the hierarchical solution: A centralized algorithm dis-
tributes the agents (Left). The nodes then allocate the resources to the agents they host,
compute the benefit, and send it back to the centralized algorithm that obtains the aggre-
gate benefit in order to compare the possible distributions (Right).

3.4 Concave Optimization Problem within each Node

Consider the optimization problem in Lemma 3.2 (or equivalently the problem (3.9)-(3.10)

in Theorem 3.1). For simplicity, we drop the notation that indicates the node and type of

resource (i, j) ∈ V ×R. Thus we consider the problem of maximizing:

W =
∑

k∈Â

wk(xk), (3.11)

subject to

xk ≥ 0, for all k ∈ Â (3.12a)
∑

k∈Â

xk ≤ r (3.12b)

where Â ⊆ A is the set of agents participating in this particular optimization task. Let

na = |Â|.

28



Chapter 3. Continuous Resource Allocation among Multiple Agents ...

Lemma 3.3 Let λ ∈ R
na+1 such that (λp)p∈{1,2,...,na} = (λp)p∈Â. The necessary and

sufficient conditions for (x∗k)k∈Â to be the maximal solution of the problem (3.11)-(3.12)

are:

dwp

dxp

+ λna+1 − λp = 0, ∀p ∈ Â (3.13a)

λpxp = 0, ∀p ∈ Â (3.13b)

λna+1

(

∑

k∈Â

(xk)− r

)

= 0, (3.13c)

−xp ≤ 0, ∀p ∈ Â (3.13d)
∑

k∈Â

(xk)− r ≤ 0, (3.13e)

λp ≤ 0, ∀p ∈ Â
⋃

{na + 1} (3.13f)

Proof: Follows from applying Lagrange multipliers and Karush-Khun-Tucker con-

ditions [56] to (3.11)-(3.12).

Lemma 3.4 The solution (x∗k)k∈Â, (λ
∗
p)p∈Â⋃

{na+1} of equation (3.13) is given by λ∗p = 0

for p ∈ Â and by

dwp

dxp

+ λ′ = 0, ∀p ∈ Â (3.14a)

∑

k∈Â

(xk)− r,= 0 (3.14b)

xp > 0, ∀p ∈ Â (3.14c)

λ′ ≤ 0 (3.14d)

for (x∗k)k∈Â, and λ∗na+1 = λ′.

Proof: Consider equation (3.13e), and note that since xp ≥ 0 for all p ∈ Â and

that wp(xp) is a strictly increasing function of xp for all p ∈ Â, any choice of (xk)k∈Â for

(3.13e) such that
∑

k∈Â(xk) − r < 0 will be suboptimal. Thus equation (3.13e) must be
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modified as
∑

k∈Â(xk) − r = 0, therefore discarding equation (3.13c). Equation (3.13b)

provides two choices for each p: λp = 0 or xp = 0. The second choice however yields

up(xp) = −∞, violating the condition for maximization ofW . Thus λp = 0 for all p ∈ Â.

The same argument leads to the modification of equation (3.13d) to−xp < 0 for all p ∈ Â.

As a consequence (3.13a) and (3.13f) are simplified. Conditions (3.13) are then modified

to obtain (3.14).

Applying Lemmas 3.3 and 3.4 to equations (3.4) and (3.5), the main result of this

section is stated as:

Theorem 3.2 Given the available resource ri,j of type j ∈ R in the node i ∈ V , the

utility function (3.4) is maximized by (x∗k,j)k∈Vi , subject to (3.5) if and only if for each

(i, j) ∈ V ×R, (x∗k,j)k∈Vi satisfies:

dwk,j

dxk,j

∣

∣

∣

xk,j=x∗
k,j

+ λ∗i,j = 0, ∀k ∈ Vi (3.15a)

∑

k∈Vi

(x∗k,j)− ri,j = 0, (3.15b)

x∗k,j > 0, ∀k ∈ Vi (3.15c)

λ∗i,j ≤ 0 (3.15d)

3.5 Continuous Dynamics of Agents and Nodes

Based on the results of Section 3.3 we now provide a precise description for the continuous

dynamics for both agents and nodes. We start by recognizing that the hierarchical structure

proposed in Theorem 3.1 allows us to design the continuous dynamics independently from

the discrete dynamics. We say that an optimization problem P is solved exactly by a

systemH, ifH has a unique asymptotically stable equilibrium point he that solves P .

Proposition 3.1 The solution to the optimization problem stated in Lemma 3.2 using the
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hybrid model for nodes and agents given in Definitions 3.2 and 3.3, only requires the

consideration of the continuous dynamics in such models.

Proof: In general, ri,j is allowed to vary taking on discrete values from the set Ξ for

all (i, j) ∈ V × R (Assumption 3.2). However, the optimization problem in Lemma 3.2

considers a fixed amount of resources available on each node i.e., making Ξ a singleton

in this case. Then from Definition 3.2 note that there is a discrete state qi in the node’s

hybrid model for each possible number of agents residing in node i ∈ V . So for any given

choice of discrete states (qk)k∈A ∈
∏

k∈AQk in the agent’s model, there is a discrete state

(qi)i∈V ∈
∏

i∈V Qi in each node’s model that remains invariant as long as the discrete states

of the agents remain fixed. Then the hybrid states of both nodes hi = (qi, xq,i), ∀i ∈ V
and agents hk = (qk, xq,k), ∀k ∈ V have fixed discrete dynamics if the distribution of

agents D̄ remains fixed, which is assumed in Lemma 3.2. This implies that the continuous

dynamics of the nodes Σi and the agents Σk interact without switching between discrete

states as long as the distribution remains fixed. Therefore the optimization within each

node must be solved by the corresponding continuous dynamics.

The optimization problem in Lemma 3.2 is a special case of a resource allocation

problem considered in the literature, namely the dynamic modeling of congestion control

algorithms on the Internet [1, 29, 35, 62, 77]. As a consequence, we use such results in

the design of the continuous dynamics of agents and nodes in our problem, enabling a

coordination algorithm that solves the optimization problem of interest. Specifically, fol-

lowing the treatment in [35], the optimization problem in Lemma 3.2 is a special case of

equation (1 in [35]) when L has only one link. Therefore it is possible to apply the results

in [1, 29, 35, 62, 77] to solve our problem.

According to [35] there are three types of dynamical systems capable of solving the

optimization problem in Lemma 3.2: A primal algorithm, a dual algorithm, and a primal-

dual algorithm. We choose the primal-dual approach for our problem because it is better

suited for the hybrid models in Definitions 3.2 and 3.3. It is important to note that the
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primal and the dual approaches may also be used. A discussion of these alternatives can

be found in Section 3.7.

We now provide a description for a dynamical system that solves exactly the opti-

mization problem in Lemma 3.2. This description is based on the primal-dual algorithm

developed in [1, 35, 62, 77]. Note that the state of the agents xk,j is similar to the state of

the routes xr in [35], and the resources ri,j are the analog of the link capacity cl in [35].

We now let pi,j be the continuous state of the node i ∈ V and resource j ∈ R, which is

the analog to the price pl in [35]. We note that the primal-dual description in [35] differs

slightly from that in [62]. The following result uses the description in [62].

Lemma 3.5 Given a fixed distribution of agents D̄ ∈ VNa , the optimization problem in

Lemma 3.2 is solved exactly for each (i, j) ∈ V ×R, by the following dynamical system:

ẋk,j =Kk,j(xk,j)
(

w′k,j(xk,j)− pi,j
)

, ∀k ∈ Vi (3.16a)

ṗi,j =
[

Li,j(pi,j)(yi,j − ri,j)
]+

pi,j
(3.16b)

where xk = (xk,j)j∈R is the continuous state of agent k ∈ Vi ⊆ A, pi = (pi,j)j∈R is the

continuous state of node i ∈ V , yi,j =
∑

k∈Vi
xk,j for all (i, j) ∈ V × R, Kk,j(xk,j) is

any nondecreasing, continuous function with Kk,j(xk,j) > 0 for xk,j > 0 for all k ∈ Vi

and for all j ∈ R, Li,j(pi,j) is a positive, nondecreasing continuous function of pi,j for all

(i, j) ∈ V × R, w′k,j(xk,j) =
dwk,j
dxk,j

(xk,j) is the derivative of the utility function of agent

k ∈ Vi and resource j ∈ R with respect to its argument, and

[

g(t)
]+

t
=











g(t), t > 0,

max(g(t), 0), t = 0.

Moreover the dynamical system (3.16) is asymptotically stable at its equilibrium point

(the solution of the optimization problem in Lemma 3.2)

Proof: From Proposition 3.1 it follows that the problem in Lemma 3.2 is solved

using only continuous dynamics in agents and nodes. Then, given a pair (i, j) ∈ V × R
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we note that the optimization problem (3.4)-(3.5) is a special case of the problem (2.1)-

(2.2) in [62] (or equivalently (1) in [35]). So following the discussion on the Primal-Dual

Algorithm in [35, 62] the optimization problem in Lemma 3.2 is exactly solved by (3.16),

which converges asymptotically to this solution.

Note that the continuous state of the node pi ∈ P with i ∈ V is related to the demand

of resources within each node, and it is commonly called price. Therefore, the state of

each node is directly related to the demand of resources within it, i.e the more demanded

are the resources, the larger is the value of p.

Based on the previous result we can establish a detailed model for the continuous dy-

namics of the nodes and the agents. This dynamic description is guaranteed to solve the

optimization problem in Lemma 3.2, or equivalently the problem (3.9)-(3.10) in Theorem

3.1. Therefore the continuous dynamics of this interconnected system will solve the opti-

mization of the network resources locally, leaving the global optimization to the discrete

dynamics of the hybrid models.

Proposition 3.2 The following dynamical description is satisfied for all qi ∈ Qi for all

i ∈ V:

1. The continuous state space Xqi = P where P = R
Nr .

2. The continuous dynamics are given in a diagonal matrix:

fqi =

















fqi,1 0 . . . 0

0 fqi,2
. . . ...

... . . . . . . 0

0 . . . 0 fqi,Nr

















where the state equation ṗqi,j = fqi,j =
[

Lqi,j(pqi,j)
(

(
∑

µ∈Uqi,j
µ)− rqi,j

)]+

pqi,j
, ∀j ∈

R, where Lqi,j(pqi,j) is a positive, nondecreasing continuous function of pqi,j .

3. The set of continuous inputs Uqi =
⋃

j∈R Uqi,j , where Uqi,j = {xqk,j : k ∈ Vi}.
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Proof: Assumption 3.2 states that the number of types of resources in the network

Nr is constant for all nodes i ∈ V , and Lemma 3.5 implies there exists one state dimension

for each type of resource in the network, then Xq,i ⊆ R
Nr . Since Xq,i has no restrictions,

this implies Xq,i = R
Nr

For item 2) note that (3.16b) describes the dynamics of one resource being allocated

inside each node. Therefore in order to completely describe the Nr resources available in

each node one must consider Nr decoupled resource dynamics proving the claim.

Finally for item 3), the continuous control inputs for each node i ∈ V described by yi,j

in (3.16b) are the states of all the agents located in that node i.e., {xk : k ∈ Vi}, which

implies the third item for all qi ∈ Qi and all i ∈ V .

Proposition 3.3 The following dynamical description is satisfied for all qk ∈ Qk for all

k ∈ A:

1. The continuous state space Xqk = X where X = {x ∈ R
Nr : x = (x1, x2, ..., xNr

),

xi ≥ 0, ∀i ∈ R}.

2. The continuous dynamics are given in a diagonal matrix:

fqk =

















fqk,1 0 . . . 0

0 fqk,2
. . . ...

... . . . . . . 0

0 . . . 0 fqk,Nr

















where ẋqk,j = fqk,j = Kqk,j(xqk,j)
(

w′qk,j(xqk,j) − uqk,j

)

, ∀j ∈ R, where Kqk,j(xqk,j)

is any nondecreasing, continuous function with Kqk,j(xk,j) > 0 for xqk,j > 0 for all

qk = i and w′qk,j(xqk,j) =
dwqk,j
dxqk,j

(xqk,j).

3. The set of continuous inputs Uqk =
⋃

j∈R Uqk,j where Uqk,j is the singleton set

{pqi,j ; k ∈ Vi} i.e., uqk,j = pqi,j for k ∈ Vi.

34



Chapter 3. Continuous Resource Allocation among Multiple Agents ...

Proof: Similar to proof of Proposition 3.2.

We now prove that each possible distribution of agents forms a continuous dynamical

system that is globally asymptotically stable at an equilibrium point that solves exactly

the optimization problem in Lemma 3.2. This result guarantees that whatever the location

of the agents in the nodes is, the system will asymptotically converge to a local optimum

solution for that particular choice of location. Therefore, each particular combination of

discrete states of nodes and agents (qi)i∈V ∈
∏

i∈V Qi, and (qk)k∈A ∈
∏

k∈AQk, (which

we call interconnection) will have a globally asymptotically stable point. The state will

only be perturbed from that equilibrium when a discrete event occurs on the agents or

nodes, but will converge to the equilibrium point of the new interconnection, and locally

optimize the resource distribution for this new interconnection.

Theorem 3.3 A selection of discrete states of the agents (qk)k∈A ∈ ∏

k∈AQk, and of

discrete states of the nodes (qi)i∈V ∈
∏

i∈V Qi, generates Nv ×Nr interconnected systems

indexed by (i, j) ∈ V × R, where each of them is governed by the following continuous

dynamics:

ẋqk,j = Kqk,j(xqk,j)
(

w′qk,j(xqk,j)− pqi,j
)

, ∀k ∈ Vi (3.17a)

ṗqi,j =

[

Lqi,j(pqi,j)
(

(
∑

κ∈Vi

xqκ,j)− rqi,j
)

]+

pqi,j

(3.17b)

where Kqk,j , Lqi,j , and w′qk,j satisfy the same conditions from Propositions 3.2 and 3.3.

Moreover, each interconnected system (indexed by (i, j) ∈ V ×R) is globally asymp-

totically stable with an equilibrium point that satisfies the conditions in Theorem 3.2 i.e.,

solves exactly the optimization problem in Lemma 3.2.

Proof: Given a selection of discrete states (qk)k∈A ∈
∏

k∈AQk made by the agents,

the nodes, which have information about the resource availability, automatically jump to

a discrete set of modes (qi)i∈V ∈
∏

i∈V Qi. The agents selection (qk)k∈A imply that each

one of these agents k ∈ A has located itself in a node identified by qk. This implies
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that each node i ∈ V indexes an interconnected system composed of itself and the set of

agents located on it {k ∈ A : k ∈ Vi} obtaining Nv interconnected systems. However,

since the the dynamics for both agents and nodes are decoupled in the resources (second

item in Propositions 3.2 and 3.3) we can consider the system as formed by Nv × Nr

interconnected systems, indexed by (i, j) ∈ V × R. Then from Propositions 3.2 and

3.3 the interconnected system (i, j) is governed by the dynamics composed by fq,i,j and

{fq,k,j}k∈Vi , which is written as (3.17). Since this equation is identical to (3.16), except for

the notation stressing the dependence on the discrete mode, Lemma 3.5 implies that (3.17)

are globally asymptotically stable, and that they exactly solve the optimization problem in

Lemma 3.2.

3.6 A Numerical Example

3.6.1 Simulation set-up

In this section we provide a simulation example to clarify the concepts developed in the

paper. We are interested in testing the validity of Theorem 3.3 and its relationship to the

solution of the optimization problem (3.9)-(3.10) as given in Theorem 3.2.

We consider a set of ten agents (Na = 10) and a graph composed of three nodes

(Nv = 3). We assume for simplicity that the graph is completely connected and that there

is only one type of resource available in the network (Nr = 1). The utility functions of the

agents, in reference to Definition 3.4, have the form:

Wk(xk) = νk ln(xk) (3.18)

for all k ∈ A = {1, .., 10}, where νk ∈ R for all k = 1, · · · , 10, and where we have

dropped the dependence on the resource index for simplicity. The utility function (3.18)

satisfies Definition 3.4 as long as νk > 0. Note that νk are weighting factors for each
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agent, and are used to quantify the importance that the resource has for each agent (the

greater the value of νk the more important is the resource for agent k). In our example, we

choose νk as: (ν1, ν2, ..., ν10) = (0.5, 0.6, 0.1, 0.3, 0.4, 0.9, 0.4, 0.3, 0.2, 0.1). Note that the

particular choice of utility function for this test is commonly referred to as proportional

fairness [1, 29, 35, 62, 77].

The dynamics of nodes and agents following Propositions 3.2 and 3.3, are described

by:

fqi =
[

Lqi(pqi)
(

∑

{k∈A:qk=i}

xqk − rqi
)]+

pqi
, ∀i ∈ V , (3.19a)

fqk = Kqk(xqk)
( νk
xqk

− pqi=qk
)

, ∀k ∈ A (3.19b)

where V = {1, 2, 3}, Lqi(pqi) = tanh(pqi) + 1, ∀qi ∈ Qi ∀i ∈ V , and Kqk(xqk) =

50xqk ∀qk ∈ Qk ∀k ∈ A, satisfying the conditions in Propositions 3.2 and 3.3.

The interconnected system is tested over the time interval T = [0, 9] sec. The agents

start at t = 0 located as: (q1, q2, ..., q10) = (1, 3, 2, 3, 2, 1, 1, 1, 3, 2) with the continu-

ous initial condition (x1(0), x2(0), ..., x10(0)) = (2, 1, 3, 2.2, 2, 1, 4.5, 8, 2, 2). The nodes

start with the resource amounts (r1, r2, r3) = (2, 4, 3) and the continuous initial condi-

tions (p1(0), p2(0), p3(0)) = (2, 3, 2). During the simulation, two events are generated

to test different conditions on the interconnected system: At t = 3 agent 7 changes

its location from q7 = 1 to q7 = 2, creating the new configuration (q1, q2, ..., q10) =

(1, 3, 2, 3, 2, 1, 2, 1, 3, 2), and at t = 6 the resource at node 3 is changed from r3 = 3 to

r3 = 2, so the new resource vector becomes (r1, r2, r3) = (2, 4, 2). Note from this sim-

ulation conditions that agents and nodes only visit a subset of the discrete modes in their

model: Agents 1, 2, ..., 6, 8, 9, 10 only visit the mode that corresponds to their location in

the graph, which does not change during the test, while agent 7 starts at MODE : q7 = 1

and at t = 3 changes to MODE : q7 = 2. Node 1 which initially hosts agent 7

starts the simulation at MODE : q1 = (4 agents, r = 2) and at t = 3 switches to

MODE : q1 = (3 agents, r = 2). Node 2, which is the final destination of agent 7,
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starts the simulation at MODE : q2 = (3 agents, r = 4) and at t = 3 switches to

MODE : q2 = (4 agents, r = 4). Finally node 3 starts the simulation at MODE : q3 =

(3 agents, r = 3) and at t = 6 switches to MODE : q3 = (3 agents, r = 2). These

changes of modes have a direct effect on the continuous dynamics. A mode switch on an

agent causes the term pq,i=qk to change in (3.19b) (because the rest of the term are identical

for all modes int his model). A switch on a node causes rq,i to change in (3.19a) if it is

because of a change in the resource while causing (
∑

{k∈A:qk=i} xq,k) to change in (3.19a)

if the switch is caused by a change in the number of agents residing in the node.

3.6.2 Results

Given the set-up described in the previous subsection, the state of the system is expected to

converge to an asymptotically stable equilibrium point that coincides with the solution of

the optimization problem (3.9)-(3.10) with our particular choice of utility function (3.18).

In order to obtain such equilibrium point we apply Theorem 3.2 to (3.18), obtaining, for

each i ∈ V:

x∗k =
riνk

∑

{κ∈Vi}
νκ
, ∀k ∈ Vi (3.20a)

λ∗k = − 1

ri

∑

{κ∈Vi}

νκ, ∀k ∈ Vi (3.20b)

Substituting the values for νk and ri given in previous subsection, and considering the

three possible discrete configurations, one for each interval between the beginning of the

simulation, the events, and the end of the simulation, we obtain the results are summarized

in Figures 3.4-3.6. We only show results for some of the agents. The rest of the agents

behave in similar form. The plots in Figures 3.4 and 3.5, show the time evolution of the

continuous states of the agents 5, 6, 7, and 9. The vertical segmented lines indicate the time

of occurrence of the events that were mentioned in the previous subsection. The horizontal

dotted lines with ∗-marks at the end points indicate the expected equilibria during for each
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interval between events given by the solution of the optimization problem (3.9)-(3.10)

with utility function (3.18). As seen from Figures 3.4 and 3.5, the states of all the agents

converge to a stable equilibrium point on each interval between events. This equilibrium

coincides with the solution of the optimization problem.
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Figure 3.4: Dynamic behavior and optimal stable equilibria of agents 5 (left) and 6 (right).
The solid (blue) curves show the dynamic behavior of the states. The segmented (green)
vertical lines indicate the occurrence of events that change the operating conditions of
the system.The dotted (blue) horizontal lines with ∗-marks at the end points indicate the
optimal solution to the corresponding optimization problem for the system configuration
during that time intervalthat is expected to coincide with the equilibrium point where the
dynamics approach during such interval.

To see the effects of the first event on agents, observe the behavior shown in Figures 3.4

and 3.5. Agent 7 (Fig. 3.5 left) converges from an initial condition to the equilibrium point

in the interval t ∈ [0, 3). Then, after the event at t = 3 where it is moved to a different

node, agent 7 converges to a different equilibrium point in t = [3, 9]. Note that the second

event does not affect the evolution of agent 7 because this event happens at node 3, while

agent 7 is located at node 2 when this event happens. Observe also the behavior of agents
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5 and 6 in Figure 3.4 left and right respectively. Agent 6 which is located at node 1, the

node where agent 7 starts the simulation, suffers a change in its equilibrium point when

agent 7 moves out from node 1. Moreover note that the new equilibrium value is greater

than the previous one. This is because agent 7 released resources from node 1. Similarly,

agent 5 that is located at node 2 changes its equilibrium point after agent 7 arrives this

node. Its new equilibrium value is smaller than its previous one because agent 7 obtains

some resources at this node after arriving to it. Finally note that the second event does not

affect the behavior of agents 5 or 6. Similar behavior is observed on other agents located

at nodes 1 and 2.
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Figure 3.5: Dynamic behavior and optimal stable equilibria of agents 7 (left) and 9 (right).
The solid (blue) curves show the dynamic behavior of the states. The segmented (green)
vertical lines indicate the occurrence of events that change the operating conditions of
the system.The dotted (blue) horizontal lines with ∗-marks at the end points indicate the
optimal solution to the corresponding optimization problem for the system configuration
during that time interval that is expected to coincide with the equilibrium point where the
dynamics approach during such interval.

The effects of the second event on the agents is showcased by the evolution of agent 9
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in Figure 3.5 (right). This agent, which is located at node 3, changes its equilibrium point

after the resources in this node are reduced. Note that the new equilibrium value is smaller

than the older one reflecting the reduction of resources in the node. Also note that the first

event does not affect the behavior of this agent. Similar behavior is observed on all agents

located at node 3.
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Figure 3.6: Dynamic behavior of nodes 1 (dotted blue curve), 2 (segmented green curve),
and 3 (solid red curve). The segmented (green) vertical lines indicate the occurrence of
events that change the operating conditions of the system.

The effect of the events is also observed in the nodes as seen in Figure 3.6. The first

event affects nodes 1 and 2, because agent 7 moves from node 1 to node 2. After this event
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the state of the node 1 switches its equilibrium point to a smaller value than its original

one. This is expected because the state on the nodes are directly related to the demand

of resources caused by the agents. Therefore as agent 7 leaves node 1, the demand of

resources in this node is reduced, causing a reduction in the value of its equilibrium point.

On the other hand, node 2 increases its equilibrium value because agent 7 increases the

demand of resources in this node. Finally node 3 increases its equilibrium value after the

second event because this event reduces the resources available in this node, causing an

increase of resources’ demand.

To summarize, we observe as expected from Theorem 3.3, that each different configu-

ration of agents locations and amounts of resources, with dynamics given in Propositions

3.2 and 3.3 have a stable equilibrium point which coincides with the solution to its corre-

sponding optimization problem. We have also observed that agent-related events affect the

dynamic behavior and optimal solution of the systems at both the origin and destination

nodes, while node-related events only affect the condition at the local node. This happens

in part because we have not included discrete transition rules in the agent’s and node’s

hybrid models. We expect this to change when the design is complete.

3.7 Conclusions

The problem studied in this chapter considers agents moving on a network of discrete

locations. The agents need resources in order to perform some tasks, and such resources

are provided by the environment. The agents’ objective is to obtain the best possible

resources from the network in order to maximize their satisfaction measured using a utility

function. The objective of the multi-agent system, however, is to achieve a group behavior

such that the utilization of the network resources is globally optimized.

The overall behavior of the system includes resource allocation, movement of agents
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between discrete locations, and a change of network conditions. Therefore, both agents

and nodes need to be described using continuous (resource allocation) and discrete dynam-

ics (agents movement and varying network conditions) that can be captured by a hybrid

model [12, 36]. The hybrid model is not complete, and this chapter outlines how to obtain

the continuous dynamics only, leaving the discrete dynamics unspecified.

The continuous dynamics are designed using results borrowed from Internet conges-

tion control algorithms [1, 29, 35, 62, 77]. This is done by posing an optimization problem

that is equivalent to the multi-agent system overall objective, and then using the results

in [35, 62] to obtain a precise dynamical description of the continuous dynamics of nodes

and agents. This model forms an interconnected system for each possible configuration of

agents and nodes that is globally asymptotically stable by design, and that optimizes the

usage of resources locally within each node.

The discrete dynamics are a key factor to achieving global optimization of resource

utilization in the network. The design of this part of the model is expected to benefit

from several techniques that are discussed in the following chapters, which include the the

study of dynamical properties for multi-agent systems with hybrid interacting dynamics,

abstraction procedures of the continuous dynamics of the system, in order to obtain a

simplified, but still meaningful description of the dynamic behavior of the interconnected

system, and the design of the discrete dynamical components of the hybrid model for

agents and nodes using optimal control techniques.
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Chapter 4

Dynamical Properties of Multiple

Interacting Hybrid Systems

4.1 Introduction

Motivated by the discussion in the previous chapter, we present a general framework for

describing multi-agent systems with hybrid interacting dynamics, where the interaction

between agents occurs at both the continuous and discrete levels, and study dynamical

properties of these systems. We define multi-agent systems as Interconnected Hybrid Sys-

tems, recast fundamental hybrid concepts such as hybrid execution and reachability in

this new interconnected hybrid systems framework, and prove a necessary and sufficient

condition for the existence and uniqueness of the interconnected hybrid executions, ex-

tending previous work on hybrid systems. We provide conditions on each agent’s hybrid

model that guarantee the multi-agent system’s existence and uniqueness property. Finally,

we continue to study the problem described in Chapter 3 by showing how to apply the

existence and uniqueness conditions in the design of the agents and nodes’ dynamics.

The vision of an Internet in which functions are not fixed to physical nodes, but are
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instead implemented by software agents that are free to migrate from node to node, de-

pending on resources that they may have to compete for gives rise to a new type of multi-

agent system where agent dynamics are composed by discrete states that represent the

location of the agent in the network and its operating mode, and by continuous states

that represent the amount of resources that the agent is receiving from the network. The

node dynamics are also composed by discrete and continuous states. The discrete states

represent changes in the agents hosted by the node, while continuous states represent the

evolution of the resource availability due to the competition of agents for such resources.

Agents start at initial locations in the network and with a given set of resources. Nodes

start at discrete states that reflect the initial distribution of agents and at continuous states

corresponding the initial availability of resources. The continuous states of the agents may

then evolve according the agents requirements affecting the availability of resources in

the nodes. Agents may also jump to different locations depending on the conditions at

the nodes. These jumps will affect the continuous evolution of other agents and nodes,

and will also cause discrete jumps at the nodes reflecting the new agent distribution. A

pictorial example of this situation is depicted in Figure 4.1.

It is not clear how to capture the operation of such a system with existing hybrid frame-

works. The interactions between the hybrid systems that model agents and nodes happen

at both the continuous and discrete levels. The continuous and discrete dynamics of the

agents depend on both the continuous and discrete states of the nodes and viceversa. If

a single hybrid model was formulated to study this type of multi-agent system the result

could be a that of a centralized model where it would be difficult to decouple individual

agent’s descriptions. Instead, we attempt to capture this interaction with a new class of

systems: the interconnected hybrid systems. Such systems are not mere parallel composi-

tions [61], or products of the component hybrid subsystems. The existence and evolution

of an individual subsystem can be meaningless if isolated. Moreover, interactions are

not limited to common or uncommon events. In our case, the hybrid state in one of the

systems modifies the execution in another one. Therefore we formally define the inter-
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Figure 4.1: Example of dynamical behavior of agents and nodes. Agents are modeled
as hybrid automata. Each mode in an automaton corresponds to a possible location of an
agent in the network. Each transition between modes represents a change of location made
by an agent. The dynamics of the nodes are also modeled as hybrid systems. Each mode
represents a set of agents residing at a node paired with the availability of resources that
varies in discrete manner. The agents on the left are located on a node, therefore have a
discrete state fixed and the continuous dynamics of agents and the nodes that hosts them
are interacting. The agent on the right is moving between nodes, so a discrete transition is
occurring.

connected hybrid system such that the continuous evolution in one agent depends on the

continuous states of agents that are connected to it, and similarly the discrete dynamics

depend on continuous and discrete dynamics of neighboring agents. This definition also

includes a description of the connectivity of the multi-agent system in each agent’s hybrid

state. We then recast the reachability and the hybrid execution concepts from hybrid sys-

tems theory into the new framework, and provide a necessary and sufficient condition for

the existence and uniqueness of the interconnected hybrid execution (the hybrid analog

to the state’s evolution in continuous dynamical systems), in terms of each agent’s hybrid

model, extending some of the concepts in [37]. We use an application example to illustrate
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how to use the existence and uniqueness condition for designing the general dynamics of

the agents locally, while guaranteing the existence and uniqueness of the execution of the

multi-agent system globally.

4.2 Interconnected Hybrid Systems

We consider a multi-agent system with individual hybrid dynamics. The agents in the

system interact at both the continuous and discrete level through the continuous control

input and the discrete transition guards respectively. We index the agents in the system by

the set I . A hybrid system is denoted byHi, for all i ∈ I .

We use the following notation: νk denotes dependence of ν on k. νqk denotes depen-

dence of ν on qk which depends on k. νn, denotes the nth element of a sequence in ν,

ν(t) denotes the value of ν at time t, and with some abuse of notation, ν0 marks an initial

condition. {νk}k∈K denotes a collection of νk indexed by the set K. Similarly (νk)k∈K

denotes the vector (ν1, ν2, . . . , ν|K|) indexed by the set K.

Let Oi is the set of operating states and Di is the set of connectivity states ofHi. Each

oi ∈ Oi represents a different operating condition ofHi. Each di ∈ Di, represents different

connectivity conditions. Let Qi be the set of discrete states ofHi, such that Qi = Oi×Di,

where (oi, di) ∈ Qi is denoted as qi. Each qi has an associated set V (qi) ⊆ I ∀qi ∈ Qi,

which stores the indexes of the systems that are connected to Hi, i.e., if j ∈ V (qi) then

Hj is connected to Hi. Note that V (q) = V (q′) for all q = (o, d), q′ = (o′, d′) ∈ Qi that

satisfy d = d′.

Let Σi = {Σqi}qi∈Qi
be a collection of continuous dynamical systems Σqi indexed by

the set Qi. Each continuous system is a tuple Σqi = (Xqi , fqi , Uqi ,R
+) where Xqi is the

continuous state space, fqi the continuous dynamics, Uqi the set of continuous controls,

and R
+ = [0,∞) the time set. Also let Xi =

⋃

qi∈Qi
Xqi be the continuous state space
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over all the discrete states of agent i.

Let Si = {Sqi}qi∈Qi
be the set of discrete transition labels of Hi. Symbol sqi ∈ Sqi

determines the discrete state after a transition from qi ∈ Qi in system Hi. We consider

only state based (autonomous) transition in this paper.

LetGi = {Gqi}qi∈Qi
be the set of guard conditions forHi. Gqi is a map that determines

when a transition is possible from qi ∈ Qi. Let Zi = {Zqi}qi∈Qi
be the set of transition

maps of Hi, where Zqi : Gqi × Sqi → Xi determines the continuous state of Hi after a

transition label in Sqi from a hybrid state in Gqi .

The hybrid state space of agent i is Hi = Qi × Xi, the continuous state space of the

agents that are connected to i is XV (qi) =
∏

j∈V (qi)
Xj , and the hybrid state space of the

agents that are connected to i is HV (qi) =
∏

j∈V (qi)
Hj .

Definition 4.1 (Interconnected Hybrid System (IHS)) An Interconnected Hybrid Sys-

tem is a set H∗ = {Hi}i∈I of Controlled Hybrid Dynamical Systems [12] Hi indexed

by the set I . For each i ∈ I ,Hi = [Qi,Σi,Gi,Zi,Si], such that

• The continuous control inputs in Uqi are the continuous states of the systems that are

connected toHi. Therefore Uqi = Xqi ×XV (qi).

• A guard condition for a discrete transition of agent i is a function Gqi : Sqi → Xqi×
HV (qi). Gqi specifies when a transition is possible as a function of the continuous

state of agent i and the hybrid states of agents connected to i. Gqi(s) = GL
qi
(s) ×

GR
qi
(s) where GL

qi
(s) ⊆ Xqi denotes the local condition of Gqi(s) i.e. the condition

on the continuous state of agent i, andGR
qi
(s) ⊆ HV (qi) denotes the remote condition

of Gqi(s) i.e. the condition on the hybrid states of agent connected to i.

The discrete state space of the IHS H∗ is QI =
∏

i∈I Qi, its continuous state space

is XI =
∏

i∈I Xi, and its hybrid state space is HI =
∏

i∈I Hi. The state of the IHS is

denoted as ~h = (~q, ~x~q) where ~q = (qi)i∈I ∈ QI , and ~x~q = (xqi)i∈I ∈ XI .
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Note in Definition 4.1 that the discrete states of the systems are divided into oper-

ating states, which are used to describe modes of operation of each individual agent in

the system, and connectivity states, which describe the possible configurations for infor-

mation exchange between agents in the system. If one thinks in the usual graph the-

oretic concept that describes connectivity between agents in multi-agent systems litera-

ture [17, 20, 27, 41, 45, 57] different connectivity states correspond to its different possible

neighborhoods. Also note that no assumptions are made about the direction of informa-

tion flow, so this definition includes the possibility of agent i ∈ I being connected to agent

j ∈ I : j 6= i without j being connected to i (a directed graph).

Interactions between the continuous dynamics of the agents occur through their contin-

uous control inputs. The continuous control inputs of agent i ∈ I in the IHS are functions

of the continuous state of agent i ∈ I and the continuous states of the agents that are

directly connected to agent i ∈ I .

Interactions between the discrete dynamics of the agents occur at their discrete transi-

tion guards. The transition guards of agent i ∈ I set conditions on the continuous states

of agent i ∈ I through GL
qi
(s) and on the hybrid states of the agents that are connected to

agent i ∈ I through GR
qi
(s). So a discrete transition may occur when both the continuous

state of agent i and the hybrid states the the agents connected to i ∈ I reach a guard con-

dition. Therefore the discrete dynamics of agent i ∈ I are influenced by the hybrid states

of the agents that are connected to agent i ∈ I . A graphical example of an IHS is shown

in Figure 4.2.

Definition 4.1 presents a hybrid analog to the standard multi-agent setting [17, 20, 27,

41, 45, 57] where each agent uses the states of its neighbors to update its own evolution.

The following is an standing assumption for the rest of this paper.

Assumption 4.1 The sets of discrete statesQi are finite for all i ∈ I . The continuous state

space Xi ⊆ R
d for all i ∈ I , where d is an integer. The vector fields fqi(xqi , uqi , t) are
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Figure 4.2: Graphical representation of an IHS. Three hybrid systems interconnected in
line topology with bidirectional connectivity. The area inside ovals and circles represent
the continuous state space of the agents. The graphs inside the continuous spaces represent
the automata for each system. The gray area within the state space represents the guard for
the discrete transition indicated with segmented thicker line inH2. Note that this transition
depends on the continuous states of the agents connected toH2

globally Lipschitz continuous on both xqi and uqi with Lipschitz constants Lx
qi

and Lu
qi

for

all qi ∈ Qi for all i ∈ I .

4.3 Interconnected Hybrid Execution

In this section we introduce the Interconnected Hybrid Execution (IHE) based on the con-

cept of hybrid execution in [37]. The IHE is the analog of the state evolution of a contin-

uous multi-agent dynamical system, and captures the system’s hybrid behavior over time,

with respect to both discrete and continuous interactions of the agents among themselves

and with and with its environment.

An Interconnected Hybrid Time Trajectory (IHTT) is a sequence τ = {τ 0, τ 1, τ 2 . . . ,
τn, . . . , τN}, where 1) τ 0 is the time whenH∗ starts its evolution, 2) τn for n = 1, . . . , N−
1 is the time at which there is at least one systemHi ∈ H∗ that makes a discrete transition

from qni to qn+1
i , such that the Interconnected Hybrid System H∗ makes a discrete transi-
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tion from ~qn to ~qn+1, and 3) τN is the time when H∗ ends its evolution. Two consecutive

elements in the IHTT satisfy τn ≤ τn+1 for all n = 0, 1, . . . , N − 1. Finally the IHTT τ is

infinite if N =∞ and is finite otherwise.

The IHTT is used to encode timing information for the continuous and discrete dy-

namics of the IHSH∗. The IHTT stores the times when a discrete transition takes place at

least on one of the agents in the system. As a consequence the IHTT also specifies time in-

tervals between two consecutive elements in the sequence where uninterrupted continuous

evolution takes place.

Note that between two consecutive interconnected discrete states ~qn = (qni )i∈I and

~qn+1 = (qn+1
i )i∈I , the individual discrete states qni and qn+1

i are different for all i ∈ I

that executed a transition at time τn, while qni = qn+1
i for all i ∈ I that did not execute a

transition at time τn. Therefore the IHTT as defined above allows more than one hybrid

agent in the IHS to a discrete transition at the same time.

Let a (candidate) execution be the collection (τ,q, s,x,u) where:

• τ is an interconnected hybrid time trajectory.

• q = {~q0, ~q1, . . . , ~qn, . . . , ~qN} is a sequence of vectors of discrete locations ~qn =

(qni )i∈I where qni is the discrete mode of systemHi at the nth step in the execution.

• s = {~s0, ~s1, . . . , ~sn, . . . , ~sN} is a sequence of vectors of switching labels ~sn =

(snqi)i∈I where snqi is the discrete transition that occurs on system Hi at nth step

in the execution.

• x = {~x0, ~x1, . . . , ~xn, . . . , ~xN} is a sequence of continuous evolution ~xn = (xqni
)i∈I

where xqni
is a differentiable map xqni

: [τn−1, τn[→ Xqni
of system Hi at the nth

step in the execution.

• u = {~u0, ~u1, . . . , ~un, . . . , ~uN} is a sequence of continuous control inputs ~un =
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(

uqni

)

i∈I
where uqni

is a continuous map uqni
: [τn−1, τn[→ Uqni

of system Hi at

the nth step in the execution.

In order to simplify notation, we use the following convention: Unless otherwise noted,

if we use an interconnected hybrid state ~h, an interconnected discrete state ~q, and/or a dis-

crete state qi in the same sentence/paragraph it implies that the discrete state qi is a com-

ponent of an interconnected discrete state ~q, which is a component of an interconnected

hybrid state ~h. We will follow that convention for continuous states, transition labels and

continuous inputs as well.

We say that ~h(t) satisfies the discrete transition guard Gqi(s), if the local component

of ~h(t) satisfies the local part of Gqi(s) - xqi(t) ∈ GL
qi
(s)) and the remote component of

~h(t) satisfies the remote part of Gqi(s) - (hj)j∈V (qi)(t) ∈ GR
qi
(s). We say that ~h(t) satisfies

interconnected discrete transition guardG~q(~s), if ~h(t) satisfiesGqi(sqi) for all i ∈ I , where

~q = (qi)i∈I and ~s = (sqi)i∈I .

We say that ~x~q′ is in the interconnected transition map Z~q(~h,~s), if each component of

~x~q′ satisfies the transition map of each component of ~s, i.e. xq′i
∈ Zqi(

~h, sqi) for all i ∈ I ,

such that ~q′ = (q′i)i∈I , ~q = (qi)i∈I , ~x~q′ = (xq′i
)i∈I , and ~s = (sqi)i∈I .

Definition 4.2 (Interconnected Hybrid Execution (IHE)) An Interconnected Hybrid

Execution with initial condition ~h0 is a collection χ(~h0) = (τ,q, s,x,u) where:

• Initial Condition: ~h0 = (~q0, ~x0(0)) is an initial condition ofH∗.

• Continuous Dynamics: ~̇xn = ~f~qn(~x
n, ~un, t) for all t ∈ [τn−1, τn), for all n ∈

{1, 2, . . . , N}, where ~f~qn(·) =
(

fqni (·)
)

i∈I
is the vector field of all agents in the

IHSH∗.

• Discrete Dynamics: The following conditions hold for all n ∈ {0, 1, 2, . . . , N − 1}:
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– The discrete state after a transition ~qn+1 is equal to the corresponding discrete

transition label ~sn, i.e. ~qn+1 = ~sn

– The hybrid state before a transition ~hn(τn) satisfies the corresponding transi-

tion guard G~qn(~s
n).

– The continuous state after a transition ~x~qn+1(τn+1) is in the corresponding

transition map, i.e. ~x~qn+1(τn+1) ∈ Z~qn(~h
n, ~sn).

The IHE provides the information about the continuous and discrete states and inputs

of the system at each instant of its evolution. It is the analog of the state-input trajectory

in continuous time systems. The conditions imposed in Definition 4.2 are required for

the execution to to satisfy the dynamics of H∗. Therefore an IHE starts at a valid initial

condition. The continuous evolution between two times in the interconnected hybrid time

trajectory satisfies the continuous dynamics of each agent, and the discrete transitions have

valid transition guards and transition maps.

4.4 Existence and Uniqueness of the IHE

We provide conditions for the existence and uniqueness of an infinite IHE. These condi-

tions are stated as a function of each agent in the system. Therefore the desired global

behavior of the system (existence and uniqueness of its execution), can be guaranteed by

the specification of local design variables inside each agents dynamics.

The following concepts are very similar to those for individual hybrid systems. Let

χS(~h0) denote the set of all IHEs with initial condition ~h0, and similarly χF (~h0) denotes

the set of all finite IHEs, χ∞(~h0) denotes the set of all infinite IHEs, and χM(~h0) denotes

the set of all maximal IHEs. Init denotes the set of all initial conditions.

We say that a finite IHE χ(~h0) ∈ χF (~h0) maps~h0 to~h if its IHTT τ = {τ 0, τ 1, . . . , τN}
and ~h = (~qN , ~xN (τN)). The interconnected hybrid state ~h is reachable from initial condi-
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tion ~h0 - denoted ~h ∈ Reach(~h0) if there exists a finite IHE χ(~h0) ∈ χF (~h0) that maps ~h0

to ~h. The set of states ~h that can be reached from any initial condition is called Intercon-

nected Reachable Set:

ReachH∗ =
⋃

~h0∈Init

Reach(~h0)

Let ψ(qi, t) denote the continuous flow of fqi(xqi , uqi , t). We define the Set of Blocked

Continuous Evolution as the set that specifies what states in the system require a discrete

transition for the system to continue its evolution:

OutH∗ = {~h ∈ HI ;∀ε > 0,∃t ∈ [0, ε) and ∃i ∈ I,

s.t. ψ(qi, t) /∈ Xqi}

We say that H∗ is deterministic if given ~h0, χM(~h0) contains at most one element.

The following result provides the necessary and sufficient conditions for existence of an

infinite execution given that the system is deterministic. These conditions combined with

those for an IHS to be deterministic yield existence and uniqueness of an infinite IHE. The

proof of Lemma 4.1 is provided in Section 4.7.

Lemma 4.1 (Deterministic existence) SupposeH∗ is deterministic. Then given an initial

condition ~h0, χ∞(~h0) is nonempty (an infinite execution exists) if and only if for all ~h ∈
ReachH∗

⋂

OutH∗ there exist a ~s ∈ S~q such that ~h satisfies G~q(~s), where ~q is the discrete

state of ~h, and S~q =
∏

i∈I Sqi such that ~q = (qi)i∈I .

Proof: (Sketch) (⇒) Suppose all conditions in Lemma 4.1 hold except that there is a
~h whose continuous evolution is blocked but does not satisfy any discrete transition guard.

Since ~h is reachable there is a finite execution χ(~h0) that maps the initial condition to ~h.

If this finite execution is extended through continuous evolution it contradicts assumption

that continuous evolution is blocked for ~h. If this finite execution is extended through a

discrete transition it contradicts assumption that ~h does not satisfy any discrete transition
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guard. These two statements imply the the finite execution is maximal. However an infinite

execution starting at ~h0 is also maximal and different from χ(~h0), which implies that there

are two maximal executions starting at ~h0, contradiction assumption that the system is

deterministic.

(⇐) Suppose all conditions in Lemma 4.1 except that there is a ~h0 for which no infinite

execution exists. This implies it is possible to find a finite, maximal execution χ(~h0) that

maps ~h0 to ~h. If the continuous evolution of ~h is not blocked, it is possible to extend χ(~h0)

by continuous evolution contradicting assumption that χ(~h0) is maximal. If on the other

hand the continuous evolution of ~h is blocked, it is possible to extend χ(~h0) via a discrete

transition contradicting again the assumption that χ(~h0) is maximal.

Note that the conditions in Lemma 4.1 require that whenever the system gets into an

state where continuous evolution is blocked, it is guaranteed that a discrete transition from

that state exists. In the following we state the necessary and sufficient conditions for an

IHS to be deterministic. The proof of Lemma 4.2 is not included in this paper for space

constraints. However, a proof sketch is provided instead.

Definition 4.3 (Forced Transition Condition) ~h ∈ ReachH∗ satisfies the Forced Transi-

tion (FT) condition if the following condition holds: If there exists a transition label ~s ∈ S~q

such that ~h satisfies the corresponding transition guard G~q(~s), then ~h ∈ OutH∗ .

Definition 4.4 (Disjoint Transition Guard Condition) ~h ∈ ReachH∗ satisfies the Dis-

joint Transition Guard (DTG) condition the following condition holds: If there exist two

discrete transition labels ~s, ~s ′ ∈ S~q such that ~s 6= ~s ′, then ~h satisfies at most one of the

discrete transition guards G~q(~s) or G~q(~s
′).

Definition 4.5 (Singleton Transition Map Condition) ~h ∈ ReachH∗ satisfies the Sin-

gleton Transition Map (STM) condition if the following condition holds: If there exists a

discrete transition ~s ∈ S~q such that ~h satisfies the transition guard G~q(~s), then the transi-

tion map Z~q(~h,~s) contains at most one element.
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Lemma 4.2 (Determinism) Given an initial condition ~h0, χM(~h0) contains at most one

element if and only if for all ~h ∈ ReachH∗ the Forced Transition, the Disjoint Transition

Guard, and the Singleton Transition Map conditions are satisfied.

Proof: (Sketch) (⇐) Suppose there are two maximal executions starting at ~h0 but all

FT, DTG, and SMT conditions hold. These two executions χ̃(~h0) and χ̌(~h0) are different

and maximal. Since they start at the same initial condition, there is a finite execution χ(~h0)

that is the maximal prefix of both χ̃(~h0) and χ̌(~h0). If ~h be the state obtained from χ(~h0)

the following cases are possible:

1. Both χ̃(~h0) and χ̌(~h0) evolve continuously from ~h. Since the continuous dynamics

are Lipschitz (Assumption 4.1), an standard existence and uniqueness argument for

continuous dynamical systems implies that χ(~h0) can be extended on continuous

evolution and still be a prefix of both χ̃(~h0) and χ̌(~h0) contradicting assumption that

χ(~h0) is the maximal prefix of χ̃(~h0) and χ̌(~h0).

2. χ̃(~h0) evolves continuously from ~h, while χ̌(~h0) executes a discrete transition. Since

χ̌(~h0) executes a discrete transition from ~h the FT condition implies that ~h has its

continuous evolution blocked. On the other hand, since χ̃(~h0) evolves continu-

ously from ~h the Lipschitz dynamics imply that the continuous evolution of ~h is

not blocked leading to a contradiction.

3. Symmetric to case 2.

4. Both χ̃(~h0) and χ̌(~h0) execute a discrete transition from ~h. Then~h satisfies the guard

conditions for both transitions. The DTG condition implies that these transitions are

the same, and the STM condition implies that the state of the system after these

transitions is identical for both χ̃(~h0) and χ̌(~h0). This implies that χ(h0) can be

extended by a discrete transition and still be be a prefix of both χ̃(~h0) and χ̌(~h0)

contradicting assumption that χ(~h0) is the maximal prefix of χ̃(~h0) and χ̌(~h0).
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(⇒) Suppose that there is at most one maximal execution but at least one of the FT,

DTG, or STM conditions is not satisfied for ~h. Since ~h is reachable there exists a finite ex-

ecution χ(~h0) that maps ~h0 to ~h. If the FT condition is violated, the ~h satisfies a transition

guard but its continuous evolution is not blocked. Then χ(~h0) can be extended on both

continuous evolution and discrete transition, creating two different maximal executions

starting at ~h0. Contradiction.

If the DTG condition does not hold, ~h satisfies the transition guards of two different

transitions, then χ(~h0) can be extended on two different discrete transitions creating two

different maximal executions starting at ~h0. Contradiction.

If the STM condition does not hold, a single discrete transition may lead to two dif-

ferent continuous states, then χ(~h0) can be extended, after a discrete transition, into two

different continuous evolutions, creating two different maximal executions starting at ~h0.

Contradiction.

The conditions in Lemma 4.2 rule out any possibility of the system taking more than

one path at the same time: If a discrete transition is possible then continuous evolution is

blocked and vice versa (FT condition). If there exist two possible transitions then only one

of the corresponding transition guards may be completely satisfied (DTG condition). And

for every state that may originate a discrete transition there is only one possible destination

point after such transition takes place (STM condition)

Combining Lemmas 4.1 and 4.2 we obtain the following result. This holds because an

infinite IHE is also maximal.

Theorem 4.1 (Existence and Uniqueness) Given an initial condition ~h0, χ∞(~h0) con-

tains exactly one element if and only if the conditions of Lemmas 4.1 and 4.2 hold.

Note that Theorem 4.1 states the necessary and sufficient conditions for the existence

and uniqueness of an infinite IHE in terms of the global model of the IHS. In order to use
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these conditions to design the individual agent dynamics such that existence and unique-

ness of the multi-agent system’s execution is guaranteed globally, we translate the condi-

tions in Theorem 4.1 into a local setup. Let the set of blocked continuous evolution of

system i ∈ I be:

Outi = {~h ∈ HI ;∀ε > 0,∃t ∈ [0, ε) s.t. ψ(qi, t) /∈ Xqi}

The following result, which is proved in Section 4.7, states that for the system to have

a unique IHE, every agent must be designed such that its discrete transitions are forced,

two different discrete transitions are impossible, and a discrete transition can only map the

continuous state of the agent to a single location:

Corollary 4.1 (Locally Specified Existence and Uniqueness) Given an initial condition
~h0, χ∞(~h0) contains exactly one element if and only if all the following conditions hold

for all agents i ∈ I , and for all ~h ∈ ReachH∗:

1. The interconnected hybrid state ~h ∈ Outi if and only if there is a s ∈ Sqi such that
~h satisfies Gqi(s).

2. If there exists two discrete transitions s, s′ ∈ Sqi such that s 6= s′ then their corre-

sponding transition guards are disjoint Gqi(s)
⋂

Gqi(s
′) = ∅.

3. If there is a s ∈ Sqi such that ~h satisfies Gqi(s) then Zqi(
~h, s) is a singleton.

Proof: Condition 1) and definition of Outi imply that for all i ∈ I , ∀ε > 0,∃t ∈
[0, ε); ψ(qi, t) /∈ Xqi ⇔ ∃s ∈ Sqi ;

~h satisfies Gqi(s), this implies that ∀ε > 0 ∃i ∈ I,∃t ∈
[0, ε) : ψ(qi, t) /∈ Xqi ⇔ ∃~s ∈ S~q : ~h satisfies G~q(~s), where ~q and ~s are constructed

such qi and si are components of ~q and ~s respectively for all i ∈ I that satisfy Outi. By

definition of OutH∗ it follows

~h ∈ OutH∗ ⇔ ∃~s ∈ S~q : ~h satisfies G~q(~s) (4.1)

58



Chapter 4. Dynamical Properties of Multiple Interacting Hybrid Systems

which shows that Condition 1) implies the conditions in Lemma 4.1 and Definition 4.3

(FT).

To show the reverse direction we note that Lemma 4.1 and Definition 4.3 imply (4.1)

in last paragraph. Then the above proof can be reversed to show that Lemma 4.1 and

Definition 4.3 imply Condition 1).

Condition 2) implies that any ~h ∈ ReachH∗ can only satisfy one of the transition

guards Gqi(s) or Gqi(s
′). If we construct ~s and ~s ′ such that s is component of ~s and s′

is component of ~s ′ then ~h may only satisfy one of the transition guards G~q(~s) or G~q(~s
′),

where qi is component of ~q. This implies Definition 4.4. The reverse direction is proved

similarly showing that Condition 2) and Definition 4.4 are equivalent.

Condition 3) says that Zqi(
~h, s) is a singleton for all i ∈ I . This is equivalent to saying

that Z~q(~h, s) is a singleton. Therefore Condition 3) and Definition 4.5 are equivalent.

Since Conditions 1), 2), and 3) are together equivalent to conditions in Lemma 4.1 and

Definitions 4.3, 4.4, and 4.5, this implies that Conditions 1), 2), and 3) are necessary and

sufficient for the existence of a uniqueness of an infinite IHE proving the claim.

4.5 Application Example

In this section we use the results of Section 4.4 to design the general structure of the

dynamics of the agents in the system discussed in Chapter 3. However, in this part we

consider a special case of the system studied in [53], where the topology of the network

is fixed, i.e., there are no changes in the nodes or links that form the network. Changes in

the network generate event dynamics that are beyond the scope of this chapter.

The dynamics of each software agent and hardware node are described by a hybrid

system. In denotes the set of hardware nodes, while Ia denotes the set of software agents,
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and I = In
⋃

Ia. Hi with i ∈ In denotes the hybrid system that describes node i, while Hk

with k ∈ Ia denotes the hybrid system that describes agent k. The dynamical description

of the nodes according to Chapter 3 is the following:

The set of discrete modes Qi = Oi ×Di, where Oi represents the operating condition

of the node that in our discussion is a singleton due to our assumption of using a fixed

network, and Di represents the sets of agents connected to node i. Therefore there is one

element d ∈ Di for each possible combination of agents that may occupy node i.

The continuous dynamics Σi are designed using resource allocation theory [62]. The

continuous state space is Xqi = Xi = R
N for all qi ∈ Qi. Uqi is the state space Xk of the

agents k ∈ Ia that occupy node i. Function fqi is defined in in the previous chapter. We do

not include it here because of space constraints. However note that the continuous state of

each node xi ∈ Xi is inversely related to the availability of resources in such node.

The transition labels in each Sqi ∈ Si. reflect the changes in the agents occupying node

i. Therefore, if an agent k is located at node i, and migrates to node i′, a discrete transition

in the node’s dynamics s ∈ Sqi must occur to update the connectivity state d ∈ Di so the

set of agents occupying node i is updated. Likewise, if an agent arrives to node i a discrete

transition s ∈ Sqi must occur to update d ∈ Di.

A discrete transition s ∈ Sqi occurs when node i detects that an agent has arrived or

left. Therefore transition s may be enabled according to the discrete states of the agents as

follows: A node’s transition guard Gqi(s) is satisfied if the elements of the neighborhood

of the destination state q′i are equal to the set of agents that are connected to node i. In

this form, as soon as an agent arrives/leaves node i, this nodes changes its discrete state to

reflect the new set of agents it hosts. An graphical example of this behavior is shown in

the discrete interaction of Figure 4.1.

The discrete transition map Zqi(
~h, s) leaves the continuous state unchanged for all

~h ∈ HI and all s ∈ Sqi .
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The dynamical description of the agents is the following: The set of discrete modes

Qk = Ok × Dk, where Ok is a singleton because agents are assumed to have a single

operating condition, and Dk represents the set network nodes that may be connected to

agent k. Therefore there is one element d ∈ Dk for each possible location of agent k in

the network.

The state space is Xqk = Xk = R
N for all qk ∈ Qk. The continuous controls Uqk are

the state space Xi of the node i ∈ In where agent is located when qk is in force. Function

fqk is defined in Chapter 3.

The transition labels in each Sqk ∈ Sk. must reflect the ability of agent k to change

its location. Therefore, if agent k is located at node i, and migrates to node i′, a discrete

transition s ∈ Sqk must occur to update d ∈ Dk.

The transition guards Gqk ∈ Gk must be designed such that the transition improves

the resources available for the agent, and the agent always migrates to the node with best

resources among those in its neighborhood. An example of a transition guard that follows

these guidelines is defined as: Assume agent k has a current discrete state qk, which cor-

responds to agent k located at node i. Given s ∈ Sqk let the destination state of transition

s be q′k, which corresponds to agent k located at node i′, then ~h satisfies Gqk(s) if

mig(xi′ , i
′) < nmig(xi, i) and (4.2a)

mig(xi′ , i
′) < mig(xj, j), ∀j 6= i′; j ∈ V (qk) (4.2b)

where mig(α, β) and nmig(α, β) are monotonically increasing functions of α for all β ∈
I . The function mig(α, β) measures the benefit of migrating to node β, whose current

continuous state is α. Similarly nmig(α, β) measures the benefit of staying at node β,

whose current continuous state is α. Therefore, since the states xi, xi′ , and xj are inversely

related to the availability of resources in nodes i, i′, and j respectively as discussed in the

previous chapter, the transition guard that allows agent k to migrate from node i to node

i′ is satisfied when 1) the benefit of migrating to node i′ is better than staying at node i,
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and 2) the benefit of migrating to node i′ is better than migrating to any other node j that

is reachable by agent k in one transition. This is illustrated in Figure 4.3.

?

?


?


Figure 4.3: Agent decision process. The agent compares the benefit of staying in its
current location with that of migrating to different nodes in its neighborhood (Arrows with
?-marks; left). Then the agent migrates to (or stays at) the node that offers the best benefit
(arrow with agent; right).

Finally the discrete transition mapZqk(
~h, s) sets the continuous state after the transition

xq′
k
= 0 for all ~h ∈ HI and all s ∈ Sqi . This is done to reflect that whenever agent k arrives

to new node, it starts with no resources.

We now use Corollary 4.1 to determine wether any agent can contribute to creating

multiple IHE starting from the same initial condition. Condition 1) is not satisfied in our

discussions above. However if Outk is defined as the union of of all the transition guards

on agent k, i.e.

Outk , {~h ∈ HI ;~h satisfies Gqk(s),∀s ∈ Sqk where qk is a component of ~h}

then Condition 1) in Corollary 4.1 is satisfied, because as soon as a transition guard is

enabled the continuous evolution is blocked. Therefore, as soon as a transition guard is

satisfied in the agents dynamics, the transition occurs.

Condition 2) is satisfied by the definition of the transition guardGqk . To see this assume

there is a ~h ∈ ReachH∗ that satisfies the guards Gqk(s), and Gqk(s
′) of two different

transitions s and s′ in Sqk . We denote as c the current node of agent k, and with some

abuse of notation we denote as s the node that agent k reaches if it takes transition s
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and s′ if it takes transition s′. Then note that since the two transition guards are satisfied

by ~h, then according to (4.2b) mig(xs, s) < mig(xj, j) for all j ∈ V (qk) including s′,

and also mig(xs′ , s
′) < mig(xj, j) for all j ∈ V (qk) including s, which implies that

mig(xs, s) < mig(xs′ , s
′) and mig(xs′ , s

′) < mig(xs, s), which is a contradiction.

Finally, condition 3) is satisfied by the definition Zqk for all k ∈ Ia. A similar analysis

can be performed on the hybrid model of the nodes to reach the conclusion that these

satisfy all conditions in Corollary 4.1. Note that we have used Corollary 4.1 to analyze

the model of the each agent in the system individually, but we can reach the conclusion

the complete system always has a unique interconnected hybrid execution given an initial

condition.

4.6 Conclusion

We present an interconnected hybrid systems framework: a set of hybrid systems with

interweaved continuous and discrete dynamics that form a multi-agent system with hybrid

interacting dynamics. We extend the work in [37] defining reachable sets and executions

for interconnected hybrid systems. We prove necessary and sufficient conditions for the

existence and uniqueness of interconnected hybrid executions that are written in terms of

the local model of each hybrid agent.

We apply these conditions to the the design of the discrete dynamics of agents and

nodes in the resource allocation problem discussed Chapter 3. These conditions allow us

verify that the dynamics of each agent and node yield an interconnected hybrid system that

is “well behaved” in terms of existence and uniqueness of executions.
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4.7 Proofs

4.7.1 Preliminaries

An IHTT τ is linearly ordered by the relation ≺ defined as follows: Let t1 ∈ [τi, τi+1] and

t2 ∈ [τj, τj+1] then t1 ≺ t2 if t1 < t2 or i < j. We say τ = {τ 0, τ 1, . . . , τN} is a prefix of

τ̃ = {τ̃ 0, τ̃ 1, . . . , τ̃ Ñ} (written τ v τ̃ ) if either they are identical, or τ is finite, N ≤ Ñ ,

τn = τ̃n for all n ∈ {0, 1, . . . , N − 1}, and [τN−1, τN) ⊆ [τ̃N−1, τ̃N).

We say that an IHE χ(~h0) = (τ,q, s,x,u) with N + 1 elements is a prefix of an-

other IHE χ̃(~h0) = (τ̃ , q̃, s̃, x̃, ũ) with Ñ + 1 elements (written χ(~h0) v χ̃(~h0)) if

τ v τ̃ , and for all n ∈ {0, 1, . . . , N} and for all t ∈ [τ n−1, τn[ (~qn, ~sn, ~xn(t), ~un(t)) =

(~̃qn, ~̃sn, ~̃xn(t), ~̃un(t)). We say that χ(~h0) is a strict prefix of χ̃(~h0) (written χ(~h0) @ χ̃(~h0))

if χ(~h0) v χ̃(~h0), and χ(~h0) 6= χ̃(~h0).

An IHE χ(~h0) is called maximal if it is not a strict prefix of any other execution. An

IHE χ(~h0) is finite if τ is a finite sequence and the last elements of u and x are defined

over compact intervals of time, i.e. ~uN : [τN−1, τN ]→ ∏

i∈I Uqni
, and ~xN : [τN−1, τN ]→

∏

i∈I Xqni
. χ(~h0) is infinite if τ is an infinite sequence or if τN =∞. The following result

is proved in [54].

Lemma 4.3 Assumption 4.1 implies that ~f~q(~x~q, t) =
(

fqi(·)
)

i∈I
is globally Lipschitz on

~x~q for all ~q ∈ QI .

4.7.2 Proof of Lemma 4.1

(⇒) Suppose that H∗ is deterministic, and for any ~h0 χ∞(~h0) is nonempty, but there is a
~h ∈ ReachH∗

⋂

OutH∗ for which there is no ~s ∈ S~q such that ~h satisfies G~q(~s). Since ~h ∈
ReachH∗ there is a finite execution χ(~h0) ∈ χF (~h0, E∗) such that τ = {τ 0, τ 1, . . . , τN}
and ~h = (~qN , ~xN (τN)).
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a) Suppose there exists another execution χ̌(~h0) that extends χ(~h0) such that χ(~h0) v
χ̌(~h0) and τ̌ = {τ 0, τ 1, . . . , τN−1, τN + ε} for some ε > 0 (Lemma 4.3 makes this pos-

sible). Then there exists t ∈ [0, ε) such that ψ(qi, t) ∈ Xqi for all i ∈ I , which violates
~h ∈ OutH∗ leading to a contradiction.

b) Suppose there exists another execution χ̌(~h0) such that χ(~h0) v χ̌(~h0) and τ̌ =

{τ 0, τ 1, . . . , τN , τ̌N+1}, then there existsH∗ executes a discrete transition ~sN at τN , there-

fore (Definition 4.2) there exists a ~s ∈ S~qN−1 such that ~hN−1(τN) satisfy G~qN−1(~s), where

~qn is the discrete state of ~hn. Note that this violates the above assumption that there is no

~s ∈ S~q such that ~h satisfies G~q(~s) leading to a contradiction.

a) and b) imply that χ(~h0) is maximal. However by assumption χ∞(~h0) is nonempty,

therefore there exists an infinite execution χ̃(~h0) ∈ χ∞(~h0). This execution is also max-

imal and different from χ(~h0), which implies that χM(~h0, E∗) has at least two different

elements contradicting thatH∗ is deterministic, which proves the (⇒) part of our claim.

(⇐) Suppose there is an initial condition ~h0 for which χ∞(~h0) is empty, but for all
~h ∈ ReachH∗

⋂

OutH∗ there is a ~s ∈ S~q such that ~h satisfies G~q(~s).

Since χ∞(~h0) is empty, it is possible to find a finite, maximal execution χ(~h0) ∈
χF (~h0)

⋂

χM(~h0) that maps ~h0 to ~h. χ(~h0) ∈ χF (~h0) implies that the last elements of x

and u are defined over the compact interval [τN−1, τN ], i.e., ~xN : [τN−1, τN ]→∏

i∈I XqNi

and ~uN : [τN−1, τN ]→∏

i∈I UqNi
.

By assumption ~hN ∈ ReachH∗ . If ~hN /∈ OutH∗ , then there exists ε > 0 such that for

all t ∈ [0, ε) ψ(qNi , t) ∈ Xqi for all i ∈ I . This implies that χ(~h0) can be extended to χ̃(~h0)

such that χ(~h0) v χ̃(~h0), with τ̃ = {τ 0, τ 1, ..., τN + ε}, and ~̃xN and ~̃uN defined over the

interval [τN−1, τN + ε). Therefore χ(~h0) is not maximal, which is a contradiction.

If ~hN ∈ OutH∗ , then by assumption there is a ~s ∈ S~q such that ~h satisfies G~q(~s). Then

χ(~h0) can be extended through a discrete transition to χ̃(~h0) such that χ(~h0) v χ̃(~h0)

where χ̃(~h0) = (τ̃ , q̃, s̃, x̃, ũ) = (τ,q, s,x,u) : (τ̃N+1, ~̃qN+1, ~̃sN+1, ~̃xN+1, ~̃uN+1) where
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~̃qN+1 = ~s ∈ S~qN and ~̃x~̃q
N+1(τ̃N+1) ∈ Z~qN (G~qN , ~s). Therefore χ(~h0) is not maximal, again

a contradiction.

4.7.3 Proof of Lemma 4.2

(⇐) Suppose that χM(~h0) contains at least two elements but all FT, DTG, and SMT con-

ditions hold. Then there exist χ̃(~h0) and χ̌(~h0) such that χ̃(~h0) 6= χ̌(~h0) and both are

maximal i.e. χ̃(~h0), χ̌(~h0) ∈ χM(~h0).

Since both executions start at the same initial condition ~h0 there exists an IHE χ(~h0)

that is a maximal prefix of both χ̃(~h0) and χ̌(~h0). Moreover χ(~h0) is finite because

χ̃(~h0) 6= χ̌(~h0).

Let ~hN be the state of H∗ that is obtained from χ(~h0) with initial condition ~h0. Since

χ(~h0) is finite, ~xN and ~uN are defined over the compact interval [τN−1, τN ]. At this point

the following cases are possible:

1. τN /∈ τ̃ and τN /∈ τ̌ , therefore both χ̃(~h0) and χ̌(~h0) evolve from ~hN on the system’s

continuous dynamics (This case establishes the sufficiency part of Lemma 4.3). By

definition (Definitions 4.1-4.2, and Lemma 4.3) and standard existence and unique-

ness argument for continuous dynamical systems, there exists ε > 0 such that for all

t ∈ [0, ε) ψ(qNi , t) ∈ Xqi for all i ∈ I . Therefore there exists χ̄(~h0) = (τ̄ , q̄, s̄, x̄, ū)

where τ̄ = {τ 0, τ 1, . . . , τN−1, τN + ε}, ~̄xN and ~̄uN are defined over [τN−1, τN + ε),

AND χ(~h0) @ χ̄(~h0) v χ̃(~h0) and χ(~h0) @ χ̄(~h0) v χ̌(~h0) which contradicts

discussion about χ(~h0) being the maximal prefix of χ̃(~h0) and χ̌(~h0).

2. τN /∈ τ̃ and τN ∈ τ̌ , therefore χ̃(~h0) evolves from ~hN on the system’s continu-

ous dynamics, while χ̌(~h0) executes a discrete transition from ~hN (This establishes

sufficiency of the FT condition).
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Since χ̌(~h0) executes a discrete transition from ~hN there exists ~s ∈ S~qN such that

~qN+1 = ~s, ~hN(τN) satisfies G~qN (~s). Then by the FT condition ~hN ∈ OutH∗ . On the

other hand, since τN /∈ τ̃ , (Definitions 4.1-4.2, Lemma 4.3, and standard existence

and uniqueness argument for continuous dynamical systems) there exists ε > 0 such

that for all t ∈ [0, ε) ψ(qNi , t) ∈ Xqi for all i ∈ I , which implies that ~hN /∈ OutH∗

contradicting the previous conclusion.

3. τN ∈ τ̃ and τN /∈ τ̌ . Symmetric to case 2.

4. τN ∈ τ̃ and τN ∈ τ̌ , therefore both χ̃(~h0) and χ̌(~h0) execute a discrete transition

from ~hN . (This case establishes the sufficiency of DTG and STM conditions).

Since χ̃(~h0) executes discrete transition, then from definition of IHE, there is ~̃s ∈
S~qN such that ~hN(τN) satisfies G~qN (~̃s). By assumption, there also exists a ~̌s ∈ S~qN ,

such that ~hN(τN) satisfies G~qN (~̌s).

Since ~hN satisfies the guard conditions for both ~̃s and ~̌s, then by DTG condition

that ~̃s = ~̌s. Then by IHE definition ~̃qN+1 = ~̌qN+1, which by the STM condi-

tion implies that ~̃xN+1(τN) = ~̌xN+1(τN). Therefore χ(~h0) can be extended to

χ̄(~h0) = χ(~h0, E∗) : (τ̄N+1, ~̄qN+1, ~̄sN+1, ~̄xN+1, ~̄sN+1) where χ(~h0) @ χ̄(~h0) v
χ̃(~h0), χ(~h0) @ χ̄(~h0) v χ̌(~h0), which contradicts discussion about χ(~h0) being the

maximal prefix of both χ̃(~h0), and χ̌(~h0).

All previous cases prove the (⇐) part of the claim.

(⇒) Suppose for the sake of contradiction that χM(~h0) contains at most one element,

but that at least one of the FT, DTG, or STM conditions is not satisfied for ~h. Since
~h ∈ ReachH∗ there exists a finite execution χ(~h0) ∈ χF (~h0) such that ~h = ~hN(τN) =

(~qN , ~xN(τN)) where ~qN and ~xN are the last elements of q and x respectively, and ~xN and

~uN are defined over the compact interval [τN−1, τN ].

If the FT condition is violated, there exists ~s ∈ S~qN such that ~hN(τN) satisfies G~q(~s),

but ~hN(τN) /∈ OutH∗ . Therefore χ(~h0) can be extended with either a discrete transition
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or continuous evolution: In case of the discrete transition consider ~̌qN+1 = ~s then there

exists χ̌(~h0) = (τ,q, s,x,u) : (τ̌N+1, ~̌qN+1, ~̌sN+1, ~̌xN+1, ~̌uN+1). In case of the continuous

evolution there is an ε > 0 such that for all t ∈ [0, ε), ψ(qNi , t) ∈ XqNi
for all i ∈ I and .

Then there exists χ̃(~h0) = (τ 0, ~q0, ~s0, ~x0, ~u0), . . . , (τN−1, ~qN−1, ~sN−1, ~xN−1, ~uN−1),

(τN +ε, ~qN , ~sN , ~xN , ~uN ) where ~xN and ~uN are defined over [τN−1, τN +ε). Thus χ(~h0) @

χ̌(~h0) and χ(~h0) @ χ̃(~h0), and χ̌(~h0) 6= χ̃(~h0) which implies that there is at least two

maximal executions in χM(~h0) which contradicts assumption, therefore FT must hold.

If the DTG condition does not hold, there exists ~s, ~s ′ ∈ S~qN with ~s 6= ~s ′ such

that ~hN satisfies both G~qN (~s) and G~qN (~s
′) simultaneously. Therefore χ(~hN

0 ) can be ex-

tended on two different discrete transitions ~̌qN+1 = ~s and ~̃qN+1 = ~s ′, where ~̌qN+1 6=
~̃qN+1. Then there exist two interconnected hybrid executions χ̌(~hN

0 ) 6= χ̃(~hN
0 ) where

χ̌(~hN
0 ) = (τ,q, s,x,u) : (τ̌N+1, ~̌qN+1, ~̌sN+1, ~̌xN+1, ~̌uN+1) and χ̃(~hN

0 ) = (τ,q, s,x,u) :

(τ̃N+1, ~̃qN+1, ~̃sN+1, ~̃xN+1, ~̃uN+1). Note that χ(~hN
0 ) @ χ̌(~hN

0 ) and χ(~hN
0 ) @ χ̃(~hN

0 ) so there

exist at least two maximal execution in χM(~hN
0 ) contradicting our assumption. Thus the

DTG condition must hold.

If the STM condition does not hold for ~h = ~hN(τN), there exists ~s ∈ S~qN such

that ~h satisfies G~q(~s). Since Z~qN (~h,~s) contains at least two elements, χ(~h0) may be ex-

tended to χ̌(~h0) = (τ,q, s,x,u) : (τ̌N+1, ~̌qN+1, ~̌sN+1, ~̌xN+1, ~̌uN+1) as well as to χ̃(~h0) =

(τ,q, s,x,u) : (τ̃N+1, ~̃qN+1, ~̃sN+1, ~̃xN+1, ~̃uN+1) where ~̌qN+1 = ~̃qN+1 but ~̌xN+1 6= ~̃xN+1 ∈
Z~qN (~h,~s). This implies χ(~h0) @ χ̌(~hN

0 ) and χ(~h0) @ χ̃(~hN
0 ). Since χ̌(~h0) 6= χ̃(~h0),

χM(~h0) contains at least two elements contradicting our assumption. Therefore STM must

hold. This completes the proof of the sufficiency part.
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Chapter 5

Randomized Algorithms for Optimal

Control of Hybrid Systems

5.1 Introduction

The previous chapter provides tools to define the general structure of the discrete dynam-

ics for our resource allocation problem such that the systems is well behaved in terms of

existence and uniqueness of its executions. However our final goal is to design the dynam-

ics of this system such that the agents converge to a point that is as close as possible to the

optimal distribution of agents in the network. Towards this end we explore a randomized

approach for the optimization of individual hybrid systems’ first, and for the optimization

problem.

The basic approach is to generate samples from the family of possible solutions, and

to test them on the plant’s model to evaluate their performance. This result is obtained

by first presenting the general hybrid optimal control problem, and then converting it into

an optimization problem within a statistical learning framework. The results are first ap-

plied to examples already existing in the literature in order to highlight certain operational
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aspects of the proposed methods, and then to the resource allocation problem discussed

along this dissertation.

The motivation for exploring this technique for hybrid optimal control comes from the

complexity of the resource allocation model: The analytical complexity of randomized

optimization (a model-free technique) does not grow with the complexity of the systems

model, which is not true for model based techniques. In fact in order to obtain hybrid

extensions of model based techniques like gradient optimization [7,8,10,18,79], dynamic

programming theory [26], or the Pontryagin’s Minimum Principle [60,63] various restric-

tions have been imposed in the hybrid model in order to obtain meaningful, and computa-

tionally feasible results.

One approach is to limit the control inputs to the discrete domain. Thus, a performance

function is optimized by choosing the modal sequence and the corresponding switching

times. This idea was proposed in [18, 79] restricting the attention to the switching times

using a fixed modal sequence. The result in [18] was later modified [3] to vary the se-

quence by iteratively inserting new modes and optimizing a new fixed sequence until no

further improvements were achieved. The same idea was pursued in [8], with the system

restricted to two modes only, and in [7] with the attention concentrated on systems with

linear continuous dynamics ( [3, 8, 18, 79] dealt with nonlinear dynamics). Other methods

use non-smooth optimization [52], switching surfaces optimization [10], model predictive

control for optimization of continuous inputs [6], and game theoretic approaches [73].

An alternative to classical methods is provided by statistical learning and randomized

algorithms [72, 75]. The objective of such methods is to optimize a performance measure

on average, guaranteeing that the error between the obtained solution and the optimal one

is arbitrarily small with probability arbitrarily close to one. This is achieved by sampling

the set of potential solutions, and choosing the sample that yields the best performance.

Randomized techniques have been previously used to solve some robust control problems

that are NP-hard [34,76] and for reachability analysis of hybrid systems [9]. The advantage
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of statistical methods is that they simplify the analysis and design tasks at the cost of not

being able to guarantee the optimality of the solution.

We show in this chapter that randomized approaches can also be pursued to study opti-

mal control of hybrid systems, as previously discussed in [15] using a simulation example.

We present a procedure to use randomized algorithms, obtained in a manner similar to [76],

to solve a class of optimization problems for hybrid systems that may include discrete and

continuous control inputs, as well as autonomous or controlled transitions between modes.

An expression that relates the desired properties of the solution to the number of samples

needed to obtain them is provided as a mechanism for controlling the trade-off between

the computational complexity (number of samples), and the performance of the solution.

The algorithm is tested in simulations involving individual hybrid systems, and compared

to results obtained via gradient procedures, showing that one advantage that the random-

ized approach (a model-free technique) has over model-based techniques (e.g. gradient

techniques) is that the theoretical analysis is simpler, making it applicable for complex

situations, at the price of obtaining a solution that is not guaranteed to be the optimal. The

same technique is then applied to the design of the discrete dynamics of the agents show-

ing that for an special case of the problem considered in Chapter 3, the agents are capable

of obtaining better resources from the network by migrating between discrete locations.

5.2 A Hybrid Optimal Control Problem

The hybrid optimal control problem we consider here uses the complete model introduced

in Chapter 2, and is similar to the one defined in [12]. Let {ln}n∈〈τ〉 be a family of con-

tinuous flow cost functions with ln : Xqn × Uqn → R
+. Let {cn}n∈〈τ〉 be a family of

discrete jump costs with cn : Gqn × Sqn → R
+. Let cf be the terminal cost function
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cf : Q× {Xq}q∈Q → R
+. Let the hybrid cost function J(t0, tf , h0, I) = J(I) be:

J(I) :=
L
∑

n=0

(

∫ τn+1

τn
ln(s)ds+ cn

)

+ cf (5.1)

where [t0, tf ] is the optimization interval (assumed finite), L ≤ N is the number of discrete

transitions that occur during the optimization interval, h0 is the initial condition of the

system, and I is the hybrid input. The optimal control problem can then be stated as:

Problem 5.1 (Hybrid Optimal Control Problem (HOCP)) Given a system H (Defini-

tion 2.1) with initial condition h0, hybrid execution χ(h0) (Definition 2.4), and optimiza-

tion interval [t0, tf ], the Hybrid Optimal Control Problem (HOCP) is to minimize the total

cost (5.1), over the family of input trajectories {I}. If a hybrid input I ∗ minimizes J(I),
then it is called a hybrid optimal control forH.

Note that the optimal control problem defined here is for a finite interval of time.

Similar definition can be possed for an infinite time interval using discounted costs as

in [12].

5.3 Statistical Learning Theory

Suppose you have a system with decision vector y ∈ Y and cost functional J : Y → R, and

consider the problem of estimating the best performance of the system J ∗ = infy∈Y J(y).

For this purposeNs independent and identically distributed (i.i.d.) random samples yi; i =

1, ..., Ns are taken from Y according to a probability distribution P (y). Then the sample

minimum is defined as J0 = mini=1,...,Ns
J(yi), and the objective becomes that of making

J0 as close as possible to J∗ [72]. This leads to:

Definition 5.1 (Probable Near Minimum) Given J(y), δ ∈ (0, 1), α ∈ (0, 1), a number

J0 ∈ R is said to be a probable near minimum of J(y) to level α and confidence 1 − δ if
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there exists a set Ỹ ⊆ Y with Pr{Ỹ} ≤ α such that

Pr
{

inf
Y
J(y) ≤ J0 ≤ inf

Y\Ỹ
J(y)

}

≥ 1− δ (5.2)

Loosely speaking, the level α describes a set of potential solutions that may not be

represented in the samples taken for optimization. If this set is made small there will be

a small probability of finding a better solution than the sample minimum. The confidence

(1− δ) describes the probability of obtaining the desired level. Definition 5.1 then implies

that if α and δ are made small (but different than zero), the probability of finding a better

solution will be small (α), with high confidence (1− δ).

The mechanism to control the level and confidence of the sample minimum is the num-

ber of samples Ns taken from the set of possible solutions. In order to obtain a probable

near minimum (Definition 5.1) from the samples, Ns can be obtained as a function of α

and δ using the following result:

Theorem 5.1 (Minimum number of samples) The minimum number of samples Ns that

guarantee that J0 is a probable near minimum to level α and confidence δ of J(y) is

Ns ≥
ln(1/δ)

ln(1/(1− α))
(5.3)

In words, this result estates that for a sufficiently large number of samples Ns, the

probability that the sample minimum J 0 is close to the optimal solution, will be close to

one. Detailed coverage of theory on Randomized Algorithms or Statistical Learning can

be found in [72, 75].
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5.4 Randomized Optimization of Hybrid Systems

5.4.1 General randomized HOCP and solution

In order to use learning theory to solve optimization problems for hybrid systems, we re-

state the HOCP 5.1 as a randomized one. So instead of looking for a solution I ∗ that

guarantees that the cost function (5.1) achieves its absolute minimum, we seek an approxi-

mate I0 that evaluates (5.1) arbitrarily close to its minimum with probability almost equal

to one. The Randomized HOCP can be stated as:

Problem 5.2 Given a level α ∈ (0, 1) and a confidence δ ∈ (0, 1), the Randomized HOCP

is to find a hybrid input I0 such that J(I0) is a probable near minimum (Definition 5.1) to

level α and confidence 1− δ of J(I).

Denote by {Î} the set of the input samples {Î1, ...ÎNs
} that will be used to estimate

the optimal hybrid input. Let

J∗ = J(I∗) = inf
I∈{I}

J(I) (5.4)

be the minimum cost value for the system over the complete family of hybrid inputs {I}
(exact optimum), and let

J0 = J(I0) = min
1≤i≤Ns

J(Îi) (5.5)

be the minimum cost value for the system over the set of input samples {Î}. The general

algorithms use to solve Problem 5.2 is given by Algorithms 1.

An important part of the algorithm is the generation of each input sample Ii, which is

problem dependent. Two important cases we study with numerical examples here are the

generation of an open loop input sequence on a system with controlled discrete dynamics,

and of a closed loop hybrid input on a system with autonomous discrete dynamics.
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Algorithm 1 Randomized optimization of hybrid input
Require: α, δ, andH (Definition 2.1).

Ensure: J0 and I0.
1: i⇐ 1

2: Compute Ns according to Theorem 5.1.

3: while i ≤ Ns do

4: Generate i.i.d. hybrid input sample Îi ∈ {I} according to P (I).
5: Test input sample Îi in the plant and calculate its performance J(Îi).
6: i⇐ l + 1

7: end while

8: Choose J0 from (5.5) and I0 = argminÎ1,Î2,... ˆINs
J(Îi).

5.4.2 Open loop hybrid input sequence

An important case of the controlled discrete dynamics that is studied in the literature [3,8,

79] is when no continuous control signal is considered and the hybrid switching sequence

(τ, s) can be regarded as control input.

The procedure to sample hybrid switching sequences (τ, s) may vary according to each

particular problem. If the switching guards and the state space of each mode coincide for

all possible discrete transitions i.e. Gq(s) = Xq for all s ∈ Sq for all q ∈ Q, and every

mode can be reached from any other mode with a single transition (which is the case

studied in [3, 8, 79]), and the switching labels are controllable then the hybrid switching

sequence can be regarded as discrete control input. In this case, a promising procedure to

obtain a hybrid switching sequence is composed of two steps: 1) Randomly select a desired

number of transitions N for the sample, and then pick a random switching sequence (τ, s)

ofN+1 elements, with the times inside the optimization interval [t0, tf ], and the transition

labels chosen from S. Note that one can pick any distribution for number of transitions or

the switching sequence, while keeping the number of transitions bounded.
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If a continuous control input is considered in the hybrid input, and since on each mode

interval the continuous part of the hybrid input must be continuous, one could generate a

large number of classes of input signals using a set of parameterized basis functions (e.g.

polynomials, splines ), such that during the sampling, their parameters and their weights

are chosen to obtain the final input signal.

We provide an example to test and clarify these ideas. For comparison purposes, we

use an example that already exists in the literature. In this example we optimize the per-

formance of a dynamical system by choosing the hybrid switching sequence. There is no

continuous component in the hybrid input of the existing example, which was reported in

the submitted version of [4]. The system is composed of two tanks, where the objective is











PSfrag replacements

u(t)

x1

x2
xr

Figure 5.1: Graphical description of the tank system.

to control the fluid level of the second tank via the input flow rate to the first tank (Figure

5.1). The input variable u(t) is the input flow rate to the first tank, and the state variables
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x1(t) and x2(t) are the fluid levels at the first and second tanks respectively. Defining

x(t) = [x1(t), x2(t)]
T the system’s equations (by Torricelli’s principle) are:

ẋ = f(x, u) =

[ −γ1
√
x1 + u

γ1
√
x1 − γ2

√
x2

]

(5.6)

where γ1, γ2 > 0 are fixed constants. The control input is constrained to three oper-

ating states: fully open, half open, and fully closed, i.e, u(t) ∈ {umax,
1
2
umax, 0}, for

some umax > 0. Since these are discrete values, each operating state generates a discrete

mode q ∈ Q in a hybrid model (Definition 2.1). If the set of locations is Q = {1, 2, 3},
the dynamical systems Σ1, Σ2, Σ3 are described as: f1(x, u) = f(x, umax), f2(x, u) =

f(x, 1
2
umax), and f3(x, u) = f(x, 0), X1 = X2 = X3 = {x ∈ R

2 : x1 ≥ 0, x2 ≥ 0},
and U1 = U2 = U3 = {}. Sq = Q for all q ∈ Q (no restrictions on the mode transitions),

GC
q = Xq for all q ∈ Q (a discrete transition is possible for any value of x), and Zq leaves

the continuous state unchanged for all q ∈ Q.

Given an initial condition x0 = x(0) and a final time T > 0, the objective is to select

a switching sequence that drives the error between x2(t) and a reference signal xr(t) ∈ R

to zero. To this end, the cost function is defined as

J = K

∫ T

0

(x2(t)− xr(t))
2dt (5.7)

for some K > 0. Comparing (5.1) to (5.7), the final cost and the transition costs are zero,

and the flow cost is a continuous function (because the state flows are continuous).

The chosen parameters for the simulation (from [4, Submitted]) are x0 = [0.4, 0.4]T ,

T = 5, K = 10, γ1 = γ2 = 1, umax = 1, and xr(t) = 0.5 + 0.25 t
T

. The level and

confidence parameters are α = δ = 0.002 yielding N = 3105 samples, generated ac-

cording to our discussion above with the number of transitions distributed according to

a uniform distribution U [1, 10], the transition times according to U [0, T ] and the modes

according to U(1, 2, 3). The approximate optimal costs values in three different simula-

tions were 0.1072, 0.1090 and 0.1058. The switching sequence and the state trajectories
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for J0 = 0.1058 are shown in Figures 5.2 and 5.3. Comparing this result to that reported

in the submitted version of [4], the performance obtained using the proposed approach is

very close to that obtained using gradient techniques, where the reported final costs, under

the same conditions, were 0.107 and 0.105 [4]. The continuous state trajectories also look

similar, even though the mode schedules are different.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

q=3

q=2

q=1

Time [s]

M
od

es

Hybrid input sequence

Figure 5.2: Optimal mode sequence for tanks problem using the proposed randomized
approach.

5.4.3 Closed loop hybrid input

Another important case in the optimal control of hybrid systems is when the discrete dy-

namics are purely autonomous with forced transitions. In this case there is no direct ac-
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Figure 5.3: Optimal state trajectories and reference signal for tanks problem using the
proposed randomized approach (xr(t): Reference, x1(t) and x2(t): State trajectories).

cess to the discrete transition labels. Instead, the transitions are governed by the transition

guards i.e., whenever a transition guard is satisfied, the corresponding transition occurs

immediately. This implies that the hybrid input sequence is determined by feedback func-

tions of the continuous state of the system: the transition guards.

If one modifies the transition guards, it is possible to indirectly generate different hy-

brid input sequences. This may be done by considering the transition guards as parameter-

ized functions of the state of the system. This could also be done to the continuous control

function if available. Thus Theorem 5.1 and Algorithm 1 may be applied to autonomous

discrete dynamics if instead of sampling hybrid inputs directly, one generates samples for

the switching guards and feedback functions of continuous state of the system, generating
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hybrid input samples indirectly.

The example we provide to illustrate this ideas was previously presented in [10]. The

problem consists of a unicycle mobile robot, that has to reach a point in the plane departing

from an initial condition while avoiding a point obstacle. The robot may be controlled by

switching between two discrete behaviors, “approach goal” (mode 1) and “avoid obstacle”

(mode 2). The obstacle is surrounded by two circular guards (centered at the obstacle

position) that determine which modes are active. If the robot is in mode 1 and reaches

the inner guard, it switches to mode 2. If it is in mode 2 and reaches the outer guard, it

switches to mode 1. The optimization problem is to choose the best radii for these two

circular guards such that the robot gets as close as possible to the goal without hitting the

obstacle.

The robot is described using its kinematic model as:

ẋ = v cosφ (5.8a)

ẏ = v sinφ (5.8b)

φ̇ = ω (5.8c)

where the position of the robot (x, y) and its orientation φ form the continuous state of the

system, and v and ω are its linear and angular speeds. The goal is located at (xg, yg) ∈ R
2,

and the obstacle at (xo, yo) ∈ R
2. v has a constant value while ω is the feedback control

input that changes according to each mode: In mode 1, ω is given by ω1 = C1(φg − φ)

where φg = arctan((yg − y)/(xg − x)) and C1 > 0 is a constant. In mode 2, ω is given by

ω2 = C2(φ− φo) where φo = arctan((yo − y)/(xo − x)) and C2 > 0 is a constant.

The procedure to map the robot model (5.8) to the hybrid system (Definition 2.1) is

similar to that on the previous example. However the parametrization of the switching

guards and reset maps is different (similarly to [10] we assume a fixed continuous control

input (C1, C2) that is not considered as an optimization variable). Note from the nature of

the system that the reset maps Zq leave the continuous state unchanged for all q ∈ Q, while
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the transition guards must be parameterized according to the circular guards described in

the problem. Therefore, let

GA
1 (v1 = 2, rin) = (xo − x)2 + (yo − y)2 − r2in (5.9a)

GA
2 (v2 = 1, rout) = (xo − x)2 + (yo − y)2 − r2out (5.9b)

where the GA
1 is the guard to jump from mode 1 to mode 2, GA

2 is to jump from mode 2 to

mode 1, and rin and rout are the radii of the inner and outer guards respectively. The cost

functional is defined as

J =

∫ T

0

[

(xg − x)2 + (yg − y)2 + βe−ξ[(xo−x)2+(yo−y)2]
]

dt.

The simulations parameters are v = 1, C1 = 2, C2 = 0.4, T = 3, ξ = 10, β = 5,

(xg, yg) = (2.25, 2), (xo, yo) = (1, 1), and (x(0), y(0), φ(0)) = (0, 0, 0). The level and

confidence parameters are α = 0.02 and δ = 0.02 yieldingN = 194 (note that because the

sampling space is simple, low values of level and confidence parameters can yield to good

results). The resulting approximate optimal cost was J 0 = 10.4695 with optimal r0in =

0.4807, r0out = 0.5006, while an optimization performed using the algorithm reported

in [10] with the same values yielded J ∗ = 10.4609, r∗in = 0.4963, r∗out = 0.4963. A

comparison of the trajectories and guards obtained via the randomized approach (Figure

5.4), and those obtained using the gradient descent approach [10] (Figure 5.5) shows that

both results are almost identical. (Figure 5.4 shows the approximate optimal result while

Figure 5.5 shows the evolution of the optimization algorithm of the guards and trajectories

converging to the optimum that is where the two guards collide).
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Figure 5.4: Robot trajectory and optimal guards using the proposed randomized approach

5.5 Randomized optimization of the agents’ discrete dy-

namics

This section discusses the application of the ideas in this chapter to the resource allocation

problem discussed along this dissertation. It is important to note that the general discus-

sion in Sections 5.2 and 5.4 also applies to the Interconnected Hybrid Systems defined

in Chapter 4 with minor notation changes. Therefore it is straightforward to extend the

results in this chapter to multi-agent systems with hybrid interacting dynamics.

The problem we consider here is an special case of the original problem discussed in

Chapter 3. We consider agents moving among discrete locations in a network with fixed
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Figure 5.5: Evolution of the robot trajectory and switching guards using a gradient descent
approach. The optimum configuration is where the two guards collide.

topology and nodes with fixed amounts of resources. We restrict ourselves to these cases

because the discrete dynamics of the agents are designed based on the general structure

proposed in Chapter 4, which is only applicable to systems with autonomous discrete

dynamics.

5.5.1 Simulation set-up

In this numerical example we consider a network of 5 nodes that are arbitrarily connected

as shown in Figure 5.6, and host 12 agents total in the whole network. Both agents and

nodes are identified by natural numbers. The network only has one type of resource for
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simplicity. The available resource in each node is (r1, . . . , r5) = (2, 4, 3, 4, 5). The net-

work topology and resources in each node are fixed as discussed above.
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Figure 5.6: Network configuration for numerical example. Nodes and agents are identified
by natural numbers. The agents initial locations in the networks are shown.

The benefit function of the agents has the same form to that in the numerical example

of Chapter 3 (Section 3.6):

Wk(xk) = νk ln(xk)

The continuous dynamics of both agents and nodes are also kept identical to Section 3.6:

fqi =
[

Lqi(pqi)
(

∑

{k∈A:qk=i}

xqk − rqi
)]+

pqi
, ∀i ∈ V , (5.10a)

fqk = Kqk(xqk)
( νk
xqk

− pqi=qk
)

, ∀k ∈ A (5.10b)

where V = {1, . . . , 5}, Lqi(pqi) = tanh(pqi) + 1, ∀qi ∈ Qi ∀i ∈ V , and Kqk(xqk) =

50xqk ∀qk ∈ Qk ∀k ∈ A = {1, . . . , 12}. The weights of the benefit function in this case

are given by (subindexes next to the number are to ease identification):

(ν1, . . . , ν12) = (0.51, 0.62, 0.13, 0.34, 0.45, 0.96, 0.47, 0.38, 0.29, 0.110, 0.511, 0.812) (5.11)

The nodes and agents’ discrete dynamics are designed as discussed in Section 4.5. The

nodes update their discrete state depending on the agents located in it. Therefore, as soon

as agent k migrates from node i to node i′, a transition in node i occurs removing agent k
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from the sum in (5.10a) for i, and a transition in node i′ occurs adding agent k to the sum

in (5.10a) for i′.

The discrete transitions in the agents dynamics represent the location change of the

agent in the network. They are governed by transition guards that allow them to compare

the benefit they get at their current location to the potential benefit they could get at a new

location. As discussed in Section 4.5 a transition guard Gqk=i(s = i′) (transition guard

for agent k to migrate from node i to node i′) is satisfied if the following conditions are

satisfied (Eq. (4.2)):

migk(pi′ , i
′) < nmigk(pi, i) and (5.12a)

migk(pi′ , i
′) < migk(pj, j), ∀j 6= i′; j ∈ V (qk) (5.12b)

where for this particular example we make

nmigk(pi, i) = pi (5.13a)

migk(pi′ , i
′) = ζ

pi′

νk
+ η (5.13b)

where ζ and η are real parameters and ζ > 0. Functions mig(·) and nmig(·) are chosen in

this form because they are monotonically increasing as required in Section 4.5 and they are

the simplest special case of a polynomial function of p, which makes the decision vector

small but flexible enough to control the agents in the network. Note that ζ , η, are inversely

related to the willingness of all the agents in the network to execute a transition, while νk

(the weight of the agent’s benefit function) is directly related to the willingness of agent

k to execute a transition. The higher the values of ζ and η the lower is the likelihood that

the agents in the network perform a transition, while the higher the value of νk the higher

is the likelihood that agent k performs the transition. This implies that ζ and η may be

used to control the number of transitions that the agents in the network may execute, but

that the willingness to transition of each agent k also depends on the importance of the

resource (determined by νk) for that agent.
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In this numerical example we randomly optimize the values of ζ and η using Algo-

rithm 1. The simulation time for the system is 12 seconds. The agents are only allowed

to execute transitions every 2 seconds in a synchronized form, enforcing a dwell time

such that the system is not destabilized due to agents switching between two nodes too

fast. The discrete dynamic parameters ζ and η are allowed to have different values for

each transition time at the end of a two-second interval, so the decision vectors become
~ζ = (ζ1, . . . , ζ5) and ~η = (η1, . . . , η5). Each ζc (with c = 2, 4, . . . , 12) is assumed to be

uniformly distributed between 0 and 4, i.e. U [0, 4], and each ηc is uniformly distributed

between 0 and 1 i.e. U [0, 1]. Each component in ~ζ and ~η is generated independently of the

other components of the vector.

The total benefit function to maximize in this simulation is given by

J(~ζ, ~η) =
∑

c=2,4,...,12

[

∑

k∈A

Wk

(

xk(t)
)

|t=c

]

(5.14)

This benefit function resembles the objective that we stated in Problem 3.1, which required

that the agents converged to a point that coincides with the maximum of
∑

k∈AWk(xk).

In this case we include the sum of the network’s total benefit every 2 seconds because

we would like that the agents improve the overall benefit on the network every time they

execute a transition (every 2 seconds), and that at the end they converge to a point that is

close to the optimum configuration.

Algorithm 1 performs the following steps for this particular example:

1. Compute Ns based on α and δ, according to Theorem 5.1.

2. Generate an i.i.d. sample of ~ζ and ~η to be simulated.

3. Simulate system to evaluate performance. Note that every 2 seconds every agent

evaluates the functions nmig and mig for its current location, and all other nodes

in its neighborhood, and decides to either stay at its current location or migrate to
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the best node it found depending on whether a transition guard was satisfied, which

depends on the values of the corresponding component of ~ζ and ~η. After a transition

occurs (or not), the continuous dynamics (5.10) continue its evolution as described in

the simulations of Section 3.6 until a new decision time (2 seconds after) is reached.

4. Go back to step 2 unless tested samples match Ns.

5.5.2 Overall behavior of the algorithm

The first simulation is aimed to study the overall performance of the optimization algo-

rithm with respect to the variations in level (α) and confidence (δ) parameters. We are

interested in observing what is the influence of these parameters in the capability of the

randomized algorithm for obtaining a good performance in our particular system.

This simulation is configured to test the system described above with seven different

combinations of values for α and δ that are summarized in Table 5.1. These values cause

the number of samples to change according to Theorem 5.1.

α 0.01 0.01 0.005 0.005 0.005 0.002 0.002
δ 0.01 0.005 0.01 0.005 0.002 0.005 0.002
Ns 459 528 919 1058 1240 2647 3105

Table 5.1: Values for α and δ used in the first numerical test.

In order to see the consistency of the performance of Algorithm 1 applied to this sys-

tem, we execute the optimization algorithm 10 times for each α − δ combination. We

then compute the mean, standard deviation, and the best performance obtained among

each group of 10 simulations with common α− δ values. These result are summarized in

Figure 5.7.

As expected, as the number of samples grow (α − δ reduce) the behavior of the algo-
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Figure 5.7: Overall performance of randomized optimization in the multi-agent system.
The system is optimized ten times for each α − δ combination in Table 5.1. Then the
average, standard deviation, and maximum performance are computed for each group of
ten results. The average is represented by−o−, the average plus one standard deviation by
−4−, the average plus one standard deviation by−∇−, and the maximum among the ten
tests by − ∗−. Note that taking the mean and standard deviation among ten instantiations
of the algorithm may not be enough to provide a precise statistical characterization of
the behavior of the system but we believe it is helpful to illustrate the general behavior
of the randomized algorithm. Also note that the true optimum is unknown because it is
difficult (or impossible) to compute with the currently available model-based optimization
algorithms for hybrid systems.

rithm becomes more consistent. The average value gets closer to the maximum obtained,

and the standard deviation is reduced. Note however that even with the lowest number of
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samples in the plot (459) the maximum the algorithm ever achieved was obtained. More-

over the algorithm was capable of obtaining that maximum (close to 14.6) with any of the

α − δ combinations tested. However the likelihood of obtaining that maximum is lower

with low number of samples.
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Figure 5.8: Optimal benefit evolution during one optimization run. The optimization al-
gorithm is programmed to test the samples iteratively. Each point in the plot is the benefit
value obtain with the corresponding sample. The solid curve highlights the samples where
the benefit value improved compared to the previous one.

During this test, we also recorded the evolution of Algorithm 1 during one optimiza-

tion run, which is shown in Figure 5.8. This only makes sense because the algorithm is

programmed to test the random samples iteratively. As expected the samples are indepen-

dent from each other, and the improvements occur in a random pattern, even though they

become more spaced as the benefit value gets closer to the optimum.
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5.5.3 Agents’ optimal behavior

In this part we explore the optimal behavior of the system as obtained by the randomized

algorithm, and also, the behavior of the system during one optimization run. We are

interested in the benefit of optimal sample, the behavior of the total benefit of the network

on time1, the trajectories of the agents in the network, the continuous trajectories of agents

and nodes, and the final distribution the agents achieve. We perform one optimization with

α = δ = 0.02, which yield 459 samples. The probable near maximum benefit obtained

for this case is J0 = 13.07. The optimal control vectors are

~ζ0 = (1.33, 0.34, 1.58, 1.88, 3.92), and

~η0 = (0.24, 0.57, 0.50, 0.41, 0.92).

The optimal agent discrete trajectories are shown in Figures 5.9, and 5.10. These

two figures are related in that the discrete states of the agents and the discrete locations

of the agents are labelled identically, e.g if the discrete of agent k is 3 then it is located

at node 3. The optimal trajectories of the agents continuous states (captured resources)

are shown in Figure 5.11, while the nodes continuous trajectories (prices) are shown in

Figure 5.12. The continuous dynamics will not be discussed in detail here because similar

cases were discussed in the simulations of Section 3.6. These results are provided here for

completeness.

The agents start at the initial discrete location shown in Figure 5.10-top (this can also

be seen in Figure 5.9) and stay in that position until 2 seconds, providing enough time for

the continuous dynamics to converge to the equilibrium for this particular distribution of

agents (see Figures 5.11 and 5.12). Note that there is a large number of agents concentrated

at node three, which causes a suboptimal allocation of resources. At 2 seconds (see Figures

1The benefit of the (optimal) sample is that given by (optimal solution of) (5.14), while the
total benefit of the network at each particular time is the sum of the benefit of all the agents in the
network at that particular time.
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Figure 5.9: Optimal agent discrete state trajectories. The top left plot shows agents 1, 2,
and 3. The top right shows agents 4, 5, and 6. The bottom left shows agents 7, 8, and
9. The bottom right shows agents 10, 11, and 12. Within each figure, the first agent is
identified by a blue −o−, the second by a green −¤−, and the third by a red −♦−.

5.10-middle and 5.9), the agents execute some transitions to improve the total benefit of

the network. Agents 1 and 2 migrate to node 5, which is the node with greater quantity

of resources in the network and that is only occupied by one agent. Note that agents 1

and 2 have the highest weights (0.51 and 0.62 on equation (5.11)) compared to the other

agents in node 3 (0.13, 0.34, 0.45, and 0.47). At the same time agent 6 (with weight equal

to 0.9) migrates from node 1 to node 2, seeking more resources as well, since node 2 has

twice as much resources as node 1 and is only occupied by agent 9 who has a very low

weight (0.2), which implies that agent 6 will get more resources at node 2 (sharing them
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Figure 5.10: Optimal agents’ trajectory in the network. The agents (black or colored
circles) and nodes (gray ovals) are identified by natural numbers. The agents start at the
initial condition shown at the top and remain in that discrete position until 2 seconds. At
2 seconds, agents 1, 2, (highlighted in red) migrate from node 3 to node 5, while agent 6
migrates from node 1 to node 2 (middle picture). The agents then remain in that position
until 6 seconds when agent 4 (highlighted in green) migrates from node 3 to node 1, which
is the final position of the agents in the network (bottom picture).
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Figure 5.11: Optimal continuous state trajectories of the agents. The top left plot shows
agents 1, 2, and 3. The top right shows agents 4, 5, and 6. The bottom left shows agents 7,
8, and 9. The bottom right shows agents 10, 11, and 12. Within each figure, the first agent
is identified by a blue (−−) line, the second by a green (− ·) line, and the third by a red
(· · ·) line.

with agent 9) than it gets at node 1 (all resources for itself).

Then the network stays at the configuration shown in Figure 5.10-middle for 4 seconds,

allowing the continuous dynamics to converge to a new equilibrium for the current network

configuration (see Figures 5.11 and 5.12). At 6 seconds agent 4 migrates from node 3 to
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Figure 5.12: Optimal continuous state trajectories of the nodes. The left plot shows nodes
1, 2, and 3. The right shows nodes 4, and 5. Within each figure, the first node is identified
by a blue (−−) line, the second by a green− · line, and the third by a red (· · ·) line (where
applicable).

node 1 following a similar logic to that in the previous paragraph. The network stays at

that configuration (Figure 5.10-bottom) for the remainder of the simulation.

The end configuration seems to have a better allocation of resources than the initial

one. Node 5 which is the one with greatest amount of resources is occupied by agents with

high resource weights (0.51, 0.62, 0.812). Node 2 that also has high amount of resources

is occupied by two agents only, but one of the (agent 6) is the agent with highest weight in

the network (0.9). Node 1, which has the fewest amount of resources is only occupied by

one agent (agent 4) with an average weight (0.4), while nodes 3 and 4 share the rest of the

agents that all have weights lower than 0.5.

Figure 5.13 supports the previous discussion showing the quantitative improvement of

the total benefit of the network on time. Each curve in Figure 5.13 represents the evolution
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Figure 5.13: Time evolution of the total benefit of the network for different suboptimal
samples. Each curve represents the total benefit of the network on time during one nu-
merical simulation of the system using a different set of suboptimal control parameters (~ζ
and ~η. The solid blue curve represents the first sample tested. The dashed (green, red, and
cyan) curves represent suboptimal samples where some improvement was achieved. The
solid black curve represents the optimal trajectory in this optimization.

on time of the total benefit of the network for different samples during one optimization

run. The solid blue curve corresponds to the first tested sample. The dashed (green,

red, and cyan) curves correspond to suboptimal samples where some improvement on the

total benefit function of the optimization problem was achieved. The solid black curve

corresponds to the optimal solution of this optimization.
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Note that the total benefit of the network for the optimal trajectory (black curve in

Figure 5.13) improves every two seconds, or at least remains unchanged. So the network

starts with a total benefit at 2 second of 1.2. This improves at 4 second to 2.2, which stays

the same at 6 seconds, and then improves to 2.5 at 6 seconds where it is kept until the end

of the simulation. This approximately yields (summing the benefits of all the two-second

intervals as done in (5.14)) the optimal optimization benefit 13.1, which is close to the

exactly computed J0 = 13.07.

Compare this optimal trajectory to any other one int Figure 5.13. Take for example the

initial sample (solid blue). The total benefits of the network for every two-second interval

are 1.2, 1.2, 1.2, 1.2, 1.2, 2.2, which yields a benefit value for this sample of about

8.2. Alternatively take the curve of improvement 5 (red squares), where the total benefits

of the network every two-second interval are 1.2, 2.1, 2.1, 2.1, 2.2, 2.5 which yields a

benefit value for this sample of 12.2. Note that both of this curves present improvements

and degradations in the total benefit of the network among two-second intervals. These

degradations are not observed in the optimal sample.

This allows us to conclude that the benefit functional (5.14), the decision policies that

govern the agents discrete transition, and the randomized optimization algorithm make

the system improve the total benefit of the network every time the agents are allowed to

change locations, and also make the agents converge to a discrete configuration that comes

close to the the optimal configuration.

5.6 Conclusions

We have presented a randomized approach for optimal control of hybrid systems. We de-

fined a general hybrid optimal control problem, and stated an equivalent problem in the

randomized framework. We provided an expression that relates the requirements of the de-
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sired solution (level α and confidence 1− δ) with the computational complexity (number

samples) needed to guarantee such requirements. In this form the performance/ compu-

tational complexity trade-off can be controlled. We tested our approach on two different

examples and obtained comparable results to those available in the literature using model-

based approaches. The advantage of the proposed approach is that the theoretical analysis

is simplified due to its model-free nature, making it attractive for complicated systems

where model-based techniques may face difficulties. However, the price to pay for this

problem simplification is that the proposed approach does not guarantee the optimality of

the final solution.

We applied the randomized optimization approach to the design of the discrete dy-

namics on the resource allocation problem discussed along this dissertation. The problem

considered in this chapter is an special case of the general problem defined in Chapter 3.

We consider a network with fixed topology and fixed amount of resources in the network

because the discrete dynamics are based on the discussion in Chapter 4, which is only ap-

plicable to this particular case. The extension of the optimization algorithm to the IHS case

is straightforward. The performance we obtained from the numerical examples makes the

system approach an optimal solution as expected. Moreover, the optimal behavior of the

agents yields an improvement of the total resource of the network every time the agents

make a transition between nodes.

The results obtained so far are useful for special subclasses of the general hybrid sys-

tem defined in this chapter. Possible extensions include the application of the proposed

algorithm to more general types of dynamics, and the inclusion of uncertainty in the sys-

tem. These extensions would be particularly interesting in the resource allocation problem,

because they would allow us to consider a time varying network topology and changes in

the nodes’ resources. In particular the control of uncertain systems could be achieved

using statistical learning in similar form as previously discussed for continuous systems

in [34, 72, 76].
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Chapter 6

Discrete Asymptotic Abstractions of

Hybrid Systems

6.1 Introduction

Motivated by the complexity of the multiagent system studied here, we explore abstraction

procedures for model simplification of hybrid systems. In particular we introduce the no-

tion of Finite Time Mode Abstraction to relate a hybrid system to a timed automaton that

preserves the stability and reachability properties of the former. The abstraction procedure

discards the continuous dynamics of each mode in the hybrid automaton completely, keep-

ing only the information about the maximum time in which the continuous state makes a

discrete jump. This information is used to construct a timed automaton, based on the origi-

nal hybrid system, and to prove that the stability and reachability properties of the original

system are retained in the abstract timed automaton. In the process of abstracting a hybrid

to a timed automaton we introduce a new notion of hybrid distance metric, which pro-

vides information about both the number of discrete transitions that a system would have

to make to go from one hybrid state to another, and the distance between the continuous
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parts of such hybrid states.

The interactions between continuous and discrete dynamics in hybrid systems make

the analysis, controller synthesis, and performance optimization tasks difficult. This com-

plexity is further increased if there is multiple interacting hybrid systems, because the

dynamics of the component agents may be influenced at both the continuous and discrete

levels by the continuous and/or discrete dynamics of other agents. This modeling com-

plexity motivates the need for alternative techniques to simplify control related tasks. In

particular, in the multi-agent problem we are interested in, stable continuous dynamics

been designed for all agents in Chapter 3. This makes it possible to think that the con-

tinuous evolution history may be irrelevant for the system’s overall performance, while

the information about the asymptotic behavior of the system i.e. its equilibrium points,

and the time it takes to reach those may be crucial for such performance evaluation. Thus

the objective is to discard as much irrelevant information as possible from the system’s

description without loosing the key components for the task of interest.

The procedure that allows such model simplification is called abstraction. Loosely

speaking, system’s abstraction is the selective retention of information pertinent to a spe-

cific task or objective. Two well known abstraction procedures are based on bisimulation

and simulation relations [40]. A bisimulation relation generates a simplified system, whose

state space is a partition of the original one, but with a model that is input-output equiva-

lent with respect to a given property (e.g. reachability). Therefore checking a property on

a bisimilar quotient system is equivalent to checking it on the original model. A simulation

relation also generates a simplified system, however in this case the simplified system may

have richer behavior that the original. Therefore checking a desired property on a simi-

lar quotient system is sufficient to claim that such property holds on the original system,

without the converse being necessarily true.

Abstractions for continuous dynamical systems using bisimulation ideas have been ex-

plored for linear systems in [47,48] and for nonlinear systems in [49,50,67,74]. However,
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the link between this form of abstraction and bisimulation relations is only recognized in

the later results [47,67,74]. In [66,68] the authors present abstraction of nonlinear control

systems based on category theory with the ultimate objective of enabling correct by design

embedded systems’ synthesis.

Bisimulation was proven to be a restrictive concept in the survey paper [2], where it is

demonstrated that in order to obtain bisimulations for hybrid systems, one has to restrict

either the discrete logic that governs the transitions, or the type of continuous dynamics.

Less restrictive idea of simulation-based abstraction was explored for linear system in [71],

using a similar framework to that of [47]. Other interesting, and less restrictive concepts

for abstraction are the approximate bisimulations [23], and approximate simulations [22,

65]. Approximate (bi)simulations are (bi)simulation relations that instead of having exact

observation correspondence, these are allowed to be with in a certain distance controlled

by a predefined precision parameter.

Applications of abstraction to multi-agent systems were explored in [5, 33]. The au-

thors in [5] use abstractions to map the combined state space of a group of robots to a

state space that only contains information about group position and shape. Then in [33]

these ideas are exploited using hierarchical abstractions for model simplification of robotic

swarms and temporal logics for motion planning and control (at the level of natural lan-

guage) of the swarm.

The abstraction method we propose here is still less restrictive than approximate sim-

ulation relations. We are interested in studying the asymptotic behavior of the system,

and possibly how much time the system takes to reach a neighborhood of an asymptotic

equilibrium set, being willing to sacrifice knowing how the system got there. We therefore

propose a method to discard the continuous dynamics of the hybrid system almost com-

pletely, substituting this information by clocks that will tell us how much time the system

expends to get to the equilibrium set. This results in mapping the hybrid system to a timed

automaton. The assumption we make for this purpose is that the system contains a finite
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number of disjoint limit sets, and that these are contained in the transition guard of each

discrete mode. In our way to formulate this abstraction procedure, we also propose a new

hybrid metric that as opposed to the metric use in [37], provides enough information in a

single number to determine how many jumps the system need to reach one discrete mode

from another, and how far are two continuous states from each other. Finally we discussed

the applicability of these concepts to the resource allocation problem at hand.

6.2 Preliminary Concepts and Assumptions

In this chapter we restrict our attention to autonomous hybrid systems. Therefore we do

not consider any type of input in either of the continuous or discrete dynamics in Definition

2.1:

Assumption 6.1 The following items are modified in Definition 2.1:

• The continuous dynamical systems are autonomous. Therefore Σq = (Xq, fq,R
+)

for all q ∈ Q, where fq is a smooth map and Xq ∈ R
m.

• The discrete transitions are only of autonomous type. Therefore Sq only contain au-

tonomous transition labels, Gq = GA
q for all q ∈ Q, and Zq are only of autonomous

type for all q ∈ Q.

Let ψq(x, t) be the flow of the vector field fq starting at x ∈ Xq. We assume that flows

are ultimately bounded in the following sense:

Assumption 6.2 For all x ∈ Xq for all q ∈ Q, and for all t ∈ R
+, supt∈R+ ‖ψq(x, t)‖ <

∞.

The norm ‖·‖ onXq is assumed to be one of the typical norms on R
n. We now recall the

concept of the positive limit set of the trajectories of a continuous dynamical system [30]:

101



Chapter 6. Discrete Asymptotic Abstractions of Hybrid Systems

Definition 6.1 (Positive limit set) Let ψq(x, t) be a flow of the system Σq starting from

x ∈ Xq. Then y ∈ Xq is said to be a positive limit point of ψq(x, t) if there is a sequence

{tn}, with tn → ∞ as n → ∞, such that ψq(x, tn) → q as n → ∞. The set of all limit

points of ψq(x, t), ∀x ∈ Xq is called the positive limit set of ψq(t).

We define the distance of a point to a set as [30]:

Definition 6.2 (Distance to a subset of Xq) The distance of a point x of the state space

Xq to a subset Y ⊂ Xq is defined as dist
(

x, Y
)

, infy∈Y ‖x− y‖.

We study a subset of the hybrid system given by Definition 2.1 and Assumption 6.1.

Assumption 6.3 Consider the system given by Definition 2.1 and Assumption 6.1. We

assume that

• Gq(s) 6= ∅, ∀s ∈ Sq for all q ∈ Q;

• Zq(x, s) 6= ∅, ∀x ∈ Gq(s), for all s ∈ Sq and for all q ∈ Q;

• For each q ∈ Q, the positive limit set L+
q of the ψq(t) satisfies L+

q ⊆ Gq, where

Gq =
⋃

s∈Sq
Gq(s).

The last condition implies that the positive limit sets of the flows are contained in the

guards. Note that we do not assume global Lipschitz continuity of fq; instead, we use the

boundedness condition of Assumption 6.2, which also ensures the existence of a positive

limit set L+
q for the flows of fq for all q ∈ Q.

Given a q ∈ Q, the positive limit set of ψq(t), L+
q , may be disconnected. For a given

discrete state q ∈ Q, let L+
q (i) i = 1, . . . , ` be a disconnected component of L+

q . We

assume that ` < ∞, considering the verification of this condition a control design issue

to be addressed in the future. Whenever a state space Xq contains multiple disconnected
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components of L+
q , (and given that each component belongs to a different guard) we par-

tition the given Xq into regions that have a single, common component L+
q (i) as shown in

Figure 6.1.
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Figure 6.1: A domain is partitioned according to the inclusion of connected components
of the positive limit set within the guards. Note that the boundary between the regions of
attraction is unstable, which implies that any perturbation on the system could force the
dynamics to jump between regions of attraction if the state of the system is close enough
to the boundary. A possible solution to this may be to create a third partition that contains
this boundary and leads to both transition guards.

This refinement also guarantees that the flows of fq(x, t) inXq do not activate any other

guards before reaching the one where L+
q is contained. However note that the boundary

between two adjacent regions of attraction of two different transition guards is an unstable

equilibrium set. This implies that if the continuous state of the system is close enough
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to the boundary, any perturbation on the continuous dynamics could force the system to

move between the adjacent regions of attraction. A possible modification to overcome this

limitation may be to add a third partition to the refinement in Figure 6.1 that contains the

boundary between the two original partition sets. Therefore any continuous flow starting

in this partition could lead to any transition guard in Figure 6.1 creating nondeterminism

in the region of the continuous space of the system that is close to the unstable boundary.

A timed automaton is defined here as follows:

Definition 6.3 (Timed Automaton [2]) A Timed Automaton is a hybrid system given as

Definition 2.1 and Assumption 6.1 that satisfies the following properties:

• For every (q0, x0) 6= (q̂0, x̂0) ∈ Init, q0 6= q̂0.

• The set Xq is a rectangular set and the vector field is given by fq(x, t) = 1 for all

q ∈ Q

• For each discrete transition s ∈ Sq for all q ∈ Q, the set Gq(s) is a rectangular set.

• For every discrete transition s ∈ Sq for all q ∈ Q, and for all x ∈ Gq(s), Zq(x, s) =

{y ∈ Xs|y = x or y = c, where c is a constant vector.

6.3 A New Hybrid Metric

We define in this section a notion of a hybrid distance that provides information about both

the continuous and the discrete distances between two hybrid states. Since a graph GH is

directly associated with a hybrid system H, we identify its nodes with the modes of H,

which represent a distinct behavior of the underlying dynamical system.
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Definition 6.4 (Discrete Distance) Let the distance between two discrete states of a hy-

brid system q1 and q2 be the length of the shortest path1 from mode q1 to mode q2 in the

directed graph GH, associated with the hybrid system H. This distance is denoted by

dD(q1, q2).

Definition 6.5 Let A = A(GH) be the adjacency matrix of the directed graph GH as-

sociated with H. The entries of A have their rows and columns indexed by the pair

(qi, qj) ∈ Q × Q. Each entry (qi, qj) will be 1 when a transition is possible from qi to

qj (a label sqi = qj) and 0 otherwise.

The adjacency matrix has the property that its r power will give as an entry at position

(qi, qj) the number of directed paths from qi to qj of length r [24]. Based on this property

we propose a procedure to calculate the discrete distance between to discrete modes in a

hybrid systemH:

Lemma 6.1 The discrete distance dD(q1, q2) can be calculated as follows:

dD(q1, q2) =











minr∈N{r:(A
r)(q1,q2) 6=0} q2∈Reach(q1)

∞ otherwise

(6.1)

where Reach(q) = Reach(h) such that the discrete state of h is q.

Definition 6.6 (Hybrid Distance) Let the distance between two hybrid states h1 and h2

be dH(h1, h2) = tanh(‖x1 − x2‖) + dD(q1, q2), where hi = (qi, xi) for i = 1, 2 and ‖.‖ is

the norm on R.

Using the tanh(·) function of the norm in the distance expression gives different weight

to the discrete part of the hybrid state; (hybrid) states in different discrete modes are con-

sidered to be much further apart than any continuous states in the same mode.

1For a definiton of a path, see [24].
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The metric provided by Definition 6.6 as a measure of the distance between two hybrid

states is composed by two completely separable parts: an integer part (dD(q1, q2)) that is

a function of the number of discrete transitions that H has to make to go from h1 to h2;

and a fractional part (0 ≤ tanh(‖x1 − x2‖) ≤ 1 as proven below) that is a function of

the (induced) distance between the continuous components of h1 and h2. Also note that

this distance notion can be extended to sets M1,M2 ⊆ Q×X by defining dH(M1,M2) =

inf{dH(h1, h2) : h1 ∈M1, h2 ∈M2}.

In what follows, we show that the proposed function can serve as a metric on the space

Q × X , with the exception of symmetry: the existence of a path from q1 to q2 does not

imply the existence of a path of the same length from q2 to q1. This distinction is not made

in the related constructions found in [37, 51].

Proposition 6.1 The hybrid distance dH(h1, h2) is zero if and only if q1 = q2 and x1 = x2.

Proof: First note that the continuous portion of the hybrid distance tanh(‖x1− x2‖)
will only be zero when the argument of tanh(.) is zero and this will happen only when

x1 = x2. Second note that, by definition 6.4, the discrete part of the hybrid distance

dD(q1, q2) will be zero only when q1 = q2 which proves the proposition.

Proposition 6.2 The hybrid distance dH(h1, h2) ≥ 0 for all q1, q2, x1, and x2.

Proof: The tanh(·) function is positive for positive arguments and zero if the ar-

gument is null. Since ‖x1 − x2‖ is positive for all x1 6= x2 and zero for x1 = x2 then

tanh(‖x1−x2‖) will be positive for all x1 6= x2 and zero for x1 = x2. On the discrete part

of the hybrid distance r represents the number of jumps that an state would have to take to

reach another state. Since this variable is always nonnegative, and zero only for q1 = q2,

dD(q1, q2) will always be nonnegative proving the proposition.

Proposition 6.3 The hybrid distance dH(h1, h2) satisfies the triangle inequality

dH(h1, h3) ≤ dH(h1, h2) + dH(h2, h3)
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for all q1, q2, q3, x1, x2, and x3.

To prove the above we will need the following Lemmas:

Lemma 6.2 dD(q1, q3) ≤ dD(q1, q2) + dD(q2, q3) for all q1, q2, and q3.

Proof: Consider a directed graph that contains q1, q2, q3 ∈ Q and analyze three cases:

1. If q1 = q3, then dD(q1, q3) = 0 by proposition 6.1. Moreover it has been proven

(proposition 6.2) that for every pair of modes qm, qn ∈ Q the distance dD(qm, qn) ≥
0. So dD(q1, q3) = 0 ≤ dD(q1, q2) + dD(q2, q3).

2. If q1 6= q3 and q3 /∈ Reach(q1) then dD(q1, q3) = ∞, because there does not exist

any path from q1 to q3. This implies that there will not exist any path between at

least one of the pairs q1, q2 or q2, q3 causing at least one of the distances dD(q1, q2)

or dD(q2, q3) to be infinite. Thus dD(q1, q3) =∞ = dD(q1, q2) + dD(q2, q3).

3. If q1 6= q3 and q3 ∈ Reach(q1) then dD(q1, q3) < ∞. So assume without loss of

generality that q3 ∈ Reach(q2) and q2 ∈ Reach(q1) (If any of this conditions is not

satisfied then the lemma is trivially satisfied because at least one of the distances

in the right hand side of the inequality would be infinite). Note that the minimum

number of transitions to go from qi to qj for all i = 1, 2 and j = 2, 3 : i 6= j is given

by dD(qi, qj). So if the minimum path from q1 to q3 included q2 then dD(q1, q3) =

dD(q1, q2) + dD(q2, q3). Otherwise, if the minimum path between q1 and q3 did not

include q2 then moving the discrete state from q1 through q2 to q3 would create a path

with more jumps than going directly from q1 to q3, i.e. dD(q1, q3) < dD(q1, q2) +

dD(q2, q3).

These three cases together prove that dD(q1, q3) ≤ dD(q1, q2) + dD(q2, q3) for every

q1, q2, q3 ∈ Q.
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Lemma 6.3 tanh(‖x1 − x3‖) ≤ tanh(‖x1 − x2‖) + tanh(‖x2 − x3‖) for all x1, x2, and

x3.

Proof: It follows directly from the properties of the tanh(·) function.

We now prove Proposition 6.3:

Proof: The triangle inequality in Proposition 6.3 can be rewritten as follows tanh(‖x1 −
x3‖) + dD(q1, q3) ≤ tanh(‖x1− x2‖) + dD(q1, q2) + . . .+ tanh(‖x2− x3‖) + dD(q2, q3).

Note that if a ≤ b and c ≤ d then a+ c ≤ b+ d. Thus the proof follows from this fact and

Lemmas 6.2 and 6.3.

6.4 Hybrid Notions of Stability

Definition 6.7 (Invariant Set [37]) A set Inv ⊆ ReachH is invariant if ∀ho ∈ Inv, all

(τ, q, x) ∈ χS(h0), all n ∈ 〈τ〉, and all t ∈ [τn−1, τn), (qn, xn(t)) ∈ Inv.

Definition 6.8 (Stable Invariant Set [37]) An invariant set Inv is called

• stable if for all ε > 0 there exists a δ > 0 such that for all (h0) ∈ ReachH with

dH((h0, Inv) < δ, all (τ, q, x) ∈ χS(h0), all n ∈ 〈τ〉, and all t ∈ [τn−1, τn),

dH((q
n, xn(t), Inv)) < ε;

• Inv is called asymptotically stable if it is stable and in addition there exists a ∆ > 0

such that for all (h0) ∈ ReachH with dH(h0, Inv) < ∆ and all (τ, q, x) ∈ χ∞(h0),

limt→|τ | dH((q
n, xn(t)), Inv) = 0.

Note that positive limit sets L+
q are invariant but not necessarily stable. The existence

of L+
q merely suggests that the hybrid trajectory will approach it in time, not that it will

stay in its neighborhood. We use the positive limit sets to ensure that a transition between

discrete modes will occur in finite time. Stability of a hybrid system H, is understood as
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convergence to a asymptotically stable invariant set Inv. For simplicity, we will assume

thatH has only one (globally) asymptotically stable invariant set Inv:

Assumption 6.4 The hybrid system H has only one asymptotically stable invariant set

denoted (Qeq, Xeq). In addition assume that every q ∈ Q there exists a unique possi-

ble discrete jump s ∈ Sq, and that the associated guard Gq(s) containing a connected

component of L+
q is “forced” (the transition must occur).

6.5 Finite Time Abstraction for Continuous Dynamics

For this section consider an autonomous continuous dynamical system Σ = (X, f,R+).

We say that two points x1 and x2 in X are asymptotically equivalent (denoted x1 ∼ x2)

if their positive limit points belong to the same limit set. However a finer partition of the

state space could be obtained by comparing the distances of the flows of two points, x1

and x2, to the same connected component L+
k at time T . We formally define this idea as

finite time abstraction:

Definition 6.9 (Finite-time Equivalence relations) Consider an autonomous system Σ,

where X is a compact subset of R
m, and let the flows of Σ belong in X for all t ∈ R

+.

Let L+ =
⋃`

k=1 L
+(k) be the positive limit of Σ, where each L+(k) is simply connected.

We define an equivalence relation ∼T on X as follows: Two points x1, x2 ∈ X are said to

belong to the same T -equivalence class, denoted x1 ∼T x2, if

1. x1 ∼ x2, and

2. if for some k, limt→∞ dist
(

ψ(x1, t), L
+(k)

)

= limt→∞ dist
(

ψ(x2, t), L
+(k)

)

= 0,

then dist
(

ψ(x1, T ), L
+(k)

)

= dist
(

ψ(x2, T ), L
+(k)

)

.

The first condition excludes the possibility of one point belonging into different T -

equivalence classes. A finite time abstraction partitions the state space according to the
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distance of the flows of the points at time T , to the component L+(k) of the positive limit

set which they converge to. We use L+(k) +Bd to denote the set {x+ y | x ∈ L+(k), y ∈
Bd}, where Bd ⊆ Rm is the open ball of radius d centered at the origin.

Definition 6.10 (Finite Time Abstraction) Consider a system Σ, where X is a compact

subset of R
m, and let ψ(x, t) be the flow of f from x ∈ X . Suppose that the flows of

Σ belong in X for all t ∈ R
+ and that Σ has a positive limit set L+ =

⋃`

k=1 L
+(k).

The finite-time T -abstraction of Σ is a (set valued) map, that associates each point x ∈
X to the set L+(k) + Bd, where k is such that limt→∞ dist

(

ψ(x, t), L+(k)
)

= 0, d =

dist
(

Φ(x, T ), L+(k)
)

, and Bd is the ball of radius d centered at the origin.

In this sense, a finite-time T -abstraction will contain information about “how close to

destination” the flows from different points will be, in time T .

6.6 Discrete Asymptotic Abstraction

Consider a hybrid system H satisfying the conditions of Assumption 6.3, and let ψq(y, t)

be the flow of fq from y ∈ Xq \Gq(s, q
′) where s ∈ Sq. Given that L+

q ⊂ Gq(s, q
′), there

will be a (finite) upper bound on the time needed for the flow of fq to reach Gq(s, q
′) from

any point x ∈ Xq. We denote this bound Θq. The existence of Θq is guaranteed by the

definition of the positive limit set L+
q , and the fact that the latter is completely contained

in the guard.

Definition 6.11 (Finite Time Mode Abstraction) The Θq-abstraction of the continuous

dynamical system Σq in mode q is given as the image of the constant map: (Xq, fq) →
Q× R

+ : (x, fq(x, t)) 7→ (q,Θq).

In this way, the continuous dynamics are dropped completely. All the information that

remains is an indication of “how long it takes to reach the guard.” This is the concept that
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allows us to abstract the continuous dynamics of the hybrid system H into a the clock

dynamics of a timed automaton.

In abstracting H into a Timed Automaton H̃, we have to consider the equilibrium

hybrid set (Qeq, Xeq) separately. An ε-neighborhood ofXeq (for an arbitrarily small ε,) will

define the continuous space that is mapped to this new “final mode” during the abstraction

procedure. Since the system’s flows stay in the ε-neighborhood of Xeq once this has been

reached we let Θq̃f = c for any c > 0. This is possible because, as can be seen in Definition

6.12, once the system reaches q̃f , it will either stay in that state by continuous evolution (if

Θq̃f =∞) or will periodically execute a discrete transition the same state q̃f (if Θq̃f <∞).

Based on Assumption 6.4, one can obtain the following constructive process for defin-

ing the Timed Automaton H̃ that captures the asymptotic behavior of H. A pictorial

representation of this abstraction is shown in Figure 6.2.

Definition 6.12 (Abstract timed automaton) Let the abstract timed automaton H̃ be a

hybrid system as given in Definition 2.1 and Assumption 6.1 such that:

• Q̃ = Q
⋃{q̃f}, where q̃f is a new mode that represents Xeq ∈ XQeq

.

• Σ̃q̃ = (X̃q̃, f̃q̃,R
+), where X̃q̃ = {(λ, γ)T ;λ ≤ Θq̃} for all q̃ ∈ Q̃, and f̃q̃(λ, γ) = 1

for all q̃ ∈ Q̃ (clock dynamics).

• S̃ = {S̃q̃}q̃∈Q̃ where S̃q̃ = Sq for all q̃ ∈ Q̃ {q̃f}, and Sq̃f = {s̃f}, where s̃f = q̃f (A

discrete transition from q̃f leads to itself).

• G̃ = {G̃q̃} where Gq̃f (s) = {(λ, γ)T ;λ ≥ Θq̃}, for all q̃ ∈ Q̃.

• Z̃ = {Z̃q̃}q̃∈Q̃ where Z̃q̃ : G̃q̃ × S̃q̃|(λn+1(t), γn+1(t))T = (0, γn(t))T .

where (q̃, x̃) ∈ ⋃q̃∈Q̃ X̃q̃ × Q̃ is the state of H̃.
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Figure 6.2: Pictorial representation of hybrid system’s abstraction. Each discrete mode on
the hybrid system (top) has a corresponding discrete mode in the abstract timed automaton
(bottom). The timed automaton has an extra discrete mode that represents the equilibrium
set of the hybrid system. The timed automaton executes the discrete transitions after the
maximum time (Θq) the continuous dynamics in the hybrid system take to converge to the
transition guards.

We now present the two main results of this chapter. The goal of these two theorems is

two study the stability, and the reachability of a hybrid system using an abstract version of

it. We do this by abstracting most of the continuous dynamics (Definition 6.12) of the hy-

brid system keeping only the relevant information to preserve the stability and reachability

properties of the system.

Theorem 6.1 (Asymptotic Stability ofH) If H is asymptotically stable (AS) with a L

being an ε-neigborhood of its AS invariant set (Qeq, Xeq), then the timed automaton H̃

constructed as in Definition 6.12 is asymptotically stable in the sense of Definition 6.8,

with (q̃f , ·) its asymptotically stable invariant state.

Proof: IfH is asymptotically stable (AS) then by definition there exists a δ > 0 for

all ξ > 0, such that for all h0 ∈ ReachH with dH(h0, L) < δ, every execution (τ,q,x) ∈
χS(h0) satisfies dH((qi, xi(t)), L) < ξ for all i ∈ 〈τ〉 and t ∈ [τ i, τ i+1), and there also

exists a ∆ > 0 such that for all h0 ∈ ReachH with dH(h0, L) < ∆ every infinite execution
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(τ,q,x) ∈ χ∞H (q0, x0) satisfies limt→|τ | dH((q
i, xi(t)), L) = 0. Then by construction of H̃ ,

and the definition of dH(h, h′) there exists a δ̃ = bδc+1 for all ξ̃ = bξc+1 (+1 is added due

to the addition of q̃f in Def. 6.12) such that for all h̃0 ∈ ReachH̃
with dD(q̃0, q̃f ) < δ̃, every

execution (τ̃ , q̃, x̃) ∈ χ
H̃
(h̃0) satisfies dD(q̃i, q̃f ) < ξ̃ for all i ∈ 〈τ〉 and t ∈ [τ i, τ i+1) and

there also exists a ∆̃ = b∆c such that for all h̃0 ∈ Reach
H̃

with dD(q̃0, q̃f ) < ∆̃ every

infinite execution (τ̃ , q̃, x̃) ∈ χ∞
H̃
(h̃0) satisfies limt→|τ̃ | dD(q̃

i, q̃f ) = 0, thus making q̃f the

a.s. discrete invariant set of H̃ . Since the continuous part of the AS invariant set of H̃ is

the whole domain of qf , the theorem is proved.

Let (q(T ), x(T )) ∈ ReachH denote the state of the hybrid system H at time T . The

next theorem states that the (finite time) reachability properties ofH are preserved by H̃:

Theorem 6.2 (Reachability of H) If (q(T ), x(T )) ∈ ReachH there exists a k ∈ 〈τ〉 such

that after some execution χ(h0), q(T ) = qk, x(T ) = xk(T ) with T ∈ [τ k, τ k+1). Moreover

T will be upper-bounded by γk(τ k) (the second component of the continuous state of H̃ at

the end of mode k), i.e. T ≤ γk(τ k).

Proof: Let the hybrid state (q, x) ∈ ReachH then the abstract hybrid state q̃, x̃

is in Reach
H̃

by Definition 6.12. Assume that the hybrid automaton starts at the initial

conditions h0. Then there exists a hybrid execution χ(h0) = (τ,q,x) that maps the initial

condition h0 to an state (q, x) such that q is equal to the discrete state at a k ∈ 〈τ〉 and

the corresponding x is equal to the continuous state at a k ∈ 〈τ〉 and at T ∈ [τ k, τ k+1),

i.e. (q, x) = (qk, xk(T )) such that k ∈ 〈τ〉 and T ∈ [τ k, τ k+1). This state (q, x) is

the state of the hybrid system at a time T : (q, x) = (q(T ), x(T )) along the execution

χ(h0) = (τ,q,x). If a timed automaton H̃ is constructed as in definition 6.12 (λ, γ)T ∈ X̃
correspond to the local and global clocks of H̃. So by the definition of D̃ and G̃,

λk(τ k+1) = Θqk ≥ τ k+1 − τ k (6.2)

By the construction of R̃ in Definition 6.12 γk(τ k+1) =
∑k

i=1 λ
i(τ i+1). Then using (6.2)

and noting that T ∈ [τ k, τ k+1], and that γk(τ k+1) ≥∑k

i=1(τ
i+1 − τ i) ≥ T , we obtain that
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T ≤ γk(τ k+1).

6.7 On the Application of Abstractions to the Resource

Allocation Problem

In this section we briefly discuss how the abstraction ideas could be beneficial to the re-

source allocation problem. The basic approach is to take advantage of the stable contin-

uous dynamics on the agents and nodes of the system, such that the system’s description

can be simplified without loosing relevant information for the final objective.

Note in Chapter 3 that the main design objective is to have the agents converge to a

configuration that coincides with the optimal allocation of the network resources among

all the agents located in it. This design objective is not concerned with the steps that the

agents and nodes take to converge to such configuration. Also note that the continuous

dynamics of the agents and nodes converge to a single asymptotically stable equilibrium

point for each possible configuration of the network. This implies that the continuous

dynamics may be decoupled from the discrete dynamics if every time the agents and nodes

execute a discrete transition, the continuous dynamics have enough time to converge to

their equilibria, just as it was done in the simulations of Section 5.5.

Therefore, following the ideas explained above, if the continuous dynamics on the

agents and nodes are substituted by the information about the (optimal) equilibrium they

reach in their current configuration, a discrete state network system may be formed by

mapping the nodes in the network to one type of nodes in a bipartite graph, and the agents

in the network to a second type of nodes in a bipartite graph as shown in Figure 6.3.

To keep the information about the connectivity in the network and the location of agents

among nodes, two types of links may be superimposed on graph. Location links would

provide information about the location of agents in the network. Only one location link
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Use link rules in

complete system


Substitute continuous dynamics

for equilibrium points and agent

modes for graph connectivity


Design rules for

link switching


Figure 6.3: Pictorial representation of a possible abstraction of the continuous dynamics
in the resource allocation problem. The continuous dynamics may me substituted by the
optimal solutions of the optimization problem, keeping only the discrete dynamics. Then
the discrete dynamics may be designed and the obtained controllers should be applicable
on the original system.

is allowed for each agent. Information links would substitute the connectivity information

of the original network by links between an agent and the nodes that are connected to the

node this agent occupies. In this form the agents could obtain information from all the

nodes that are connected to the node they occupy, and would also be able to migrate to

those nodes if desired. Other information to be kept on the abstraction procedure include

the resources available in the nodes, and the benefit function of each agent.

The evolution of this new system description results as follows. Agents and nodes start

at an initial configuration. The nonlinear optimization problem is solved within each node.

Then the agents may decide to execute transitions among nodes. After these transitions, the
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optimization problem is solved again, and the system keeps on repeating interweaved steps

of transitions and optimization solutions, until it converges to the optimal configuration.

Note that this system does not involve continuous dynamics, but would still be capable of

converging to an optimal configuration. The benefit of using this description is that the

effort of numerical analysis or design tasks like the one performed in Section 5.5 would

be greatly reduced by a simplified description of the system’s model.

6.8 Conclusions

We introduce the notion of Finite Time Mode Abstraction for a special class of (conver-

gent) hybrid systems. According to this concept, most of the continuous dynamics of

the hybrid system is abstracted away, leaving only information about the time that takes

a continuous state to reach a transition guard within each particular discrete mode. This

information is then used to construct a timed automaton which is shown to preserve the

stability and reachability properties of the original hybrid system. Our current analysis ap-

plies to the class of hybrid automata with one guard per mode and only one asymptotically

stable equilibrium set, but we suggest a procedure for generalization more general classes

of hybrid systems, through refinement of their discrete modes. We consider this work

as the first step in a path that will allow us to map continuous and hybrid dynamics into

(almost completely) discrete ones. We also define a new distance for hybrid dynamical

systems, composed by two completely identifiable parts: a discrete part that is the number

of transitions separating two discrete modes, and a continuous part that is a function of

a standard distance (induced by a norm) between their corresponding continuous states.

We finally discuss the applicability of the ideas in this chapter to the resource allocation

problem the motivates this dissertation.
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Conclusion

We have explored the modeling and control of multiagent systems with hybrid interacting

dynamics. These systems are essentially composed of multiple individual hybrid systems

whose dynamics interact at both the continuous and discrete levels. These types of sys-

tems can be seen in multivehicle application where the individual vehicles are capable of

operating at different discrete operating conditions, in networks of sensors, actuators and

embedded systems, and in communication networks like that in the motivation for this

dissertation.

We have studied these interacting hybrid systems from various different perspectives:

Motivated by a control problem in future communication networks, we formulated a hy-

brid framework to address the problem of allocating continuous resources among agents

moving in a discrete environment. We then studied basic dynamical properties for general

multiagent systems with hybrid interacting dynamics, which we called Interconnected Hy-

brid Systems. We also explored the application of randomized optimization techniques for

the optimal control of individual and multiagent hybrid systems, and finally formulated a

new abstraction technique for the model simplification of individual hybrid systems with a

brief discussion about its possible application to multiagent systems with hybrid dynamics.
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The hybrid framework for resource allocation among agents moving in discrete loca-

tions is designed in three major steps: The design objective is expressed as a mixed integer

nonlinear optimization problem. This problem is then decomposed into two hierarchical

optimization problems, a high level integer optimization, and a lower level nonlinear pro-

gramming problem. And this decomposition is then used to propose hybrid models for

both agents and nodes, and design the continuous dynamics using resource allocation the-

ory [62]. The system obtained at this point has completely designed continuous dynamics

that optimize the resource allocation problem within each node, and partially designed dis-

crete dynamics that represent the movement of agents across the network and the changes

in the network.

The dynamical properties studied for general multiagent systems with hybrid interact-

ing dynamics include the existence and uniqueness of the system’s executions, which are

then applied in the design of the discrete dynamics of the agents in the resource allocation

problem. To study the dynamical properties we introduce a new type of system called

Interconnected Hybrid System (IHS), which provides a general model for studying mul-

tiagent systems with hybrid interacting dynamics. We recast several hybrid concepts into

the IHS framework. We then provide conditions for the existence and uniqueness of an in-

terconnected hybrid execution in term of the dynamics of the individual agents. The merit

of this result is that it is possible to guarantee that the whole IHS has a unique intercon-

nected hybrid execution just by verifying some conditions in the design of the individual

agents. These conditions are then applied to the design of the general structure of the dis-

crete dynamics of the agents in the resource allocation problem, such that the network is

guaranteed to be “well behaved” in terms of the existence and uniqueness of the system’s

executions.

We also explore the use of randomized optimization techniques for the optimal control

of individual and interacting hybrid systems. To do this we transform a general hybrid

optimal control problem into a randomized hybrid optimal control one, and then outline
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how to apply a simple randomized algorithm in the optimization of hybrid systems’ perfor-

mance. In particular we study the optimization of two important types of hybrid systems

in detail: a time driven switching system, and a state driven hybrid system. The numerical

results we obtain are comparable to those using existing gradient techniques for hybrid

systems. The advantage of the randomized approach is that the analytical complexity is

simplified, at the cost of not being able to guarantee that the obtain solution is the optimal.

We then apply the same randomized algorithm to the optimization of the agents discrete

dynamics in the resource allocation problem. The numerical results we obtain indicate

that the randomized technique yields a system whose the agents converge to a point that

is close to the optimal configuration of agents in the network as specified in the design

objective.

Finally, we explore the use of abstractions techniques for the model simplification of

individual hybrid systems, and discuss its applicability to the resource allocation problem.

The abstraction technique we propose substitutes the continuous dynamics of a hybrid

system by clocks, generating a timed automaton that keep track of the time that takes the

original hybrid system to converge to an asymptotically stable invariant set. The timed

automaton is shown to retain the stability and reachability properties of the original hybrid

systems, but contains almost purely discrete dynamics. Additionally we propose a new

hybrid metric capable of providing information about the distance between the continuous

components of two hybrid states, and the number of jumps required to go between the

discrete states of those two hybrid states.

The work that is summarized in this dissertation has opened up several interesting paths

for future research, which include the use of randomized algorithms for optimal control

of uncertain hybrid system, the study of consensus and cooperative control problems for

multiagent systems with hybrid interacting dynamics, the formulation of asymptotic ab-

stractions for more general hybrid systems, the complete control of agents moving across

a network with time varying topology, and the actual application of abstraction techniques
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to multiagent hybrid systems as discussed in Chapter 6.

The resource allocation problem we studied in this dissertation got constrained to fixed

network topology due to the limitation of some of the theoretical results presented here.

The inclusion of a time varying network topology would require the addition of event

driven dynamics to the IHS framework in Chapter 4, and the extension of the randomized

algorithm in Chapter 5 to one that can deal with event uncertainties.

The extension of the randomized optimal control algorithm in Chapter 5 to uncertain

dynamics could be approached using statistical learning theory. Other interesting alterna-

tives may include stochastic optimization algorithms and reinforcement learning, which

have been scarcely explored in the hybrid systems domain. Other important directions in-

clude the formal study of different sampling procedures for the hybrid case, and the control

of more general dynamics (with or without uncertainty).

The discrete abstractions presented in Chapter 6 are currently applicable to a particular

type of hybrid system with one outgoing transition for each discrete state, and limit set

contained in the transition guards. In order to make this procedure more widely applicable,

these restrictions must be removed. We expect that by removing these restrictions the

abstract system will become non-deterministic, or alternatively a stack of timed automata

indexed by groups of initial conditions that lead to different transition guards.

The IHS framework has introduced a general model to study multiagent systems with

hybrid interacting dynamics, and we have addressed the problem of existence and unique-

ness of its executions. It would be desirable that properties like stability or consensus were

also pursued for this important class of multiagent systems.

We now outline the published and submitted papers related to this dissertation.
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Publications directly related to this dissertation

Journal papers

1. “A hybrid framework for resource allocation among multiple agents moving on dis-

crete environments”, J.L. Piovesan, C.T. Abdallah, and H.G. Tanner: In the Special

issue on Collective Behavior and Control of Multi-agent Systems, Asian Journal of

Control, 10(2), March 2008.

Conference papers

1. “Preliminary Results on Interconnected Hybrid Systems”, J.L. Piovesan, C.T. Ab-

dallah, and H.G. Tanner, In the Proc. of the 16th Mediterranean Conference on

Control and Automation, pp. 101 - 106, 2008.

2. “Statistical Learning for Optimal Control of Hybrid Systems”, J.L. Piovesan, C.T.

Abdallah, M. Egerstedt, H.G. Tanner, and Y. Wardi; In Proc. of the 2007 American

Control Conference, pp. 2775 2780, July 2007.

3. “Discrete Asymptotic Abstractions of Hybrid Systems”, J.L. Piovesan, H.G. Tanner,

and C.T. Abdallah: In Proc. of the 45th IEEE Conference on Decision and Control,

pp. 917 922, Dec. 2006.
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121



Chapter 7. Conclusion
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Canada, 2004.

[61] M. Shields. An introduction to automata theory. Blackwell Scientific Publications,
1987.

[62] R. Srikant. The Mathematics of Internet Congestion Control. Birkhauser, 2004.

[63] H. Sussmann. A maximum principle for hybrid optimal control problems. In Pro-
ceedings of the IEEE Conference on Decision and Control, pages 425–430, Phoenix,
AZ, USA, Dec. 1999.

[64] S. Swaroop and J. Hedrick. String stability of interconected systems. IEEE Transac-
tions on Automatic Control, 41(3):349–356, Mar. 1996.

[65] P. Tabuada. Approximate simulation relations and finite abstractions of quantized
control systems. In A. Bemporad, A. Bicchi, and G. Buttazzo, editors, Hybrid Sys-
tems: Computation and Control, volume 4416 of Lecture Notes in Computer Science.
Springer, April 2007.

[66] P. Tabuada. Symbolic models for control systems. Acta Informatica, 43:477–500,
2007.

[67] P. Tabuada and G. J. Pappas. Bisimilar control affine systems. Systems & Control
Letters, 51(1):49–58, May 2004.

[68] P. Tabuada and G. J. Pappas. Quotients of fully nonlinear control systems. SIAM
Journal of Control and Optimization, 43(5):1844–1866, 2005.

[69] H. Tanner, A. Jadbabaie, and G. Pappas. Flocking in fixed and switching networks.
IEEE Transactions on Automatic Control, 52(5):863–868, May 2007.

[70] H. Tanner, G. Pappas, and V. Kumar. Leader-to-formation stability. IEEE Transac-
tions on Robotics and Automation, 20(3):443–455, June 2004.

[71] H. G. Tanner and G. J. Pappas. Simulation relations for discrete-time linear systems.
In Proceedings of the 15th IFAC World Congress, Barchelona, Spain, July 2002.
Submitted.

[72] R. Tempo, G. Calafiore, and F. Dabbene. Randomized Algorithms for Analysis and
Control of Uncertain Systems. Communications and Control Engineering. Springer,
London, UK, 2003.

128



References

[73] C. Tomlin, J. Lygeros, and S. Sastry. A game theoretic approach to controller design
for hybrid systems. Proceedings of the IEEE, 88(7):949–970, 2000.

[74] A. van der Schaft. Equivalence of dynamical systems by bisimulation. IEEE Trans-
actions on Automatic Control, 49(12):2160–2172, Dec. 2004.

[75] M. Vidyasagar. A Theory of Learning and Generalization. Communications and
Control Engineering. Springer, London, UK, 1997.

[76] M. Vidyasagar. Randomized algorithms for robust controller synthesis using statisti-
cal learning theory. Automatica, Elsevier Science Ltd., 37:1515–1528, 2001.

[77] J. Wen and M. Arcak. A unifying passivity framework for network flow control. In
Proc. of the IEEE Infocom, volume 2, pages 1156–1166, San Francisco, CA, USA,
April 2003.

[78] L. Xiao, M. Johansson, and S. Boyd. Simultaneous routing and resource allocation
via dual decomposition. IEEE Trans. on Communications, 52(7):1136–1144, July
2004.

[79] X. Xu and P. Antsaklis. Optimal control of switched systems based on parameteriza-
tion of the switching instants. IEEE Transactions on Automatic Control, 49(1):2–16,
Jan. 2004.

[80] B. Young, R. Beard, and J. Kelsey. A control scheme for improving multi-vehicle for-
mation maneuvers. In Proceedings of the American Control Conference, volume 2,
pages 704–709, Arlington, VA, USA, June 2001.

129


