
Implementation of Load Balancing
Policies in Distributed Systems

by

Jean Ghanem

B.E., American University of Beirut, 2002

THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Electrical Engineering

The University of New Mexico

Albuquerque, New Mexico

June, 2004

c©2004, Jean Ghanem

iii

Dedication

To my dearest parents and my beautiful fiancée.

iv

Acknowledgments

I would like to dedicate my thesis to my parents who always stood beside me in
everything I did. Thank you mother for been always so loving and caring. Thank
you father for making me always strive for better. Thank you Sabine and Samer for
being the best friends whom I can rely on.

I would also like to dedicate my thesis to the Hamadé family who were always
there in my good times and bad times. Thank you for always believing in me and
for your continuous support.

I would also like to dedicate my thesis1 to my advisor and mentor Professor
Chaouki Abdallah who was the source of my motivation and inspiration, through
his continuous guidance, encouragement and patience. Thank you Professor for
everything, I will be forever grateful.

I would like to thank Professor Majeed Hayat for his expertise in the field of load
balancing, for all the valuable discussions that we had and for his continuous support.
I would also like to thank my committee member Professor Gregory Heileman for
his helpful comments.

I would like to express my sincere gratitude to Mr. Henry Jerez for his help in
this thesis work and for sharing his great knowledge in the field of networking and
distributed systems. I would also like to thank my colleague Mr. Sagar Dhakal for
his great help in this thesis work. It was a pleasure working with you.

Last but not least, I would like to dedicate this work and extend my warmest
gratitude to my beautiful fiancée Nayla. Thank you Nayla for correcting and enhanc-
ing my thesis. Thank you for being the person that gave me the strength to survive
throughout all my bad moments. Thank you for being the trusting and confiding
person I relied on during our stay in Albuquerque. Thank you my love for being the
sincere and wonderful person to whom I will devote my entire life.

1This work was supported by the National Science Foundation under Information Tech-
nology Research (ITR) grant No. ANI-0312611 and ANI-0312182

v

Implementation of Load Balancing
Policies in Distributed Systems

by

Jean Ghanem

ABSTRACT OF THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Electrical Engineering

The University of New Mexico

Albuquerque, New Mexico

June, 2004

Implementation of Load Balancing
Policies in Distributed Systems

by

Jean Ghanem

B.E., American University of Beirut, 2002

M.S., Electrical Engineering, University of New Mexico, 2004

Abstract

Load balancing is the allocation of the workload among a set of co-operating compu-

tational elements (CEs). In large-scale distributed computing systems, in which the

CEs are physically or virtually distant from each other, there are communication-

related delays that can significantly alter the expected performance of load-balancing

policies that do not account for such delays. This is a particularly prominent problem

in systems for which the individual units are connected by means of a shared commu-

nication medium such as the Internet, ad-hoc networks, wireless LANs. Moreover,

the system performance may greatly vary since it incorporates heterogenous nodes

that are not necessarily dedicated to the application at hand. In such cases, an actual

implementation becomes necessary to understand the load-balancing strategies and

their reactions when employed in several environments since mathematical models

may not always capture the unpredictable behavior of such systems.

In this thesis we propose a software implementation architecture where several

distributed load-balancing strategies could be tested and verified under different en-

vii

vironments. We then experimentally investigate network delays that are the main

factor in degrading the performance of the load distribution strategies. Subsequently,

we test the different policies on our test-bed and use the results to develop an im-

proved policy that adapts to the system parameters such as transfer delays, connec-

tivity, and CE computational power.

viii

Contents

List of Figures xiii

List of Tables xviii

1 Introduction 1

1.1 Problem Description and Motivation 1

1.2 General Framework for load-balancing 3

1.3 Objective of this Thesis . 4

1.4 Overview of Thesis . 5

2 Load-Balancing Taxonomy and Previous Work 7

2.1 Brief Overview of Taxonomy of Load Balancing Policies 7

2.1.1 Static Versus Dynamic . 8

2.1.2 Distributed Versus Centralized 9

2.1.3 Local Versus Global . 9

2.1.4 Cooperative Versus Non-Cooperative 10

ix

Contents

2.1.5 Adaptive Versus Non-Adaptive 10

2.1.6 One-Time Assignment Vs Dynamic Reassignment 11

2.1.7 Sender/Receiver/Symmetrical Initiated 11

2.2 Previous Work . 12

2.2.1 Shortest Expected Delay (SED) and Adaptive Separable policy

(AS) . 12

2.2.2 Never Queue Policy (NQ) . 13

2.2.3 Maximum Throughput Policy (TP) and Greedy

Throughput Policy (GT) . 13

2.2.4 The Gradient Model . 14

2.2.5 Sender Initiated Diffusion (SID) and Receiver Initiated Diffu-

sion (RID) . 16

2.2.6 Hierarchical Balancing Method (HBM) 17

2.2.7 Simulations and Modifications 18

2.3 Load-Balancing Models . 20

2.3.1 Deterministic Time Delay Queueing Model for Load-Balancing 21

2.3.2 Stochastic Time Delay Queueing Model for Load Balancing . . 23

2.4 Summary . 24

3 Implementation Architecture 25

3.1 Platforms . 26

x

Contents

3.2 Macro-Architecture . 26

3.3 Variables and Data Structures . 27

3.4 Communication Layer . 29

3.5 Load-Balancing Layer . 30

3.6 Application Layer . 31

3.7 Configuration and Log Files . 33

3.8 Policies Implemented . 36

3.9 Summary . 40

4 Network Delays 42

4.1 Internet Delays . 43

4.2 Local Area Network Delays . 50

4.3 Wireless Network Delays . 50

4.3.1 Wireless Delays in Ad-hoc Networks 51

4.3.2 Wireless Delays in Networks with Infrastructure 53

4.4 Summary . 56

5 Experimental results 58

5.1 Multiple Balancing Instances . 59

5.1.1 LAN Experiments . 59

5.1.2 Internet Experiments Over Planet-Lab 61

xi

Contents

5.2 One-Shot Load-Balancing . 68

5.2.1 Wireless Network Experiments 68

5.2.2 Simulation Results . 71

5.3 Summary . 73

6 Dynamic and Adaptive Load-Balancing Policy 76

6.1 Dynamic and Adaptive Policy Description 77

6.1.1 Adaptive Parameters Computation 82

6.1.2 Experimental Evaluation . 83

6.2 Summary . 86

7 Conclusions and Future Work 87

Appendices 90

References 90

xii

List of Figures

2.1 Load-balancing schemes. 8

2.2 The multiple queue multiple server model. λ is the job arrival rate

and µi is the service rate of node i 13

2.3 Gradient model example. 15

2.4 Sender Initiated Diffusion (SID) and Receiver Initiated Diffusion

(RID examples . 17

2.5 Hierarchical organization of an eight-processor system with hyper-

cube interconnections. The processor ID’s at intermediate nodes in

the tree represent those processors delegated to manage the balancing

of corresponding lower-level domains.[46] 19

3.1 Load-balancing system architecture. 27

3.2 List data structure containing others node state information 28

3.3 Queue structure holding tasks information. 28

3.4 Example of a row of size n where the maximum precision was set to

5 Bytes. 33

3.5 Example of load distribution policies performed by node 1. 38

xiii

List of Figures

3.6 Summary of the steps for the load-balancing policy performed at

node j. 39

3.7 Implementation architecture. 41

4.1 A typical delay histogram[11]. 44

4.2 Different classes of end-to-end delay distributions[11] 46

4.3 Delay distribution pdf for the different paths in the Internet (Taiwan

is Sinica-Taiwan and Taiwan2 is NTU-Taiwan). 48

4.4 Individual delay measurements during 24 hours period (MST zone)

for some paths on the Internet. 49

4.5 Delay distribution (pdf) for the ECE Local Area Network (LAN). . 50

4.6 (a) Ad-hoc wireless network delay measurements between node 1 and

node 2 for a 3 hours period as a function of time. (b) distribution of

the delays for the same period. 52

4.7 (a) Ad-hoc wireless network delay measurements between node 2 and

node 3 for a 3 hours period as a function of time. (b) distribution of

the delays for the same period. 52

4.8 (a) Ad-hoc wireless network delay measurements between node 3 and

node 1 for a 3 hours period as a function of time. (b) distribution of

the delays for the same period. 53

4.9 Setup of the delay probing experiment. 54

4.10 (a) Wireless with AP network delay measurements between node 1

and node 2 for a 4 hours period as a function of time. (b) distribution

of the delays for the same period. 55

xiv

List of Figures

4.11 Wireless with AP network (a) delay measurements between node 1

and node 3 for a 4 hours period as a function of time. (b) distribution

of the delays for the same period. 55

4.12 (a) Wireless with AP network delay measurements between node 2

and node 3 for a 4 hours period as a function of time. (b) distribution

of the delays for the same period. 56

4.13 (a) Wireless with AP network delay measurements between node 3

and node 1 for a 4 hours period as a function of time. (b) distribution

of the delays for the same period. 56

4.14 Example of a straight line fit for a shifted wireless delay pdf plotted

on a logarithmic scale. 57

5.1 Experimental response of the load-balancing algorithm. The plots

show the excess load at each node versus time. 60

5.2 Summary of the load balance time as a function of the feedback gain

K. 61

5.3 (a) K = 0.6 - Settling time is approximately 7 milliseconds. (b)

K = 0.6 These are the same conditions as (a), but now the ringing

persists. 61

5.4 Experimental response of the load-balancing algorithm under large

delays. gain K = 0.3 and pij = 0.5. 64

5.5 Experimental response of the load-balancing algorithm under large

delays. gain K = 0.5 and pij = 0.5. 64

5.6 Summary of the load-balancing time as function of the gain K. . . 65

xv

List of Figures

5.7 Experimental response of the load-balancing algorithm under large

delays. gain K = 0.8 and pij = 0.5. 65

5.8 Experimental response of the load-balancing algorithm under large

delays. gain K = 0.4 and pij = 0.5. 66

5.9 Experimental response of the load-balancing algorithm under large

delays. gain K = 0.8 and pij = 0.5. 66

5.10 Experimental response of the load-balancing algorithm under large

variance in the tasks processing time. gain K = 0.3 and pij = 0.5. . 67

5.11 Experimental response of the load-balancing algorithm under large

variance in the tasks processing time. gain K = 0.8 and pij = 0.5. . 67

5.12 Average total task-completion time as a function of the load balanc-

ing instant. The load-balancing gain parameter is set at K = 1. The

dots represent the actual experimental values and the solid curve is

a best polynomial fit. This convention is used thought out Fig.5.15. 70

5.13 Average total excess load decided by the load-balancing policy to

be transferred (at the load-balancing instant) as a function of the

balancing instant. The load-balancing gain parameter is set at K = 1. 70

5.14 Average total task-completion time as a function of the balancing

gain. The load-balancing instant is fixed at 1.4 s. 71

5.15 Average total excess load decided by the load-balancing policy to

be transferred (at the load-balancing instant) as a function of the

balancing gain. The load-balancing instant is fixed at 1.4 s. 72

xvi

List of Figures

5.16 Simulation results for the average total task-completion time as a

function of the load-balancing instant. The load-balancing gain pa-

rameter is set at K = 1. The dots represent the actual experimental

values[20]. 73

5.17 Simulation results for the average total excess load decided by the

load-balancing policy to be transferred (at the load-balancing in-

stant) as a function of the balancing instant. The load-balancing

gain parameter is set at K = 1 [20]. 73

5.18 Simulation results for the average total task-completion time as a

function of the balancing gain. The load-balancing instant is fixed

at 1.4 s. [20] . 74

6.1 completion time averaged over 5 runs Vs different gain values K.

The graph shows the results for both policies. 85

6.2 Total number of tasks exchanged averaged over 5 runs Vs different

gain values K. The graph shows the results for both policies. . . . 85

xvii

List of Tables

4.1 Summary of the delay probing experiments in the Internet 47

4.2 Summary of the delay probing experiments in the wireless with AP

network. 51

4.3 Summary of the delay probing experiments in the wireless with AP

network. 54

5.1 Parameters and settings of the experiment 62

5.2 Average network delays and transmission rates. 62

6.1 Parameters and settings of the experiment. 84

6.2 Average transmission rates between the different nodes. 84

xviii

Chapter 1

Introduction

1.1 Problem Description and Motivation

The demand for high performance computing continues to increase everyday. The

computational need in areas like cosmology, molecular biology, nanomaterials, etc.,

cannot be met even by the fastest computers available [6, 29]. But with the avail-

ability of high speed networks, a large number of geographically distributed com-

putational elements (CEs) can be interconnected and effectively utilized in order to

achieve performances not ordinarily attainable on a single CE. The distributed na-

ture of this type of computing environment calls for consideration of heterogeneities

in computational and communication resources. A common architecture is the clus-

ter of otherwise independent CEs communicating through a shared network. An

incoming workload has to be efficiently allocated to these CEs so that no single CE

is overburdened, while one or more other CEs remain idle. Further, tasks migra-

tion from high to low traffic area in a network may alleviate to some extent the

network-traffic congestion problem.

Workstation clusters are being recognized as the most promising computing re-

1

Chapter 1. Introduction

source of the near future. A large-size cluster, consisting of locally connected worksta-

tions, has power comparable to a supercomputer, at a fraction of the cost. Further-

more, a wide-area coupling of workstation clusters is not only suitable for exchange of

mail and news or the establishment of distributed information systems, but can also

be exploited as a large metacomputer [9]. In theory, a metacomputer is a similarly

easy-to-use assembly of distinct computers or processors working together to tackle

a single task or a set of problems. Distributing the total computational load across

available processors is referred to in the literature as load-balancing.

Effective load-balancing of a cluster of CEs in a distributed computing system

relies on accurate knowledge of the state of the individual CEs. This knowledge is

used to judiciously assign incoming computational tasks to appropriate CEs, accord-

ing to some load-balancing policy. In large-scale distributed computing systems in

which the CEs are physically or virtually distant from each other, there are a number

of inherent time-delay factors that can seriously alter the expected performance of

load-balancing policies that do not account for such delays. One manifestation of

such time delay is attributable to the computational limitations of individual CEs.

A more significant manifestation of such delay arises from the communication lim-

itations between the CEs. These include delays in transferring loads amongst CEs

and delays in the communication between them. Moreover, such delays not only

fluctuate within each CE as the amounts of the loads to be transferred vary, but also

vary as a result of the uncertainties in the communication medium that connects the

units. This kind of delay-uncertainty is frequently observed in systems for which the

individual units are connected by means of a shared communication medium (e.g.,

the Internet, ATM, ad-hoc networks, wireless LANs) [24].

There has been extensive research in the development of dynamic load-balancing

policies. Some of these existing approaches assume constant performance of the

network while others assume deterministic communication and transfer delay. The

2

Chapter 1. Introduction

load-balancing schemes designed under such assumptions ignore randomness in delay

[18, 20]. In this thesis, we propose a software implementation of a general framework

where distributed and dynamic load-balancing policies could be tested. We then test

them in different environment namely the Internet and wireless networks to finally

come up with an improved adaptive policy.

To adequately model load-balancing problems, several features of the parallel

computation environment should be captured: These include (1) The workload await-

ing processing at each CE (i.e., queue size); (2) The relative performances of the CEs;

(3) The computational requirements of each workload component; (4) The delays and

bandwidth constraints of CEs and network components involved in the exchange of

workloads, and (5) The delays imposed by CEs and the network on the exchange of

measurements and information [24, 22]. The effect of delay in particular is expected

to be a key factor as searching large databases moves toward distributed architectures

with potentially geographically distant units.

1.2 General Framework for load-balancing

A typical distributed system will have a number of processors working independently

with each other. Some of them are linked by communication channel and while some

are not. Each processor possesses an initial load, which represents an amount of work

to be performed, and each may have a different processing capacity. To minimize

the time needed to perform all tasks, the workload has to be evenly distributed over

all processors based on their processing speed. This is why load-balancing is needed.

If all communication links are infinite bandwidth, the load distribution would suffer

from no delay, but this does not represent real distributed environments. In any

practical distributed systems, the channels are of finite bandwidth and the processing

units may be physically distant; Therefore, load-balancing is also a decision making

3

Chapter 1. Introduction

process of whether to allow tasks migration or not.

Another issue related to load-balancing is that a computing job may not arbi-

trarily divisible leading to certain constraints in dividing tasks. Each job consists

of several smaller tasks and each of those tasks can have different execution times.

Also, the load on each processor as well as on the network can vary from time to

time based on the workload brought about by the users. The processor capacity may

be different from each other in architecture, operation system, CPU speed, memory

size, and available disk space. The load-balancing problem also needs to consider

fault-tolerance and fault-recovery. With all these factors taken into account, load-

balancing can be generalized into four basic steps: (1) Monitoring processor load

and state; (2) Exchanging load and state information between processors; (3) Cal-

culating the new work distribution; and (4) Actual data movement. In this scheme,

numerous load-balancing strategies are available but they all could be implemented

on the same test-bed since they share the same basic steps described above.

1.3 Objective of this Thesis

The main goal of this thesis is to experimentally investigate the behavior of dis-

tributed load-balancing policies in a real environment. Analytical and queueing

models may not always take into account all the parameters and inputs of an actual

system that has unpredictable behavior. Therefore, it is crucial to experiment the as-

pects of the policies under actual conditions to check the system’s response and come

up with heuristic improvements. Hence, we propose a software implementation of a

load-balancing system where we examine how its three components, application, load

distribution, and network communication should interact to provide high throughput

to the application at hand regardless of the policy adopted. Moreover, to better un-

derstand the reactions of the policies in large networks, we conduct an experimental

4

Chapter 1. Introduction

analysis of the network delays and categorize them according to their characteristics.

After investigating the basic policies and the effect of delays on the stability of the

systems they act upon, we propose adaptive load-balancing policies that account for

several system parameters including CE computational power and interconnection

delays.

For a given workload distribution among a group of heterogeneous processors, we

recognize the overall completion time of the group [20, 19] and the stability point

where the load is evenly distributed across the system as the performance metrics

[22]. The words “stable” and “stability” acquired from the controls area will be used

throughout the thesis (especially in Chapter 5) to denote the evenness degree of

the load distribution across the processors. The objective is to develop a balancing

strategy which minimizes both of these parameters. We do not address the process

selection [33] for migration since we assume that each task has a priority attached

to it as indicated by its insertion order to the queue of each node.

This thesis may also have the potential for being useful in other fields such as

networked control systems (NCS) and teleautonomy. In a NCS the sensor and the

controller are connected over a shared network and therefore, there is a delay in

closing the feedback loop. A special application of teleautonomy [37, 38] is that of

robots distributed geographically and working autonomously but at the same time

being monitored by a distant controller. Clearly, load distribution may be needed

across the robots where communication delays may degrade the performance of such

systems.

1.4 Overview of Thesis

In Chapter 2, we present an overview of existing load-balancing strategies. We start

by briefly discussing different schemes. We then look into special types of load-

5

Chapter 1. Introduction

balancing schemes available in the literature and the queueing models on which the

policies adopted in this thesis are based. Chapter 3 presents the internal software

architecture of the proposed test-bed system followed by a description of the policies

that were integrated in it. Chapter 4 introduces delay probing experiments performed

on the Internet and classified according to their variability. We then conduct delay

experiments on the wireless network whose results are integrated in the Monte-Carlo

load-balancing simulator of the stochastic queueing model presented in Section 2.3.2.

In Chapter 5, experimental results conducted on the implemented policies over two

different test-beds, the Internet and a wireless network are presented. The effect of

delays and the variation in the CEs performance are examined to see how they influ-

ence the system’s ability to reach a load balanced state. Finally, based on previous

observations regarding the behavior of network delays and the performance of the

policies in distributed systems, we propose in Chapter 6 a dynamic and adaptive

load-balancing policy that accounts for such parameters. Chapter 7 presents our

conclusions and suggestions for future research.

6

Chapter 2

Load-Balancing Taxonomy and

Previous Work

In this chapter, a brief overview of the different taxonomies of load-balancing policies

are defined, followed by an overview of previous work in the field. In the last section,

queueing models that provide the basis for the policies implemented in this thesis,

are described.

2.1 Brief Overview of Taxonomy of Load Balanc-

ing Policies

In this section, the different categories of load-balancing policies are presented and

can be found in [12, 20]. A detailed overview of the different taxonomies can be found

in [12]. Figure 2.1 shows the organization of the different load-balancing schemes.

7

Chapter 2. Load-Balancing Taxonomy and Previous Work

Static Dynamic

Centralized Distributed

Local Global

Cooperative Non-Cooperative
Adaptive Non-Adaptive

One-Time Dynamic

Reassignment

Sender Receiver

Initiation

Figure 2.1: Load-balancing schemes.

2.1.1 Static Versus Dynamic

Static load distribution, also known as deterministic scheduling, assigns a given job

to a fixed processor or node. Every time the system is restarted, the same binding

task-processor (allocation of a task to the same processor) is used without consid-

ering changes that may occur during the system’s lifetime. Moreover, static load

distribution may also characterize the strategy used at runtime, in the sense that it

may not result in the same task-processor assignment, but assigns the newly arrived

jobs in a sequential or fixed fashion. For example, using a simple static strategy, jobs

can be assigned to nodes in a round-robin fashion so that each processor executes

approximately the same number of tasks.

Dynamic load-balancing takes into account that the system parameters may not

be known beforehand and therefore using a fixed or static scheme will eventually

produce poor results. A dynamic strategy is usually executed several times and may

reassign a previously scheduled job to a new node based on the current dynamics of

the system environment.

8

Chapter 2. Load-Balancing Taxonomy and Previous Work

2.1.2 Distributed Versus Centralized

This division usually falls under the dynamic load-balancing scheme where a natural

question arises about where the decision is made. Centralized policies store global

information at a central location and use this information to make scheduling de-

cisions using the computing and storage resources of one or more processors. This

scheme is best suited for systems where an individual processor’s state information

can be easily collected by a central station at little cost, and new jobs arriving at this

centralized location are then redirected to subsequent nodes. The main drawback of

this scheme is that it has a single point of failure.

In distributed scheduling, the state information is distributed among the nodes

that are responsible in managing their own resources or allocating tasks residing in

their queues to other processors. In some cases, the scheme allows idle processors to

assign tasks to themselves at runtime by accessing a shared global queue. Note that

failures occurring at a particular node will remain localized and may not affect the

global operation of the system.

Another scheme that fits between the two types above is the hierarchical one

where selected nodes are responsible for providing task scheduling to a group of

processors. The nodes are arranged in a tree and the selected nodes are roots of the

subtree domains. An example of this scheme is described in Section 2.5.

2.1.3 Local Versus Global

Local and global load-balancing fall under the distributed scheme since a central-

ized scheme should always act globally. In a local load-balancing scheduling, each

processor polls other processors in its neighborhood and uses this local information

to decide upon a load transfer. This local neighborhood is usually denoted as the

9

Chapter 2. Load-Balancing Taxonomy and Previous Work

migration space. The primary objective is to minimize remote communication as

well as efficiently balance the load on the processors. However, in a global balanc-

ing scheme, global information of all or part of the system is used to initiate the

load-balancing. This scheme requires a considerable amount of information to be

exchanged in the system which may affect its scalability.

2.1.4 Cooperative Versus Non-Cooperative

Within the realm of distributed dynamic global scheduling, two mechanisms can be

distinguished involving the level of cooperation between the different parts of the

system. In the non-cooperative or autonomous scheme, each node has autonomy

over its own resource scheduling. That is, decisions are made independently of the

rest of the system and therefore the node may migrate or allocate tasks based on

local performance. On the other hand, in cooperative scheduling, processes work

together toward a common system-wide global balance. Scheduling decisions are

made after considering their effects on some global effective measures (for example,

global completion time).

2.1.5 Adaptive Versus Non-Adaptive

Adaptive and non-adaptive schemes are part of the dynamic load-balancing policies.

In an adaptive scheme, scheduled decisions take into consideration past and current

system performance and are affected by previous decisions or changes in the environ-

ment. If one (or more parameters) does not correlate to the program performance, it

is weighted less next time. In the non-adaptive scheme, parameters used in schedul-

ing remain the same regardless of system’s past behavior. An example would be a

policy that always weighs its inputs the same regardless of the history of the system

behavior.

10

Chapter 2. Load-Balancing Taxonomy and Previous Work

Confusion may arise between in distinguishing dynamic scheduling and adaptive

scheduling. Whereas a dynamic solution takes environmental inputs into account

when making its decision, an adaptive solution (which is also dynamic) takes environ-

mental stimuli into account to modify the scheduling policy itself [12]. An adaptive

policy is proposed in Chapter 6.

2.1.6 One-Time Assignment Vs Dynamic Reassignment

In this classification, the entities to be scheduled are considered. The one-time

assignment of a task may be dynamically done but once it is scheduled to a given

processor, it can never be rescheduled to another one [23]. On the other hand, in

the dynamic reassignment process, jobs can migrate from one node to another even

after the initial placement is made. A negative aspect of this scheme is that tasks

may endlessly circulate about the system without making much progress.

2.1.7 Sender/Receiver/Symmetrical Initiated

Techniques of scheduling tasks in distributed systems have been divided mainly into

sender-initiated, receiver-initiated, and symmetrically-initiated. In sender-initiated

algorithms, the overloaded nodes transfer one or more of their tasks to several under-

loaded nodes. In receiver-initiated schemes, under-loaded nodes request tasks to be

sent to them from nodes with higher loads. In the symmetric approach, both the

under-loaded as well as the loaded nodes may initiate load transfers.

11

Chapter 2. Load-Balancing Taxonomy and Previous Work

2.2 Previous Work

In this section, several load-balancing policies introduced in earlier works are de-

scribed.

2.2.1 Shortest Expected Delay (SED) and Adaptive Separa-

ble policy (AS)

The shortest expected delay (SED) [7, 45] and adaptive separable policy (AS) [45]

are based on the multiple queue multiple server model shown in Figure 2.2. Both

policies can be either centralized where new tasks arrive to a central server and then

assigned to subsequent nodes, or distributed where each available node can insert

new jobs into the system. In any case, the algorithm is triggered whenever a new

job arrives at node p. Subsequently, a cost function is evaluated for each node and

the job is sent to the corresponding node that produces the minimum cost. the cost

SED(i) is actually the expected time to complete the new job at node i and is given

by

SED(i) =
ni + 1

µi

, (2.1)

where ni and µi are respectively the load and service rate of node i. The information

exchanged and the balancing process can be done either globally or is restricted to

local domains.

The adaptive separable policy is an improvement over the SED policy in the

sense that it estimates the completion time of new arrival at a node by adjusting the

service rate based on its utilization or idle time fraction ui. The new cost becomes

AS(i) =
ni + 1

µiui

12

Chapter 2. Load-Balancing Taxonomy and Previous Work

Figure 2.2: The multiple queue multiple server model. λ is the job arrival rate and
µi is the service rate of node i

2.2.2 Never Queue Policy (NQ)

The never queue policy (NQ) ([39]) is inspired by the fact that in heterogeneous

systems, fast servers may take over all the slow servers in executing most of the

jobs and therefore result in idle nodes in the system. This case occurs mostly when

applying the SED policy in a highly loaded environment and thus yields suboptimal

results.

The NQ policy first assigns the newly arriving job to the idle node. If more than

one idle node is available, the new job is sent to the fastest node that has the largest

(1/µi) term. On the other hand, if all nodes are busy, the SED policy is used.

2.2.3 Maximum Throughput Policy (TP) and Greedy

Throughput Policy (GT)

The aim of the maximum throughput policy developed by Chow and Kohler in 1979

[15] is to maximize the throughput of the system during the next job arrival. The

throughput function TP is given by

TP(n1, n2, · · · , nm) =
m∑

i=1

λ

[
ni−1∑

k=1

(
1− ni

k

) (
µi

λ + µi

)k

− ni ln

(
λ

λ + µi

)]
, (2.2)

13

Chapter 2. Load-Balancing Taxonomy and Previous Work

where λ is the arrival rate and m is the number of nodes in the system. TP is a

reward function calculated for each possible assignment for the new arriving job and

the node that maximizes this function is chosen. This function is complex to evaluate

and renders the load-balancing algorithm inefficiently slow.

Nelson and Towsley in 1985 derived another reward function that is implemented

in the Greedy Throughput policy (GT). The GT reward function stated in [40] is

easier to evaluate than TP and is given as,

GT(i) = (
µi

µi + λ
)ni+1 (2.3)

Both TP and GT policies depend on the inter-arrival rate λ which may not be

available in a real system implementation.

2.2.4 The Gradient Model

In the gradient model policy [30], the underloaded nodes notify the other nodes

about their state, and overloaded nodes respond by transmitting jobs to the nearest

lightly loaded node. Therefore, loads migrate in the system in the direction of the

underloaded nodes guided by the proximity gradient. A global balance state is

achieved computationally by successive localized balances.

At every step of the algorithm, each node compares its load to a Low-Water

Mark (LWM) and a High-Water Mark (HWM) thresholds. The node is set to the

underloaded state if it has a load less than LWM and to the overloaded state if it

has a load greater than HWM. Underloaded nodes set their proximity to zero and

all other nodes p set their proximity according to

proximity(p) = min(proximity(ni)) + 1 (2.4)

where ni denote the neighboring nodes of node p. The node’s proximity is defined

as the shortest distance from itself to the nearest lightly loaded node in the system.

14

Chapter 2. Load-Balancing Taxonomy and Previous Work

Figure 2.3: Gradient model example.

Subsequently, all overloaded nodes send a fraction δ of their loads in the direction of

the lowest proximity. The algorithm is illustrated in Figure 2.3.

Note that no measure of the degree of imbalance is found using this algorithm,

but only that one exists. When an imbalance occurs, the number of excess tasks can

only be known to be greater than HWM-LWM. Hence, the HWM, LWM, and the

fraction δ parameters have a critical impact on the stability and performance of the

algorithm and should therefore be wisely chosen.

The gradient model policy cannot be used in distributed systems since the nodes

are not connected in a certain topology such as a mesh or hypercube. This fact

renders the proximity concept useless. Moreover, the proximity algorithm is a cas-

cading function and therefore requires a considerable amount of time to be evaluated

in large-scale networks where delays are prominent.

However, a modification to the algorithm may be suitable for P2P networks such

as Freenet where nodes are only aware of their immediate neighbors. Consequently,

15

Chapter 2. Load-Balancing Taxonomy and Previous Work

the proximity concept becomes valid and the algorithm may become useful.

2.2.5 Sender Initiated Diffusion (SID) and Receiver Initi-

ated Diffusion (RID)

Sender initiated diffusion ([46][36]) and receiver initiated diffusion ([46][41]) are local

strategies based on the near-neighboring diffusion concept. Each node exchanges

information within its own domain composed of a node and its neighboring nodes.

Global balancing is achieved by the fact that the domains are overlapping.

For the SID policy, the balancing process is triggered whenever a node p receives

from a neighboring node i a load update li less than a preset threshold Llow (li <

Llow). After that, the node p proceeds by calculating the domain load average Lp

Lp =
1

K + 1

(
lp +

K∑

k=1

lk

)
(2.5)

where K is the number of neighboring nodes. The load balancing algorithm continues

if the local excess load (lp−Lp) is greater than a preset threshold Lthreshold. Load δk

is then transferred from node p to each neighbor in proportion to its deviation from

the domain calculated using

hk =





Lp − lk if lk < Lp,

0 otherwise.

δk =(lp − Lp)
hk

ΣK
k=1hk

(2.6)

The RID strategy can be thought of as the converse of the SID strategy in that it is

a receiver-initiated approach as opposed to the sender-initiated approach [46]. How-

ever, to avoid instability due to delays and aging in the load exchange information,

the overloaded nodes transmit tasks up to the half of their current load. SID and

RID are illustrated in Figure 2.4.

16

Chapter 2. Load-Balancing Taxonomy and Previous Work

Figure 2.4: Sender Initiated Diffusion (SID) and Receiver Initiated Diffusion (RID
examples

This scheme is distributed, asynchronous, and topology independent as opposed

to the GM policy that is best suited for nodes arranged in a hypercube or mesh

fashion. However, the same problem arises in defining the local domain where the

balancing process should take place. Moreover, as indicated earlier, the domains

should overlap to an extent that is sufficient to achieve global balancing.

The algorithms implemented in this thesis are based on the SID scheme without

restricting the balancing process to a local domain, but rather expanding it to the

global system.

2.2.6 Hierarchical Balancing Method (HBM)

The Hierarchical Balancing Method (HBM) strategy [46] arranges the nodes in a

hierarchy, thereby creating balancing domains at each level. For a binary tree orga-

nization, all nodes are included at the leaf level (level 0). Half the nodes at level 0

become subtree roots at level 1. Subsequently, half the nodes again become subtree

roots at the next level and so forth until one node becomes the root of the whole

tree.

17

Chapter 2. Load-Balancing Taxonomy and Previous Work

Global balancing is achieved by ascending the tree and balancing the load between

adjacent domains at each level in the hierarchy. If at any level, the imbalance between

the left and right subtrees exceeds a certain threshold, each node in the overloaded

subtree sends a portion of its load to the corresponding node in the underloaded

subtree.

The advantage of the HBM scheme is that it minimizes the communication over-

head and therefore can be scaled to large systems. Moreover, the policy matches

hypercube topologies well. In fact, the dimensional exchange approach [17] designed

for hypercube systems is similar to the HBM method in the sense that it proceeds

by load-balancing per domain basis. Here, each domain is defined as one dimension

in the hypercube. The hierarchical organization of an eight-processor hypercube is

shown in Figure 2.5.

This scheme is clearly not suitable for systems with large network delays for

the following reasons. As the balancing process proceeds on to the next level in

the tree, critical changes occurring at lower levels may not propagate quickly due

to delays. Therefore, corrections may not reach higher domains in time and may

thereby result in an imbalance at the global level. Moreover, although the scheme

is decentralized, a failure at root nodes especially at high levels in the tree, renders

a global balance state unattainable. Consequently, this scheme is not suitable for

Internet-scale distributed systems since nodes may become unreachable at any time,

and will therefore affect the balance state of the system if such nodes happen to be

roots for subtree domains.

2.2.7 Simulations and Modifications

SED, NQ, TP GT and AS policies were compared by Banawan and Zeidat in [8].

Several simulations were performed on different types of systems. These systems vary

18

Chapter 2. Load-Balancing Taxonomy and Previous Work

Figure 2.5: Hierarchical organization of an eight-processor system with hypercube
interconnections. The processor ID’s at intermediate nodes in the tree represent
those processors delegated to manage the balancing of corresponding lower-level
domains.[46]

by their node service rates µi, system utilization, and network delays. The results

indicate that in most cases, the NQ policy performed best.

In a recent paper, Kabalan et al. [28] introduced modifications to the SED, NQ

and GT policies in order to account for the delay incurred in transferring jobs between

nodes. The term tcomp(i, j) representing the communication delay between node i

and node j is added to the costs calculated in the SED and NQ policy. Furthermore,

a qmax threshold on the queue sizes of the nodes is considered. No new jobs are

transferred to nodes having queue sizes more than qmax even though they may have

the least cost associated with them. In the latter case, the “second best” node is

chosen.

For the GT policy, an empirical method for calculating the λ rate was proposed

19

Chapter 2. Load-Balancing Taxonomy and Previous Work

where it was assumed that the delay in transferring a task is less than the inter-

arrival time of new jobs. Simulations were conducted over eight heterogeneous nodes

positioned according to a fixed topology. The results show that the NQ policy

outperformed the other policies under most operating system conditions.

On the other hand, Willebeek and Reeves in [46] simulated the GM, RID, SID,

HBM and the Dimension Exchange Method (DEM) policies on a 32-processor 5-

dimensional hypercube Intel iPSC/2 machine. Their results show that low granu-

larity tasks gave poor results due to lower ability to optimally transfer loads. Also

high tasks granularity also gave poor results due to the increased overhead of moving

tasks. Nevertheless, The DEM and HBM policies gave the best results as expected.

However, the authors concluded by recommending the RID scheme that surprisingly

gave good results for a broader range of systems (non-hypercube).

2.3 Load-Balancing Models

In this section we describe two queueing models for local, sender-initiated, load-

balancing algorithms that were developed at the University of New Mexico and the

University of Tennessee. These models were initially tested in simulations, and the

system developed in this thesis has been used to validate both models in a real

environment under different policies.

Both models focus upon the effects of delays in the exchange of information

among the computational elements (CEs), and the constraints these effects impose

on the design of a load-balancing strategy.

20

Chapter 2. Load-Balancing Taxonomy and Previous Work

2.3.1 Deterministic Time Delay Queueing Model for Load-

Balancing

The deterministic time model is a continuous-time described in terms of of a nonlinear

delay-differential system [5, 10]. It also considers deterministic communication and

transfer delays.

The authors consider a computing network consisting of n nodes all of which can

communicate with each other. Initially, the nodes are assigned an equal number

of tasks. However, when a node executes a particular task it can generate more

tasks so that the overall load distribution becomes non-uniform. To balance the

loads, each computer in the network sends its queue size qj(t) at time t to all other

computers in the network. A node i receives this information from node j delayed by

a finite amount of time τij, that is, it receives qj(t− τij). Each node i then uses this

information to compute its local estimate of the average number of tasks per node

in the network using the simple estimator
(∑n

j=1 qj(t− τij)
)

/n (τii = 0), which is

based on the most recent observations. Node i then compares its queue size qi(t)

with its estimate of the network average as qi(t)−
(∑n

j=1 qj(t− τij)
)

/n and, if this

is greater than zero, the node sends some of its tasks to the other nodes while if it is

less than zero, no tasks are sent. Furthermore, the tasks sent by node i are received

by node j with a delay hij. The authors present a mathematical model of a given

computing node for load-balancing, which is given by:

21

Chapter 2. Load-Balancing Taxonomy and Previous Work

dxi(t)

dt
= λi − µi + ui(t)−

n∑
j=1

pij
tpi

tpj

uj(t− hij)

yi(t) = xi(t)−
∑n

j=1 xj(t− τij)

n
(2.7)

ui(t) = −Kisat (yi(t))

pij ≥ 0, pjj = 0,
n∑

i=1

pij = 1

where

sat (y) = y if y ≥ 0

= 0 if y < 0.

In this model:

• xi(t) is the expected waiting time experienced by a task inserted into the queue

of the ith node and ui(t) is the rate of removal (transfer) of the tasks as deter-

mined by the balancing algorithm.

• λi is the rate of increase in xi

• µi is the service rate at the ith node

• pij decides the fraction to be sent from node j to node i

local information of the waiting times xi(t), i = 1, .., n are used to set the values

of the pij such that node j can send tasks to node i in proportion to the amounts

by which node i is below the local average as seen by node j. Several methods can

be used to choose the pij’s according to predefined policies. These policies will be

discussed in the next chapter.

22

Chapter 2. Load-Balancing Taxonomy and Previous Work

2.3.2 Stochastic Time Delay Queueing Model for Load Bal-

ancing

In this section, a stochastic time delay queueing model in differential form is de-

scribed [24, 20, 19]. The motivation behind this model is the stochastic nature of the

distributed computing problem that include: 1) Randomness and possible burst-like

nature of the arrival of new job requests at each node from external sources (i.e.,

from users); 2) Randomness of the load-transfer process itself, since the communica-

tion delays in large networks are random; and 3) Randomness in the task completion

process at each node. Based on these facts, the following dynamics of the ith queue

in differential form is given by

Qi(t+∆t) = Qi(t)−Ci(t, t+∆t)−
∑

j 6=i

Lji(t)+
∑

j 6=i

Lij(t−τij(t))+Ji(t, t+∆t), (2.8)

where

• Ci(t, t + ∆t) is a Poisson process with rate µi describing the random number

of tasks completed in the interval [t, t + ∆t]

• Ji(t, t+∆t) is the random number of new (from external sources) tasks arriving

in the same interval, as discussed above

• τij(t) is the delay in transferring the load arriving to node i in the interval

[t, t + ∆t] from node j, and finally

• Lij(t) is the load transferred from node j to node i at the time t.

For any k 6= `, the random load Lk` diverted from node ` to node k is governed

by the load-balancing policy at hand. In general,

Lkl(t) = Kkpkl ·
(

Ql(t)−n−1

n∑
j=1

Qj(t−ηlj(t))

)
·u

(
Ql(t)−n−1

n∑
j=1

Qj(t−ηlj(t))

)
,

23

Chapter 2. Load-Balancing Taxonomy and Previous Work

where u(·) is the unit step function, ηlj(t) is the state exchange delay between the jth

and lth nodes at time t and Kk is the gain parameter at the kth (load distributing)

node. The fractions pij will be discussed in the next chapter as part of the load-

balancing strategy.

2.4 Summary

In this chapter, a number of load-balancing policies and their taxonomies were de-

scribed. Moreover, the queueing models describing the behavior of the system were

presented. In the next chapter, the test-bed software that implements several load-

balancing policies based on these models is introduced, followed by a description of

the different strategies that were actually adopted and experimented.

24

Chapter 3

Implementation Architecture

A distributed system has been developed to validate the deterministic model and the

stochastic model described in Sections 2.3.1 and 2.3.2 and to assess the performance

of different load-balancing policies in a real environment. The system consists of

duplicates of the same software running on each node. The load-balancing decision

consisting of when to balance and how many tasks to transmit, is done locally at

each node. The decision is therefore distributed as opposed to be centralized, case

for which a master node is responsible for making the decision. The load-balancing

process running on each node bases its decision on local information and on shared

data which are exchanged between the nodes. The initial configuration of each node

is set through three configuration files, which will be discussed in Section 3.7.

In this chapter, the internal architecture of the load-balancing distributed system

is described.

25

Chapter 3. Implementation Architecture

3.1 Platforms

The load-balancing software was built in ANSI C over UNIX-based systems, namely,

Sun Solaris and Linux. Sun machines were used to run experiments over the LAN

network in the ECE department whereas the Planet-Lab system was used to run

experiments over the Internet. The Planet-Lab [2] operating system is based on the

Linux RedHat operating system. On the other hand, in order to run experiments

over the wireless test-bed, the code was imported to the “Cygwin” environment that

runs over Microsoft Windows. Cygwin [1] is a Linux-like environment for Windows

that acts as a Linux emulation layer, providing substantial Linux API functionality.

The system has a multi-threaded architecture where the POSIX-threads pro-

gramming standard was used. BSD socket mechanism was used for the network

programming aspect of the system. References [42],[16] and [43] were extensively

used when the load-balancing system was implemented.

3.2 Macro-Architecture

The general architecture of the system consists of three layers as shown in Figure 3.1.

Each layer is implemented as a module in order to facilitate its own modification or

replacement without affecting the other layers. More importantly, this architecture

allows the testing and implementation of different load-balancing policies by simply

changing few lines of code and without interfering with the rest of the system layers.

The modules communicate with one another through well-defined interfaces. In

what follows, a detailed description of the system architecture is provided that is

summarized in Figure 3.7.

26

Chapter 3. Implementation Architecture

2. Load balancing process

3. Application

1. Communication

L
oad balancing

A
lgo.

Figure 3.1: Load-balancing system architecture.

3.3 Variables and Data Structures

Two main data structures were used in the program. The first one is a simple linked-

list that contains state information about the rest of the nodes and also used as a

communication tool between the load-balancing module and the task transmission

module. This list, illustrated in Figure 3.2, is created upon executing the program

and no subsequent alteration is made except for the information stored inside of it.

The “state information” is mostly kept up-to-date by the “state reception” module,

and it contains information regarding the node current queue size, computational

power, etc. These parameters are stored in the info structure that is shown below.

//structure stored at node i and contains information about node j

struct info{
long q size; //Latest queue size of node j received

struct timespec timestamp; //time-stamp set by node j when

//the latest state was transmitted

struct timespec local timestamp; //node i time-stamp when the state

//information was received

unsigned long rate; //(bytes/s) bandwidth detected between

//node i and node j

unsigned long symm rate; //(bytes/s) bandwidth detected between node j and node i

struct timespec C; //average task execution time of node j (nano-second)

long data ID; //ID of the latest frame of tasks transmitted to node j

long rec data ID; //ID of the latest frame of tasks received from node j

long exp data ID; //expected frame of tasks that should be received

27

Chapter 3. Implementation Architecture

//from node j

}

The way these parameters are calculated and used are policy-dependent and

therefore will be discussed in subsequent sections.

NULL

 Struct info {
…
}

 Struct info {
…
}

 Struct info {
…
}

node 1 node 2 node n

List

Figure 3.2: List data structure containing others node state information

The second data structure used in the program is the task queue, which has a

linked-queue structure as illustrated in Figure 3.3. Newly arriving tasks from either

an external source or from within the network (sent by other nodes) are added to the

rear of the queue, whereas the application at hand pops one task at a time from the

front of the queue and executes it. Moreover, the load-balancing layer may decide at

any time to transfer several tasks to other nodes and therefore extract from the front

of the queue the desired number of tasks that it wishes to transmit. In all cases,

for any operation applied on the task queue, the variable Current Queue Size that

reflects the number of tasks present in the queue, is atomically updated accordingly.

Task 1 Task 2 Task 3 Task m NULL

Front Rear

Pop Insert

Figure 3.3: Queue structure holding tasks information.

28

Chapter 3. Implementation Architecture

3.4 Communication Layer

The communication layer is divided into four separate threads: the “state trans-

mission,” the “state reception,” the “tasks reception,” and the “tasks transmission”

threads. The “state transmission” thread is responsible for transmitting the state

of the local node to all other nodes that are part of the system. The state informa-

tion includes the information listed in the previous section which incorporates the

current queue size, the node computational power, and other local information that

may be relevant to the load-balancing policy in use. The sizes of the state frame

ranges between 20 and 34 bytes depending on the policy at hand. The transmission

of the node state is performed every defined amount of time as specified in the node

initialization file. As for the transport protocol, one has the option of either TCP

or UDP by setting the appropriate parameter in the initialization file. It is always

recommended to use UDP since it involves less overhead in the transmission. In

case the state frame was dropped by the network, a retransmission will occur in the

next scheduled state exchange. The “state transmission” can also be triggered by

the load-balancing thread if the policy in use decides so.

The “state reception” thread is the complement of the “state transmission” thread

and has the architecture of a concurrent single threaded server. The single threaded

architecture was used because our aim is to provide maximum performance to the

application layer that is running in the same process, which will be slowed down

if more threads were created. The “state reception” listens to a well-defined TCP

or UDP port. Upon reception of any state information, the thread updates the

corresponding node information, available in the local node-list, whenever the time-

stamp of the received frame is greater than the time-stamp of the stored information.

This is done to ensure that two state frames will not overwrite each other, if they were

received in reverse order. This scenario may happen frequently in packet switching

networks.

29

Chapter 3. Implementation Architecture

The “tasks transmission” module responsible for transmitting jobs to other nodes,

runs in the same thread as the load-balancing module that will be described later.

The main reason behind this design is that another instance or cycle of the load-

balancing policy cannot be initiated unless all prior data transmissions have been

completed. The “tasks transmission” module also has concurrent single threaded

client architecture. Only TCP can be used as a transport protocol since reliable

transmission is needed so that no tasks are lost in the network. Upon transmission

completion, the “task transmission” module informs the “load-balancing” module

about its final status i.e., whether all, part, or none of the transmissions have been

successful.

The “tasks reception” thread is the complement of the “tasks transmission”

thread. It listens to a well-defined TCP port and accepts tasks sent from other

nodes. Upon transfer completion, the “tasks reception” thread hands over the data

received to the “application input” thread that is described later on. It also has

concurrent single threaded server architecture for the same reasons stated above.

3.5 Load-Balancing Layer

The second layer of the system consists of a single thread called the “load-balancing”

thread, which is the core of the program. This layer is easily modifiable to include

different policies. Nevertheless, all policies follow the same general steps, identified

by a cycle and described as follows. The load-balancing “process” is initiated at

a predefined amount of time (read from a file) or at a calculated amount of time

depending on the policy at hand. Consequently, the process determines the portion

of the tasks to be sent to every node in the system if applicable. This decision is policy

dependent and is based on the current state of the node and on the states of the other

available nodes. Furthermore, some policies may also rely on the detected network

30

Chapter 3. Implementation Architecture

delays, to calculate the number of tasks to transmit (see Chapter 5). Subsequently,

the thread packs the tasks into a network frame; it has access to the tasks queue where

it can extract the desired number of tasks without deleting them but setting their

status to inactive. This is done in order to prevent the application from executing

the tasks in the transition period. The purpose of this procedure is that after the

“task transmission” module has completed its job, the tasks are either resetted to the

active mode or deleted from the queue, depending on the status of the transmission

(successful or not). As denoted earlier, another cycle of the load-balancing procedure

cannot be initiated until all prior transmissions have completed.

The load-balancing policy is lower bounded by Ω(n) (Ω is a lower order execution

time function) runtime execution where n is the number of nodes in the system.

This is due to the fact that a traversal of the entire node-list is required in order

to calculate the portion of the excess tasks to be sent to every node. In fact, the

policies implemented in this thesis will be shown to have a runtime upper bounded

by O(n).

3.6 Application Layer

The application layer is divided into two threads: the “application input” and the

“application execution” threads. The “application input” creates a number of tasks

defined in the initialization file upon program startup and inserts them in the task

queue. Moreover, this thread is responsible for adding new tasks to the queue either

through an external source or from other nodes in the system. In the latter case,

the “application input” gets the network frame from the “tasks reception” thread,

unpacks it, and then adds the resulting tasks to the queue. On the other hand, the

“application execution” thread is responsible for the tasks execution. It simply pops

an active task from the queue, executes it, and then updates the Current Queue Size

31

Chapter 3. Implementation Architecture

variable.

The above description applies to any generic application that can be divided into

independent tasks. In our case, we used matrix multiplication as the basis for our

experiments, where one task is defined as the multiplication of a row by a static

matrix duplicated on all nodes. Therefore, the task queue contains rows having the

same size, which can be set by a parameter in the initialization file. In order to

emulate a real life application where the execution time of a task may vary, the size

of each element (in bytes) of a single row is generated randomly from a specified

range also set in the initialization file. This way, the multiplication of two elements

or two numbers of different sizes may take different amounts of time, which leads, in

turn, to variation in the execution time of the tasks.

To accomplish this objective (variability in the task execution time), arithmetic

operations at arbitrary precision were performed. Instead of using the standard

data types “int,” “long int,” “float” or “double” which have fixed precisions for

storing numbers, a customized data type was created to allow arbitrary precision.

The numbers are therefore stored in an unsigned char array (each element of the

array occupies 1 byte) having length N and interpreted in the radix (base) 256.

N therefore denotes the precision of the number. The basic arithmetic operations

(addition and multiplication) for arbitrary precision were acquired from [35]. They

achieved O(N × log N × log log N) operations in multiplying two strings of length

N . The trick was to recognize that multiplication is essentially a convolution of the

digits of the multiplicand and multiplier, followed by some kind of carry operation

[35]. The convolution is done by using the fast Fourrier transform (FFT). Essentially,

what interests us is that modifying the precision N of the numbers we obtain different

runtime in their multiplication or addition. We thereby constructed the row-matrix

multiplication based on these operations and generated randomly the precision of

each element in each row. An example of a row is shown in Figure 3.4. In this

32

Chapter 3. Implementation Architecture

manner, different tasks will exhibit different completion times.

1B 2B 5B Sn

E1 E2 E3 En

Figure 3.4: Example of a row of size n where the maximum precision was set to 5
Bytes.

3.7 Configuration and Log Files

Finally, the program has three initialization files; the parameter initialization file

“init.ini” that contains policy and application related parameters, the balancing in-

stance file“balance.ini” and the node file “node.ini” that contains the address of the

nodes (either IP address or host-name) that are part of the system. An example of an

initialization file is shown below where each parameter is explained by a commented

description (% denotes a comment) that precedes it.

% the following parameter is the synchronization or the communication interval

% between 2 consecutive state frame broadcast

% declared in s and ns (seconds and nano seconds)

SYNC 1s 50000000ns

% the following parameter is the gain K used by the policy

% when deciding the total number of tasks to transmit

% usually nb tasks to transmit=GAIN*excess load

% must be less than 1

GAIN 0.7

% the following parameter defines the type of protocol used to send

33

Chapter 3. Implementation Architecture

% the state frame to other nodes. It is either TCP or UDP

% (data (or tasks) exchange is done over the TCP protocol only)

SYNCPROTOCOL UDP

% the following parameter defines the initial number of tasks in the task-queue

% used by the application layer

INITNBTASKS 250

% the following parameter is the external task insertion rate

% used by the application layer to generate rows at that rate

% declared in s and ns (seconds and nano seconds)

% if it is set to zero, this feature is disabled

INPINTERVAL 0s 0ns

% the following paravmeter defines the number of elements in a single row

% used by the application layer

ROWSIZE 100

% the following parameter defines the maximum number of

% bytes (or precision) of a row element - used by the application layer

% this parameter has a direct influence on the execution time of a single task

MAXBYTES 15

% this parameter controls the occurrence of the load-balancing process.

% if it is set to YES, the program will delay the balancing instance

% if it knows that any of the other nodes is transferring loads to it.

% i.e if rec data ID 6= exp data ID the load-balancing process is delayed.

% parameter value is either YES or NO

DELAYBALANCE NO

The“balance.ini” file contains a list of intervals that are used to initiate the load-

balancing process. Each entry is defined in seconds and nano-seconds.

Furthermore, every operation performed by each node is logged to a file that is

34

Chapter 3. Implementation Architecture

later used for statistical analysis and to generate plots. Eight types of logs corre-

sponding to eight different events are described as follow:

1. This type is generated by the application layer and corresponds to a task com-

pletion event. The log includes: Time when the event happened, the corre-

sponding task ID and the execution time (nano-second resolution).

2. This type is triggered by a change in the task queue size. The cause may be

either the execution of a task, the transmission of one or several tasks, the

reception of one or several tasks from the system, or an external source. The

log includes: The time when the event took place and the resulting queue size.

3. This type corresponds to the initiation of the load-balancing process. The time

when the event has occurred is recorded.

4. This type logs the event for tasks transmission attempt. The log includes:

The time when the transmission began, the destination node IP address, the

number of tasks to transmit, and the total tasks size (in bytes).

5. This type corresponds to the completion of the tasks transmission. It has the

same fields as the previous type with the addition of the end transmission time.

6. This type corresponds to the tasks reception event. The log includes: The time

when the tasks frame was received, the source node IP address, the number of

tasks received and the corresponding size (in bytes).

7. This type corresponds to a state transmission event. The state of the node is

recorded in addition to the corresponding IP address of the destination node

and the time when the transmission has occurred.

8. This type corresponds to a state reception event. The state of the source node

is recorded in addition to the time when the state was received.

35

Chapter 3. Implementation Architecture

3.8 Policies Implemented

The policies implemented in this system follow the same general guidelines but differ

mainly in the scheduling of the load-balancing process and the allocation of the

fractions pij. Recall from the previous chapter that pij is the fraction of the excess

tasks as decided by node j that will be transmitted to node i.

The first scheme is the one-shot load-balancing [20, 19] where the nodes at-

tempt to exchange tasks among themselves only once. The scheduling of this single-

balancing instance is usually done early after the launch of the system but not before

the state information of each node has widely propagated. This is done to ensure

that each node is aware of the state of the other nodes when deciding on its load

distribution strategy. This scheme is mostly suitable in systems where external ar-

riving tasks are not prominent and the servicing rate or the computational power

of each node is, more or less, stable. In any case, this scheme can be extended to

the latter cases where a new balancing instance can be scheduled according to the

occurrence of a special event such as the arrival of a new external task as proposed

in [20]. Experimental work has been done to find the optimal balancing instance for

the single-shot load-balancing strategies (Section 5.2) [23].

The second scheme allocates regularly a balancing instance when the load distri-

bution process is triggered and tasks exchange between nodes take place [22]. In our

case, the balancing instants are read from the “balance.ini” initialization file that

was introduced in the previous section. The time intervals between two consecutive

balancing instances may be constant or varying. Since the load distribution policy is

distributed, each node can choose its balancing instances differently from the others

as defined in each node’s “balance.ini” file.

In both scheduling schemes, whenever the load-balancing process is triggered at

node j in a system of n nodes, the following steps occur.

36

Chapter 3. Implementation Architecture

1. Node j calculates the total number of tasks available in the system from the

information available in its node-list.

Queue total =
n∑

k=0

Queue(k)

2. Set Queue average = Queue total/n

If Queue(j) < Queue average

Then: exit the process and wait until the next balancing instance

Else: continue to the following step.

3. Calculate the total excess load to be transmitted by node j.

Excess tasks = (Queue(j)−Queue average) ∗K,

where K is a gain parameter.

4. Calculate the fractions pij of the excess tasks that node j will transmit to node

i. Three different methods can be used.

a. constant pij

pij = 1/(n− 1) (3.1)

b.

pij =





Queue average−Queue(i)∑n
k=1,k 6=j(Queue average−Queue(k))

if Queue(i) < Queue average,

0 otherwise.

(3.2)

c.

pij =
1

n− 2

(
1− Queue(i)∑n

k=1,k 6=j Queue(k)

)
(3.3)

if no information about one or any of the nodes is available to node j , pij

is set to 1/(n− 1) for all i

37

Chapter 3. Implementation Architecture

5. Transmit pij ∗Queue excess tasks to node i.

One may think that setting the gain parameter K = 1 will achieve the best

performance. But in systems with large delays where nodes may rely on outdated

information in calculating the load distribution, K = 1 will actually give poor results.

This phenomenon was first observed by the load balancing group at the University of

New Mexico and The University of Tennessee in their simulation and analytical work.

The experiments described in chapter 5 have been performed in order to optimize

over the gain values K.

Equations (3.1) and (3.2) used for setting the fractions pij were introduced in

[13] and [10]. These equations were primarily used in simulations and experiments

to validate the deterministic model of Section 2.3.1. On the other hand, Equation

(3.3) was used in simulations and experiments to validate the stochastic model of

section 2.3.2 [24, 18]. Note that both methods allocate tasks to nodes inversely

proportional to their queue sizes. The two methods are illustrated in Figure 3.5. A

block diagram of the policies is shown in Figure 3.6.

Queue sizes as seen by node 1

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6
Node #

Q
u

eu
e

S
iz

e

Average Q ueue
Size

(a) Queue sizes of the nodes as stored in
the node-list of node 1 at the time when
the load-balancing policy was initiated at
node 1

Fractions P ij calculated using 2 Methods

0

0.1

0.2
0.3

0.4

0.5

0.6

1 2 3 4 5 6
Node #

F
ra

ct
io

ns
 P

ij

Equ. 1.2

Equ. 1.3

(b) Fractions pij as calculated by node 1
using the two different methods of Equa-
tions 3.2 and 3.3.

Figure 3.5: Example of load distribution policies performed by node 1.

38

Chapter 3. Implementation Architecture

Wait Tb time

Calculate Q_total
& Q_averagesizes

Is
Q(j) >

Q_Average
?

No

Q_excess=
(Q(j)–Q_average)*K

Transmit
Ti = pij * Q_excess

Tasks To node i

Yes

For each node i
Calulate pij from

(1.1), (1.2) or (1.3)

Figure 3.6: Summary of the steps for the load-balancing policy performed at node j.

We can deduce from steps 1-5 that the algorithm scales linearly with the number

of new nodes added to the system. The runtime is therefore O(n) due to the fact

that a full traversal of the node-list is needed in steps 1 and 4. A more advanced

algorithm is developed in chapter 6 where network information is used to determine

the portions pij.

39

Chapter 3. Implementation Architecture

3.9 Summary

A flexible software architecture of a distributed system for different load-balancing

policies is introduced then followed by a description of the strategies that were ac-

tually employed. The functionality of this system has been implemented and tested

in several environments and under different conditions. These environments include:

wireless networks with infrastructure, wireless Ad-Hoc networks, Local Area Net-

works (LAN) and the Internet. The purpose of this variety of environments is to

test certain load-balancing policies under different types of delays i.e., different pdf’s

(probability density function) for the delay and different transmission rates. More-

over, the system was also tested over Planet-Lab [2], a planetary-scale network in-

volving more than 350 nodes positioned around the globe and connected via the

Internet. The advantage of testing over such a platform is to determine the scala-

bility of our system and its reaction to variable and broader range of delays. The

testing results are detailed in Chapter 5 whereas Chapter 4 provides experimental

investigations of delay in different types of networks in order to better understand

how it may affect the load distribution strategies.

40

Chapter 3. Implementation Architecture

T
as

ks
 R

ec
ep

ti
o

n

 .C
on

cu
re

nt
 s

in
gl

e
th

re
ad

ed

se
rv

er
 a

rc
h.

-p

ro
to

co
l:

T
C

P

st
at

e
tr

an
sm

is
si

o
n

 ev

er
y

st
 ti

m
e

or
 w

he
n

tr
ig

ge
re

d
-p

ro
to

co
l T

C
P

 o
r

U
D

P

S
ta

te
 R

ec
ep

ti
o

n

 .C
on

cu
re

nt
 s

in
gl

e
th

re
ad

ed

se
rv

er
 a

rc
h.

P

ro
to

co
l:

T
C

P
 o

r
U

D
P

T
as

ks
 T

ra
n

sm
is

si
o

n

 .C
on

cu
re

nt
 s

in
gl

e
th

re
ad

ed
 c

lie
nt

-p

ro
to

co
l:

T
C

P

L
o

ad
 B

al
an

ci
n

g
 P

ro
ce

ss

-
ex

ec
ut

ed
 e

ve
ry

 T
b

tim
e

(c
al

cu
la

te
d

or
 p

re
de

fin
ed

)
-

de
te

rm
in

es
 p

or
tio

n
to

 b
e

se
nt

 to
 e

ac
h

no
de

 if
 a

pp
lic

ab
le

-

pa
ck

 ta
sk

s
in

 a
 n

et
w

or
k

fr
am

e
-

T
rig

ge
r

ta
sk

 tr
an

sm
is

si
on

 m
od

ul
e.

-
w

ai
t f

or
 a

ll
ta

sk
s

to
 b

e
se

nt
 b

ef
or

e
re

pe
at

in
g

th
e

pr
oc

es
s

A
p

p
. I

n
p

u
t

 -u
np

ac
k

ta
sk

s
fr

om

ne
tw

or
k.

-a

dd
 to

 q
ue

ue

-u
pd

at
e

cu
rr

en
t s

ta
te

T
as

ks
 Q

ue
ue

A
p

p
lic

at
io

n
 e

xe
cu

ti
o

n

-r
em

ov
e

ta
sk

 fr
om

 q
ue

ue

-e
xe

cu
te

 ta
sk

-u

pd
at

e
qu

eu
e

C
ur

re
nt

 s
ta

te

(Q
_s

iz
e,

)

T
as

ks
 tr

an
sf

er

ot
he

r
no

de
s

st
at

e
T

rig
ge

r

up
da

te
 o

r
in

se
rt

 re

ad

 re
m

ov
e

 si
gn

al
 o

r
tr

ig
ge

r

T
hr

ea
d

 D
at

a
st

ru
ct

ur
e

or

va
ria

bl
e

N
et

w
o

rk

E
xt

er
na

l S
ou

rc
e

Figure 3.7: Implementation architecture.

41

Chapter 4

Network Delays

The study of network delays gained attention lately when several services started

using IP-based networks. These services include but are not limited to voice over IP

(VoIP) [32] and teleoperation [31] that are significantly affected by delay variations

and therefore require strict delay constraints. In systems where load-balancing is

involved, delays greatly affect their stability in several aspects. First, the load distri-

bution policies base their decisions on system state information that is outdated to a

certain extent, and as the delay increases, the system becomes less stable. Moreover,

this fact greatly affects the scalability of the system since the “error” in the global

state information grows with the addition of new nodes. The use of prediction may

not always be useful since network delays are unstable and vary according to several

network conditions as will be shown in this chapter. Furthermore, fluctuations in

the global system state also arise due to delays and variability in the transmission

rates when load exchanges take place. In other words, migration of tasks between

nodes may take an unknown amount of time. In fact, scheduled load distribution

instances before the end of a task(s) transmission, causes the policy to base its assess-

ment on old information i.e., the initial state of the system prior to the occurrence

of the transmission. This fact when occurring frequently, renders global stability

42

Chapter 4. Network Delays

unachievable [22, 23, 24].

Moreover, the transition of tasks from one node to another may come at an

unexpectedly high cost where the absence of transmission may have given better

results. Therefore, a priori knowledge of the statistics of transmission delays may

help the policy at hand wisely decide on the load distribution.

In this chapter, an experimental study of the transmission delays is introduced.

In Section 4.1, Internet delays are investigated and categorized according to [11]. In

Section 4.2, Local Area Network (LAN) delay probing experiments are presented. In

Section 4.3 wireless network delays due to the transmission of mid-size TCP segments

are investigated. Under high contention, TCP congestion control may exhibit chaotic

behavior as shown in [44]. Nevertheless, the results of that section were used to

model the delay distributions that were used in the stochastic model load-balancing

simulator [20, 18].

4.1 Internet Delays

Nowadays, most delay experiments are performed on the RIPE NCC network, part of

the Test Traffic Measurement (TTM) project [3]. RIPE NCC (Reseaux IP Europeen

Network coordinator Center) [4] is a non-profit organization providing services for

the benefit of the IP-based network operators (ISP) in Europe and the surrounding

areas. The aim of the TTM project is to perform active measurements in order to

detect the connectivity and to probe and monitor the one way delays between the

different ISP networks.

In this section, some of the TTM delay experiments and their respective classes

are presented. Then, delay probing experiments that we conducted over the Internet

(not limited to Europe) are presented and compared to the different TTM categories.

43

Chapter 4. Network Delays

Figure 4.1: A typical delay histogram[11].

From end-to-end measurements, a typical delay is divided into two components,

a deterministic and a stochastic one as illustrated in Figure 4.1. The deterministic

delay includes the deterministic processing delay component, the transmission delay

component, and the propagation delay component. The stochastic delay includes

the stochastic processing delay and the queuing delay components. These different

delay components are defined as follows,

• Processing delay is the time needed to process a packet at a given node for

transmission or reception. It has both deterministic and stochastic components

due to variations in the node’s computational power that affect the packet

processing.

• Transmission delay is the time needed to transmit the entire packet. It

depends on the bandwidth (link speed) and packet size.

• Propagation delay is the time needed to propagate one bit over the channel,

and is primarily caused by the travel time of an electromagnetic wave. This

delay is mostly observed in satellite links.

• Queuing delay is the storing time in routers along the path.

44

Chapter 4. Network Delays

In [25] several methods were proposed to model the stochastic delays. They

achieved an approximation of the processing delay distribution using a Gaussian

pdf. Three parametric models were proposed for the stochastic queueing delay: the

exponential model, the Weibull model, and the polynomial or Pareto model. All

models exhibited discrepancies when they were compared to the available data.

On the other hand, Bovy et al. [11] classified the end-to-end delays into 4 cate-

gories. They used the RIPE one-way measurements with fixed IP probe-packets of

100 bytes. The configuration details are available in [21]. They characterized most

of the experimental delay distributions as gamma-like distributions based on 2160

measurements taken per day per path. The 4 classes are listed below,

• Class A is the dominant and typical one and is modeled as gamma-like with

a heavy tail that decays slower than an exponential. (Figure 4.2(a))

• Class B has a gamma-like shape with a Gaussian or triangular lob (Figure

4.2(b)). The second low-peak is due to changes in the network condition during

part of the day.

• Class C has 2 gamma-like distributions due to a non-stable switch between 2

routing paths. (Figure 4.2(c))

• Class D has many peaks (white noise-like). This is mostly observed in paths

that have high packet loss. (Figure 4.2(d))

We have performed planetary-scale delay probing experiments to investigate the

different types of delay that may arise. Several planet-lab nodes were chosen to

install our customized delay probing software. Round-trip measurements were used

as opposed to the one way measurements adopted in the RIPE network. In fact,

the TTM experiments were 10µs using GPS systems at each testbox. In our case,

45

Chapter 4. Network Delays

(a) Class A (b) Class B

(c) Class C (d) Class D

Figure 4.2: Different classes of end-to-end delay distributions[11]

sufficient accuracy in clock synchronization was not available in Planet-Lab, hence

we adopted the round trip time (RTT) in our experiments. The delay assessment

of a certain path between node A and node B was performed as follows: Every 30s

node A transmits a UDP packet of 50 bytes to node B. When node B receives

it, it directly replies by sending another UDP packet of the same size to node A.

This way, node A logs the difference in time between the transmission of the UDP

packet and its corresponding packet reception. A 3s timeout is set by node A after

which the packets are assumed to be lost or dropped by the network. Moreover,

each probed path is monitored for 24 hours. Note that a UDP packet of 50 bytes

results in an IP packet of 58 bytes (UDP header is 8 bytes) + 20 bytes (IP Header).

This setup was used since the minimum official MTU (Maximum Transmission Unit)

value allowed is 68 bytes [34]. Consequently, it is more likely that no fragmentation

will be performed along the way. Additionally, the delay is calculated from the

46

Chapter 4. Network Delays

Path
Nb. of
trans.

Failed
trans.

Error %
Min.

delay (s)
Avg.

delay (s)
Max.

delay (s)
Std Dev.

UNM - Frankfurt 2809 18 0.64% 0.1012 0.2639 2.3136 0.126
Frankfurt - NTU (Taiwan) 2876 152 5.29% 0.3442 0.3642 0.6026 0.0246
INRIA (France) - Sinica (Taiwan) 2815 0 0.00% 0.1468 0.2937 0.5069 0.0248
NTU (Taiwan) - UNM 2850 71 2.49% 0.1217 0.2024 2.1751 0.0597
Arizona - MIT 2883 4 0.14% 0.0371 0.0815 2.1498 0.0797
Italy - France 2883 1 0.03% 0.0454 0.0575 0.8102 0.0355
Australia - London 2821 6 0.21% 0.1651 0.303 5.5802 0.1567
UNM - Australia 2857 6 0.21% 0.1323 0.2084 2.1575 0.0828
Hong-Kong - Canada 2848 2848 100.00% - - - -

Table 4.1: Summary of the delay probing experiments in the Internet

application layers’ perspectives. That is, the time taken for the packet to travel

through the TCP/IP protocol stack (upward and downward) is also included in the

delay. This case is more relevant to the load-balancing system that is implemented in

the application layer. The results for 8 different paths are summarized in Table 4.1.

The resulting delay distributions based on measurements accumulated in 24 hours

are shown in Figure 4.3.

At first sight, we can observe that our results are consistent with the RIPE

experiments in the sense that the PDFs obtained are very similar in shape. Indeed,

most of the distributions plotted in Figure 4.3 can be classified as class A. However,

several triangular shapes were obtained that may not be well-modeled by a gamma

distribution as is the case in Figures 4.3(d),(e),(g) and (h). Second, the distribution

in Figure 4.3(a) has two peaks with one lower than the other which suggests that it

belongs to class B. In fact, looking at the individual delay measurements plotted in

Figure 4.4(a), we can see that between 11am and 5pm, higher network delays were

present, which explains the shape of the corresponding distribution.

On the other hand, the path “France-Taiwan” exhibits a different behavior dis-

closed in its delay distribution in Figure 4.3(c). The pdf has an exponential rise

followed by a sudden drop whereas in general, the inverse is observed i.e., the pdf

47

Chapter 4. Network Delays

0 0.2 0.4 0.6 0.8
0

5

10
UNM−Frankfurt (a)

0.3 0.4 0.5 0.6
0

20

40 Frankfurt−Taiwan (b)

0.1 0.2 0.3 0.4
0

20

40

60 France−Taiwan2 (c)

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30
Taiwan−UNM (d)

0 0.1 0.2 0.3
0

20

40 Arizona−MIT (e)

0 0.1 0.2 0.3
0

10

20

30 Italy−France (f)

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30 Australia−London (g)

DELAY (s)

P
D

F

0 0.1 0.2 0.3 0.4
0

10

20

30 UNM−Australia (h)

DELAY (s)

P
D

F

Figure 4.3: Delay distribution pdf for the different paths in the Internet (Taiwan is
Sinica-Taiwan and Taiwan2 is NTU-Taiwan).

suddenly rises and then exponentially decays. This suggests further investigation by

looking at the delay measurements (Figure 4.4(b)) and comparing them to a typical

one (Figure 4.4(c)). We can observe that the delays measurements are clustered in

the higher part of the plot whereas in Figure 4.4(c) the delays are clustered in its

lower part. Thus, we can deduce that the link was mostly busy at that time which

explains why such distribution is obtained. In general however, the typical distri-

bution encountered is due to the fact that the links are lightly used or unsaturated.

48

Chapter 4. Network Delays

0 5 10 15 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
UNM−Frankfurt

TIME (Hours) MST

D
E

LA
Y

 (s
)

(a)

0 5 10 15 20
0.1

0.15

0.2

0.25

0.3

0.35

0.4
France−Taiwan2

TIME (Hours) MST

D
E

LA
Y

 (s
)

(b)

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Italy−France

TIME (hours) MST

D
E

LA
Y

 (s
)

(c)

Figure 4.4: Individual delay measurements during 24 hours period (MST zone) for
some paths on the Internet.

Consequently, this can also be used as a method to evaluate how busy a link is based

on its delay distribution. Finally, although the two nodes available in Hong-Kong

and Canada can be accessed from the University of New Mexico where the delay

reports were collected, the two nodes were not able to reach each other in either

direction. In fact, a traceroute run from the Hong-Kong node in direction of the

Canadian node shows that the packet is dropped by the sixth hop in Hong-Kong,

and a traceroute executed on the Canadian node in direction of the Hong-Kong node

shows that the packet is dropped by the 8th hop also in Hong-Kong. This suggests

that the Internet is not as completely connected as one would have thought.

49

Chapter 4. Network Delays

4.2 Local Area Network Delays

The same delay probing experiment was performed on the ECE local area network.

The two nodes picked were separated by at least 5 switches. The test was performed

over 48 hours where 5754 measurements were collected. The minimum round-trip

delay encountered was 317µs, the average delay 351µs, the maximum delay 1.12ms

and the standard deviation 28.7µs. The delay distribution shown in Figure 4.5 is

clearly a typical Class A sample.

300 350 400 450
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
LOCAL AREA NETWORK

DELAY(micro−seconds)

P
D

F

Figure 4.5: Delay distribution (pdf) for the ECE Local Area Network (LAN).

4.3 Wireless Network Delays

The wireless delay testing took a different aspect. Here, mid-size TCP segments

of size 376KB were transmitted between the different nodes. Our main objective

was to investigate the behavior of the tasks exchange part of the load-balancing

system that runs over TCP. The delay distribution obtained was modeled and then

integrated into the simulator used to validate the stochastic model. Load-balancing

experiments performed on the wireless-testbed were compared later to the simulator

results (Section 5.2).

50

Chapter 4. Network Delays

From - To
Nb. of
trans.

Failed
trans.

Error %
Min.
delay

(s)

Avg.
delay

(s)

Max.
delay (s)

Std
Dev.

node1 - node2 449 18 4.0% 5.48 21.7 247.1 29.3
node2 - node3 1380 97 7.0% 3.703 8.3 29.3 3.1
node3 - node1 2446 19 0.8% 1.16 4.2 24 1.2

Table 4.2: Summary of the delay probing experiments in the wireless with AP net-
work.

The delay probing from node A to node B was conducted as follows. Node A

opens a TCP socket and writes on it 376KB of random data. When node B receives

the entire segment, it sends back a 3 Bytes (ACK) acknowledgment on the same

established connection. Actually, this scenario is the same when tasks exchange

happens between two computational elements in the load-balancing system. Once

again the delay is calculated from the application layer’s perspective by taking the

difference between the time the connection was established by node A and the time

the ACK packet was received. This scheme was implemented on two different test-

beds, an Ad-Hoc wireless network and a wireless network with infrastructure.

4.3.1 Wireless Delays in Ad-hoc Networks

The Ad-Hoc wireless test-best consists of 3 nodes connected amongst each other

without the use of an AP (Access Point). The 3 nodes equipped with an 802.11b

wireless adapter, were positioned inside the ECE department, where no direct line

of sight was available between any 2 nodes. The three nodes were exchanging TCP

segments at the same time for a period of 3 hours and 15 minutes. The results are

summarized in Table 4.2. The individual delay measurements as a function of time

and the corresponding pdf of each path are shown in Figures 4.6-4.8.

51

Chapter 4. Network Delays

0 2000 4000 6000 8000 10000 12000
0

50

100

150

200

250
node2−node3

Time (s)

D
el

ay
 (

s)

(a)

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

DELAY (s)

P
D

F

NODE 1 − NODE 2

(b)

Figure 4.6: (a) Ad-hoc wireless network delay measurements between node 1 and
node 2 for a 3 hours period as a function of time. (b) distribution of the delays for
the same period.

It is clear that the wireless ad-hoc network exhibits a higher standard deviation

and packet loss rate than the Internet which makes it less predictable. Moreover, as

indicated by the path between node 1 and node 2, the wireless network is fragile in

1000 3000 5000 7000 9000 11000
0

5

10

15

20

25

30
node2−node3

Time (s)

de
la

y
(s

)

(a)

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25
node2−node3

delay (s)

pd
f

(b)

Figure 4.7: (a) Ad-hoc wireless network delay measurements between node 2 and
node 3 for a 3 hours period as a function of time. (b) distribution of the delays for
the same period.

52

Chapter 4. Network Delays

0 2000 4000 6000 8000 10000 12000
0

5

10

15

20

25
node3−node1

Time (s)

D
el

ay
 (

s)

(a)

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
node3−node1

Delay (s)

pd
f

(b)

Figure 4.8: (a) Ad-hoc wireless network delay measurements between node 3 and
node 1 for a 3 hours period as a function of time. (b) distribution of the delays for
the same period.

the sense that it is affected by the slightest variation in the environment. This fact is

indicated by the high standard deviation obtained (29.3) and mostly apparent in the

sudden variation in the plot of Figure 4.6(a) which in turn explains the heavy tail

of its corresponding distribution. Note that the nodes are stationary and therefore

the main cause of such sudden delay variation could be related to any disturbance

in the surrounding environment that has affected the wireless path between node 1

and node 2.

4.3.2 Wireless Delays in Networks with Infrastructure

The same delay probing experiments were performed on the ECE wireless network

equipped with 802.11b access points (AP). Three nodes were also used and the setup

of the experiment is shown in Figure 4.9. Each node was connected to a different AP

located on a different floor in the ECE building where no possible signal interference

could occur except from outside elements using the network (wireless or wired).The

53

Chapter 4. Network Delays

ECE
Wired

Network

AP

AP
AP

Node 1

Node 2

Node 3

Figure 4.9: Setup of the delay probing experiment.

From - To
Nb. of
trans.

Failed
trans.

Error %
Min.
delay

(s)

Avg.
delay

(s)

Max.
delay (s)

Std
Dev.

node1 - node2 620 20 3.2% 1.4 22.6 160 19.9
node1 - node3 620 1 0.2% 3.029 7.6 37.4 2.7
node2 - node3 2172 18 0.8% 2.546 6.8 112.2 4.7
node3 - node1 1659 34 2.0% 2.357 9.2 35.6 4.5

Table 4.3: Summary of the delay probing experiments in the wireless with AP net-
work.

results are summarized in Table 4.3. The individual delay measurements as a function

of time and the corresponding pdf of each path are shown in Figures 4.10-4.13.

Our first observation is that although the setup of the experiment seems symmet-

rical, no similarities between any of the paths can be found. Moreover, the path 1-3

did not exhibit the same characteristics in both directions. Nevertheless, the results

shown in this section were better than the ones of the previous section in terms of

packet loss and delay stability.

Plotting the different PDFs of the delays present in the wireless network on a

log scale shows that most of them can be approximated by a straight line as shown

54

Chapter 4. Network Delays

2000 4000 6000 8000 10000 12000 14000

20

40

60

80

100

120

140

160

TIME (s)

D
E

LA
Y

 (
s)

NODE 1 − NODE 2

(a)

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

DELAY (s)

P
D

F

NODE 1 − NODE 2

(b)

Figure 4.10: (a) Wireless with AP network delay measurements between node 1 and
node 2 for a 4 hours period as a function of time. (b) distribution of the delays for
the same period.

in Figure 4.14. Therefore, such delay distributions can be well approximated by

exponential distributions with various slopes for use by the stochastic load-balancing

simulator [18].

2000 4000 6000 8000 10000 12000 14000
0

5

10

15

20

25

30

35

40
NODE 1 − NODE 3

TIME (s)

D
E

LA
Y

 (
s)

(a)

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

DELAY (s)

P
D

F

NODE 1 NODE 3

(b)

Figure 4.11: Wireless with AP network (a) delay measurements between node 1 and
node 3 for a 4 hours period as a function of time. (b) distribution of the delays for
the same period.

55

Chapter 4. Network Delays

2000 4000 6000 8000 10000 12000 14000
0

20

40

60

80

100

120
NODE 2 − NODE 3

TIME (s)

D
E

LA
Y

 (
s)

(a)

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

NODE 2 − NODE 3

DELAY (s)

P
D

F

(b)

Figure 4.12: (a) Wireless with AP network delay measurements between node 2 and
node 3 for a 4 hours period as a function of time. (b) distribution of the delays for
the same period.

4.4 Summary

Delays in the Internet, LAN and wireless networks were investigated and categorized

according to the shape of their probability density function. The four classes intro-

2000 4000 6000 8000 10000 12000 14000
0

5

10

15

20

25

30

35

40
NODE 3 − NODE 1

TIME (s)

D
E

LA
Y

 (
s)

(a)

0 5 10 15 20 25 30
0

0.05

0.1

NODE 3 − NODE 1

DELAY (s)

P
D

F

(b)

Figure 4.13: (a) Wireless with AP network delay measurements between node 3 and
node 1 for a 4 hours period as a function of time. (b) distribution of the delays for
the same period.

56

Chapter 4. Network Delays

0 2 4 6 8 10 12

10
−2

10
−1

LO
G

 P
D

F

 DELAY (s)

Figure 4.14: Example of a straight line fit for a shifted wireless delay pdf plotted on
a logarithmic scale.

duced show that the delay is not predictable and varies greatly, which may affect

systems where load-balancing is used. Moreover, connectivity between the nodes is

not guaranteed; a link may become unavailable with higher probability in the Inter-

net than in a LAN. In the wireless network, we noticed that the delay varied more

frequently and packet drops were more prominent. Such delays can be approximated

by an exponential distribution as shown when plotted on a log scale.

The delay probing experiments performed in this chapter will be helpful in un-

derstanding the behavior of the policies implemented in the load-balancing system

of Chapter 3 and tested in different environments as will be seen in Chapter 5.

57

Chapter 5

Experimental results

In this chapter, experiments run on the load-balancing system described in Chapter

3 are presented. The main objective is to investigate the effect of network delays

on the performance of the system. In fact, experimental optimization of the gain

value K and the balancing instance tb were performed. Analytical optimization

work over tb and K has been done by the load balancing group1 at the University

of New Mexico. In Section 5.1, the load-balancing policy with multiple balancing

instances is considered when the fractions pij were set to a constant. First, we present

the results of the experiments performed on a LAN test-bed at the University of

Tennessee and then introduce the results of the experiments with the same settings

completed on the Internet using Planet-Lab [2] nodes. In Section 5.2, a one-time load-

balancing policy is considered where the fractions pij were set according to Equation

(3.3). The experiments were done on the ECE wireless test-bed where experimental

optimization over the one-shot balancing instance and the gain parameter K was

performed. Moreover, the initial settings and the delay parameters resulting from

the wireless experiments were incorporated into the stochastic model simulator. The

1Load Balancing Group at UNM website: http://www.eece.unm.edu/lb

58

Chapter 5. Experimental results

results presented in this chapter were published in [22], [14], [18] and [23].

5.1 Multiple Balancing Instances

5.1.1 LAN Experiments

The experiments presented in this section were performed on 3 nodes connected by a

switched network. The software system used was built at the University of Tennessee

where the task is a query submitted to a search engine thread available on each node.

The main interest here was to compare the experimental data with the simulations

of the deterministic model (Section 2.3.1) that are available in [14]. Our ulterior

objective however is to present these results for later comparison with the Internet

experiments of the Section 5.1.2.

The initial settings of the experiment were as follow: The average time tpi
to

process a task is the same on all nodes (identical processors) and is equal to 10µ sec

while the time it takes to ready a load for transfer is about 5µ sec . The initial queue

values inserted at each node are q1(0) = 6000, q2(0) = 4000, q3(0) = 2000. node 1

was balancing every 75µs, node 2 every 120µs, and node 3 every 100µs . All the

experimental responses were carried out with constant pij = 1/2 for i 6= j.

The plots of the system responses for different gain values K are shown in Figure

5.1. Figure 5.2 summarizes the data from several experimental runs of the type shown

in Figures 5.1. For K = 0.1, 0.2, 0.3, 0.4, 0.5, ten runs were made and the settling

time (time to load balance) were determined. These are marked as small horizontal

ticks on Figure 5.2. (For all such runs, the initial queues were the same and equal to

q1(0) = 600, q2(0) = 400, q3(0) = 200. For each value of K, the average settling time

for these ten runs was computed and is marked as a dot on given on Figure 5.2. For

values of K = 0.6 and higher (with increments of 0.1 in K), consistent results could

59

Chapter 5. Experimental results

not be obtained. In many cases, oscillation extended throughout the experiment’s

time interval (200 milliseconds).

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25 30 35 40

q
u
e
u
e
 le

n
g
th

 -
 lo

ca
l q

u
e
u
e
 a

ve
ra

g
e

time (ms)

Comparison of local tracking responses on node01 - node03

node01
node02
node03

(a) the average gain value is K = 0.5.

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25 30 35 40

q
u
e
u
e
 le

n
g
th

 -
 lo

ca
l q

u
e
u
e
 a

ve
ra

g
e

time (ms)

Comparison of local tracking responses on node01 - node03

node01
node02
node03

(b) the average gain value is K = 0.3.

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25 30 35 40

qu
eu

e
le

ng
th

 -
 lo

ca
l q

ue
ue

 a
ve

ra
ge

time (ms)

Comparison of local tracking responses on node01 - node03

node01
node02
node03

(c) the average gain value is K = 0.2.

Figure 5.1: Experimental response of the load-balancing algorithm. The plots show
the excess load at each node versus time.

For example, Figure 5.3(a) shows the plots of the queue length less the local

queue average for an experimental run with K = 0.6 where the settling time is ap-

proximately 7 milliseconds. In contrast, Figure 5.3(b) shows the experimental results

under the same conditions where persistent ringing regenerates for 40 milliseconds.

The response was so oscillatory that a settling time was not possible to determine

accurately. However, Figure 5.2 shows that one should choose the gain close to 0.5

60

Chapter 5. Experimental results

0 0.1 0.2 0.3 0.4 0.5 0.6
0

5

10

15

20

25

30

35

40

45

Kz − portion to send

T
im

e
to

 b
al

an
ce

 (
m

s)

The time to achieve balance vs the sending portion Kz

average time

Figure 5.2: Summary of the load balance time as a function of the feedback gain K.

to achieve a faster response time without breaking into oscillatory behavior.

-250

-200

-150

-100

-50

 0

 50

 100

 150

 200

 0 5 10 15 20 25 30 35 40

qu
eu

e l
en

gth
 - a

ve
rag

e e
sti

ma
te

time (ms)

Comparison of local tracking responses on node01 - node03

node01
node02
node03

(a)

-250

-200

-150

-100

-50

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30 35 40

qu
eu

e l
en

gth
 - a

ve
rag

e e
sti

ma
te

time (ms)

Comparison of local tracking responses on node01 - node03

node01
node02
node03

(b)

Figure 5.3: (a) K = 0.6 - Settling time is approximately 7 milliseconds. (b) K = 0.6
These are the same conditions as (a), but now the ringing persists.

5.1.2 Internet Experiments Over Planet-Lab

To match the experimental settings of the previous section, 3 Planet-Lab nodes were

used; node1 at the University of New Mexico, node2 in Taipei-Taiwan and node3

61

Chapter 5. Experimental results

node 1 node 2 node 3

10.2 ms

2.5 ms

150 ms

50 ms

Average Task Processing Time t pi

Standard Deviation for t pi

Interval between load balancing instances ∆t

Interval between 2 comm. transmissions

Frankfurt -
Germany

Initial
Distribution

6000 tasks 4000 tasks 2000 tasks

Location
University of
New Mexico

(US)

Taipei -
Taiwan

Table 5.1: Parameters and settings of the experiment

Roundtrip
delay τij

Data
transmisison rate

Average
Transmission of
one Task

n1 - n2 215 ms 1.34 KB/s 14 ms
n1 - n3 200 ms 1.42 KB/s 16 ms
n2 - n3 307 ms 1.03 KB/s 20 ms

Table 5.2: Average network delays and transmission rates.

in Frankfurt-Germany. As for the load-balancing policy, the same parameter values

were also used; for instance all pij were set to 1/2 for i 6= j. The initial parameters

and settings for the experiment are summarized in Table 5.1.

Throughout the experiment, network statistics related to transmission rates and

delays were collected. The averages of the parameters are shown in Table 5.2. Large

delays were observed in the network due to the dispersed geographical location of the

nodes. Moreover, the transmission rates detected between the nodes were very low

mainly because the amount of data exchanged in bytes is small. Indeed, the average

size of data needed to transmit a single task was 20 bytes, which made the observed

transmission rates not exactly accurate in the presence of large communication de-

lays.

As indicated previously, our interest is to compare the experimental results with

the ones of the previous section and to assess the model under longer and more

62

Chapter 5. Experimental results

varying delays. In order to observe the behavior of the system under various gains,

several experiments were conducted for different gain values K ranging from 0.1 to

1. Fig. 5.4 is a plot of the system responses corresponding to each node i where

the gain K was set to 0.3. Similarly, Fig. 5.5 shows the system response for gain

K equal to 0.5. Figure 5.6 summarizes several runs corresponding to different gain

values. For each K = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, ten runs were made and the

settling times (time to load balance) were determined. For gain values higher than

0.8, consistent results could not be obtained. For instance, in most of the runs no

settling time could be achieved. However, when the observed network delays were

less varying, the system response was steady and converged quickly to a balanced

state when K is equal to 0.8 (Figure 5.7). As previously indicated, this scenario

wasn’t frequently seen. The system’s behavior in these set of experiments does not

exactly match, for the same gain value, the results obtained in the previous sections,

due to the difference in network topology and delays. For instance, the ratio between

the average delay and the task process time is 20 (200µs/10µs) for the LAN setting

and 12 (120ms/10ms) for the distributed setting. This fact is one of the reasons

why ringing is observed earlier (for K = 0.6) in the LAN experiment whereas under

Planet-Lab unstable responses were observed starting which K = 0.8.

The previous experiments were conducted under normal network conditions

stated in Table 5.2. However, another set of experiments was conducted at a differ-

ent time where the network condition worsens and larger delays were observed. In

particular, the data transmission rate between node 2 (Taiwan) and node 3 dropped

from 1.03KB/s to 407B/s. Figures 5.8 and 5.9 show the system responses for gains

K = 0.4 and K = 0.8 respectively. These experiments clearly show the negative

effect of the delay on the stability of the system. Nevertheless, we can see that with

a low gain namely K = 0.4, a settling time can be identified at around 22ms. On the

63

Chapter 5. Experimental results

Excess Load Vs Time, Gain K=0.3

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30 35 40

Time (s)

Node1
Node2
Node3

qu
eu

e
le

ng
th

 -
 lo

ca
l q

ue
ue

 a
ve

ra
ge

Figure 5.4: Experimental response of the load-balancing algorithm under large de-
lays. gain K = 0.3 and pij = 0.5.

other hand, when the gain was set to 0.8, the system did not reach a stable point as

shown by the nodes’ oscillation responses in Figure 5.9. The reason behind this fact

is that the load-balancing policy may base its decision on outdated information and

consequently it becomes better not to migrate all the excess load.

As this point, only the effect of the delay on the stability of the system was

Excess Load Vs Time for Gain K=0.5

-2000

-1500

-1000

-500

0

500

1000

1500

2000

0 5 10 15 20 25 30

Time (s)

Node1
Node2
Node3

qu
eu

e
le

ng
th

 -
 lo

ca
l q

ue
ue

 a
ve

ra
ge

Figure 5.5: Experimental response of the load-balancing algorithm under large de-
lays. gain K = 0.5 and pij = 0.5.

64

Chapter 5. Experimental results

Time to balance Vs the sending Portion K

0
5

10
15
20
25
30
35
40
45
50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
K - portion to send

T
im

e
to

 b
al

an
ce

 (
s)

Average Time

Figure 5.6: Summary of the load-balancing time as function of the gain K.

tested. In order to test the effect of the variability of the task processing time on

the system behavior, the matrix multiplication application was adjusted in order to

obtain the following results; the average task processing time was kept at 10.2ms

but the standard deviation became 7.15 ms instead of 2.5 ms. This was done by

adjusting the 2 parameters MAXBYTES and ROWSIZE introduced in Section 3.7.

Figures 5.10 and 5.11 show the respective system responses for gains K = 0.3 and

excess load Vs Time, Gain K=0.8

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

0 10 20 30 40

Time (s)

Node1
Node2
Node3

qu
eu

e
le

ng
th

 -
 lo

ca
l q

ue
ue

 a
ve

ra
ge

Figure 5.7: Experimental response of the load-balancing algorithm under large de-
lays. gain K = 0.8 and pij = 0.5.

65

Chapter 5. Experimental results

excess load Vs time, gain K=0.4

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

0 10 20 30 40

Time (s)

Node1
Node2
Node3

qu
eu

e
le

ng
th

 -
 lo

ca
l q

ue
ue

 a
ve

ra
ge

Figure 5.8: Experimental response of the load-balancing algorithm under large de-
lays. gain K = 0.4 and pij = 0.5.

K = 0.8. Comparing Figures 5.4 and 5.10, we can see that in the latter case, some

ringing persists and the system did not completely stabilize. On the other hand,

setting the gain K to 0.8 led the system to accommodate the variances in the task

processing time.

The results drawn from the two test-beds were consistent with each other. In

excess load Vs time, gain K = 0.8

-2000

-1500

-1000

-500

0

500

1000

1500

2000

0 5 10 15 20 25 30 35 40

Time (s)

Node 1
Node 2
Node 3

qu
eu

e
le

ng
th

 -
 lo

ca
l q

ue
ue

 a
ve

ra
ge

Figure 5.9: Experimental response of the load-balancing algorithm under large de-
lays. gain K = 0.8 and pij = 0.5.

66

Chapter 5. Experimental results

Excess Load Vs Time, Gain K=0.3, Variant
Task Process Time

-2500
-2000

-1500
-1000

-500
0

500
1000

1500
2000

2500

0 10 20 30 40

Time (s)

Node1
Node2
Node3

qu
eu

e
le

ng
th

 -
 lo

ca
l q

ue
ue

 a
ve

ra
ge

Figure 5.10: Experimental response of the load-balancing algorithm under large
variance in the tasks processing time. gain K = 0.3 and pij = 0.5.

particular, high gains were shown to be inefficient and therefore introduce drawbacks

in systems with large delays. Conversely, systems with low gain values could not cope

with the variability introduced by the tasks processing time. Therefore, one should

avoid the limiting cases and carefully choose an adequate gain value.

Excess Load Vs Time, Gain K=0.8, Variant
Task Process Time

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

0 10 20 30 40

Time(s)

Node1
Node2
Node3

qu
eu

e
le

ng
th

 -
 lo

ca
l q

ue
ue

 a
ve

ra
ge

Figure 5.11: Experimental response of the load-balancing algorithm under large
variance in the tasks processing time. gain K = 0.8 and pij = 0.5.

67

Chapter 5. Experimental results

5.2 One-Shot Load-Balancing

In this section, load-balancing experiments were conducted over the wireless net-

work where one load-balancing instance is chosen and the proportions pij were set

according to (3.3) and is given as follows,

pij =





1
n−2

(
1− Queue(i)∑n

k=1,k 6=j Queue(k)

)
if all Q(i) are known.

1/(n-1) otherwise
(5.1)

5.2.1 Wireless Network Experiments

The experiments were conducted over a wireless network using an 802.11b access

point. The testing was completed on three computers: a 1.6 GHz Pentium IV

processor machine (node 1) and two 1 GHz Transmeta processor machines (nodes 2

& 3). To increase communication delays between the nodes (so as to bring the test-

bed to a setting that resembles a realistic setting of a busy network), the access point

was kept busy by third party machines, which continuously downloaded files. We

consider the case where all nodes execute the load-balancing algorithm at a common

balancing time tb. On average, the completion time of a task was 525 ms on node 1,

and 650 ms on the other two nodes.

The aim of the first experiment is to optimize the overall completion time with

respect to the balancing instant tb by setting the gain value K to 1. Each node was

assigned a certain number of tasks according to the following distribution: Node

1 was assigned 60 tasks, node 2 was assigned 30 tasks, and node 3 was assigned

120 tasks. The information exchange delay (viz., communication delay) was on

average 850 ms on the average. Several experiments were conducted for each case

of the load-balancing instant and the average was calculated using five independent

realizations for each selected value of the load-balancing instant. In the second set

68

Chapter 5. Experimental results

of experiments, the load-balancing instant was fixed at 1.4 s in order to find the

optimal gain that minimizes the overall completion time. The initial distribution of

tasks was as follows: 60 tasks were assigned to node 1, 150 tasks were assigned to

node 2, and 10 tasks were assigned to node 3. The average information exchange

delay was 322 ms and the average data transfer delay per task was 485 ms.

The results of the first set of experiments show that if the load-balancing is

performed blindly, as on the onset of receiving the initial load, the performance

is poorest. This is demonstrated by the relatively large average completion time

(namely 45s∼50s) when the balancing instant is prior to the time when all state

communication between the CEs is completed (when tb is approximately below 1s),

as shown in Fig.5.12. Note that the completion time drops significantly (down to

40s) as tb begins to approximately exceed the time when all inter-CE communications

have arrived (e.g., when tb > 1.5s). In this scenario of tb, the load-balancing is done

in an informed fashion, that is, the nodes have knowledge of the initial load of every

CE. Thus, it is not surprising that load-balancing is more effective than the case

the load-balancing is performed when the CEs have not yet received the state of the

other CEs.

The explanation for the sudden rise in the completion time for balancing instants

between 0.5 s and 1 s is that the knowledge states in the system are hybrid, that is,

some nodes are aware of the queue sizes of the others while others arent. When this

hybrid knowledge state is used in the load-balancing policy (Eqn. (6.1)), the resulting

load distribution turns out to be severely uneven across the nodes, which in turn,

has an adverse effect on the completion time. Finally, we observe that as tb increases

farther beyond the time all the inter-CE communications arrive (e.g., tb > 5s), the

average completion time begins to increase. This occurs precisely because any delay

in executing the load-balancing beyond the arrival of the inter-CE communications

time would increase the probability that some CEs will run out of tasks in the period

69

Chapter 5. Experimental results

before any transferred load arrives to them.

30

35

40

45

50

55

0 1 2 3 4 5 6 7 8
BALANCING INSTANT (s)

AV
ER

AG
E

CO
M

PL
ET

IO
N

TI
M

E
(s

)

Figure 5.12: Average total task-completion time as a function of the load balancing
instant. The load-balancing gain parameter is set at K = 1. The dots represent
the actual experimental values and the solid curve is a best polynomial fit. This
convention is used thought out Fig.5.15.

40

60

80

100

120

140

0 1 2 3 4 5 6 7 8
BALANCING INSTANT (s)

NU
M

BE
R

O
F

TA
SK

S

Figure 5.13: Average total excess load decided by the load-balancing policy to be
transferred (at the load-balancing instant) as a function of the balancing instant.
The load-balancing gain parameter is set at K = 1.

Next we examine the size of the loads transferred as a function of the instant at

which the load-balancing is executed, as shown in Fig. 5.13. The illustrated behavior

shows that the dependence of the size of the total load transferred on the “knowledge

state” of the CEs. It is clear from the figure that for load-balancing instants up to

approximately the time when all CEs have accurate knowledge of each other’s load

states, the average size of the load assigned for transfer is unduly large. Clearly,

this seemingly “uninformed” load-balancing leads to the waste of bandwidth on the

interconnected network.

70

Chapter 5. Experimental results

The results of the second set of experiments indeed confirm our earlier prediction

that when communication and load-transfer delays are prevalent, the load-balancing

gain must be reduced to prevent “overreaction” (i.e., sending unnecessary excess

load). This behavior is shown in Figure 5.14, and demonstrates that the optimal

performance is achieved not at the maximal gain (K = 1) but when K is approx-

imately 0.8. This is a significant result as it is unexpected in a situations where

the delay is insignificant (as in a fast Ethernet case), K = 1 indeed yields optimal

performance. Figure 5.15 shows the dependence of the total load to be transferred

as a function of the gain. A large gain (near unity) results in a large load to be

transferred, which in turn, leads to a large load-transfer delay. Thus, large gains

increase the likelihood of a node (that may not have been overloaded initially) to

complete all its load and remain idle until the transferred load arrives. This would

clearly increase the total average task completion time, as confirmed earlier by Fig.

5.14.

60

70

80

90

100

110

120

0.2 0.4 0.6 0.8 1
GAIN, K

AV
ER

AG
E

CO
M

PL
ET

IO
N

TI
M

E
(s

)

Figure 5.14: Average total task-completion time as a function of the balancing gain.
The load-balancing instant is fixed at 1.4 s.

.

5.2.2 Simulation Results

A Monte-Carlo Stool that allows the simulation of the queues described in Section

2.3.2 was developed at the University of New Mexico [20]. The network parame-

71

Chapter 5. Experimental results

0

20

40

60

80

0.2 0.4 0.6 0.8 1
GAIN, K

NU
M

BE
R

O
F

TA
SK

S

Figure 5.15: Average total excess load decided by the load-balancing policy to be
transferred (at the load-balancing instant) as a function of the balancing gain. The
load-balancing instant is fixed at 1.4 s.

ters (i.e., the statistics of the communication delays ηkj and the load transfer delays

τij) and the task execution time in the simulation were set according to the respec-

tive average values obtained from the experiments described in the previous section.

This simulation tool was used to validate the correspondence between the stochastic

queuing model and the experimental setup. In particular, the simulated versions of

Figures 5.12 –5.14 were generated, and are shown in Figures 5.16–5.18.

It is observed that the general characteristics of the curves are very similar, but

they are not exactly identical, due to the unpredicted behavior and complexity of

the wireless environment. Nevertheless, the result of the first simulation, shown

in Fig.5.16, were consistent with the experimental result as we can clearly identify

the sudden rise in the completion time around the balancing instant corresponding

to the communication delay (850 ms). The reason for this behavior was described

in the experimental section. As for the excess transferred load plotted in Fig.5.17,

the simulation resulted in the same curve and transition shape obtained from the

experiment. The curve characteristics of the second simulation, shown in Fig. 5.18,

are also analogous to the ones obtained in the experiment. Indeed, the gain values

found are almost the same: 0.8 from the experiment and 0.87 from the simulation.

As indicated before, the small difference is due to the unstable delay values and other

factors present in the wireless environment, which have been approximated both by

72

Chapter 5. Experimental results

the model and the simulator.

0 1 2 3 4 5 6 7 8
30

35

40

45

50

55

60

BALANCING INSTANT (s)

AV
ER

AG
E

 C
O

M
PL

ET
IO

N
TI

M
E

(s
)

Figure 5.16: Simulation results for the average total task-completion time as a func-
tion of the load-balancing instant. The load-balancing gain parameter is set at
K = 1. The dots represent the actual experimental values[20].

0 1 2 3 4 5 6 7 8

40

60

80

100

120

140

BALANCING INSTANT (s)

TA
SK

S
EX

CH
AN

G
ED

Figure 5.17: Simulation results for the average total excess load decided by the load-
balancing policy to be transferred (at the load-balancing instant) as a function of
the balancing instant. The load-balancing gain parameter is set at K = 1 [20].

5.3 Summary

In this chapter, experimental results of the load-balancing system were presented in

two different environments; the Internet (Planet-lab) and the wireless network. In the

73

Chapter 5. Experimental results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
55

60

65

70

75

80

85

90

95

100

GAIN, k
z

AV
ER

AG
E

CO
M

PL
ET

IO
N

TI
M

E
(s

)

Figure 5.18: Simulation results for the average total task-completion time as a func-
tion of the balancing gain. The load-balancing instant is fixed at 1.4 s. [20]

Internet, the results showed that a gain parameter is necessary to compensate for the

delay incurred in the transfer of information and the variability in the computational

power at each node. As predicted by the stochastic model, the monte-carlo simulation

and then shown in the experimental section, a gain K value of 1 does not give optimal

result. Therefore, one should set K the mid range of (0, 1] in systems where network

delays are prominent.

In the wireless network, our experimental results and simulations both indicate

that in systems where communication and load-transfer delays are tangible, it is

best to execute the load-balancing after each node receives information from other

nodes regarding their load states. In particular, our results indicate that the loss

of time in waiting for the inter-node communications to arrive is compensated for

by the informed nature of the load-balancing. For both systems, the optimal load-

balancing gain turns out to be less than unity, contrary to systems that do not

exhibit significant latency. In delay-infested systems, a moderate balancing gain

has the benefit of reduced load-transfer delays, as the fraction of the load to be

transferred is reduced.

Nevertheless, the policies implemented so far do not account for load transfer

74

Chapter 5. Experimental results

delays and connectivity in the system in a direct way but only through the use of

a gain parameter. In Chapter 6, an adaptive load-balancing policy is introduced to

probe the system and uses its performance history to decide on an adequate load

distribution.

75

Chapter 6

Dynamic and Adaptive

Load-Balancing Policy

In this chapter, a new dynamic, adaptive, and distributed load-balancing policy is

introduced based on the policies that were used earlier in this thesis. This strategy

takes into account the following three aspects: i) the connectivity among the nodes,

ii) the computational power of each node, and iii) the throughput and bandwidth of

the system.

The occurrence of load-balancing instances, i.e.when to trigger the load distribu-

tion strategy, is not discussed in this chapter since it is possible to employ one-shot

load-balancing, multiple balancing instances, or any other scheme that would be

suitable for the system at hand. Note that experimental (Section 5.2) and theoret-

ical studies [18] have been done in the optimization of the load-balancing instances

and dynamic strategies can be used based on system events as described in [20].

Furthermore, exchanged information about the state of the nodes is still assumed to

occur frequently as described in previous chapters, with additional information to be

discussed subsequently. In Section 6.1, The new load distribution strategy is intro-

76

Chapter 6. Dynamic and Adaptive Load-Balancing Policy

duced and in Section 6.1.1, the computational methods of the adaptive parameters

used by the policy are described. Section 6.1.2 presents an experimental evaluation

of this new dynamic policy.

6.1 Dynamic and Adaptive Policy Description

The Internet is not as completely connected as one might think. This has been

observed in Section 4.1 where nodes in Hong-Kong and Canada weren’t able to

reach each other although they were perfectly accessible from other sites such as

UNM. Add to that fact that in distributed systems, a node may become unavailable

or unreachable at any time due to a failure in the node itself, or in the network

path leading to it. Therefore, the assumption made by the load-balancing policies

that all nodes are accessible at any time is unrealistic especially in Internet scale

distributed systems or in Ad-Hoc wireless networks. This will greatly affect the load

balance state of the system since loads assigned to unreachable nodes can never be

delivered. The proposed algorithm can detect the connectivity in the system and

decide accordingly what nodes may participate in the load sharing. At each load-

balancing instance, the group of reachable nodes is referred to as the “current node

space”.

This load-balancing policy also takes into account the change in the computa-

tional performance of nodes and distributes the tasks accordingly. Actually, the

system is not dedicated to the application at hand; other users may be using one or

more nodes at a given time and therefore alter their computational power. Moreover,

tasks are not considered identical, they may greatly differ in their completion time.

These facts cannot be guessed a priori and assigning fixed computational power for

each node is not always suitable. Therefore, the load strategy should be adaptive to

these changes and be able to make decisions correspondingly.

77

Chapter 6. Dynamic and Adaptive Load-Balancing Policy

Moreover, transfer delays incurred when tasks are migrated from a node to an-

other may be unexpectedly large and result in a negative impact on the overall system

performance. To avoid this situation, an a priori estimate of the transfer delays will

help the policy at hand decide if the transfer is profitable and adequately decide on

the size of load to migrate. These estimates should also be dynamically updated

since delays may greatly vary during the system’s life as shown for delays of class B

and higher in Section 4.1.

To further describe the policy, the following parameters are defined.

• n is the number of nodes present in the system.

• qi denotes the number of tasks in the queue of node i.

• Ci denotes the average completion time of a task at node i. Without loss of

generality, we will assume that Ci is in seconds.

• si is the average size of a task in bytes at node i when it is transferred.

• rij is the throughput or transfer rate in bytes/seconds between node j and node

i. Note that rij 6= rji.

• qj,av is the average queue size calculated by node j based on its locally available

information.

• qj,excess is the excess number of tasks at node j.

• pij is the fraction of the excess tasks of node j that should be transferred to

node i as decided by the load balancing policy.

The first 5 parameters are assumed known at the time the load distribution pro-

cess is triggered. That is, the update of these variables is done before the balancing

instance is reached as will be described later. The general steps of the load-balancing

policy invoked at node j are described below followed by a detailed description.

78

Chapter 6. Dynamic and Adaptive Load-Balancing Policy

1. Determine how many nodes are reachable (no) from node j.

Calculate the average queue size qj,av and the number of excess tasks qj,excess

based on locally available information.

qj,av =
1

no

n∑

i=1, node(i) reachable

qi
Ci

Cj

qj,excess =





(qj − qj,av) ∗K if qj > qj,av,

0 Otherwise,

where K is the gain parameter.

The algorithm exists if qj,excess = 0.

2. Determine how many n′o and which nodes are below the average. These

nodes will participate in the load sharing as viewed by node j.

3. Calculate the optimal p′ij fraction only for the n′o nodes using the following

formula:

p′ij =
qi,av − (Ci/Cj)qi∑

k � k 6=j

qk,av − (Ck/Cj)qk

4. Calculate the p′′ij for the n′o nodes. p′′ij is the maximum portion of the excess

load that is judged to be profitable when transmitted to node i.

p′′ij =
(qj − qj,excess)Cjrij

qj,excesssj

Set pij = Min(p′ij, p
′′
ij).

5. if
∑

i pij > a (a is a threshold parameter between 0 and 1)

transmit (pijqj,excess) tasks to node i,

Otherwise

repeat step 1 to step 4,

79

Chapter 6. Dynamic and Adaptive Load-Balancing Policy

assign the remaining fraction (1 −∑
i pij) to nodes that have p′′ij > p′ij

and call the newly assigned fractions p′′′ij ,

transmit (pij + p′′′ij)qj,excess tasks to node i.

The first step determines the node space where the load distribution will take

place from node j’s perspective. This is achieved by checking the last time a state or

SYNC packet was received from each node. To test for connectivity to node i, the

local timestamp (in the info structure, Section 3.3) of the last received state packet

is compared to the current time decremented by three times the interval between 2

consecutive state broadcasts. That is, if the last state packet received from node i is

one of the last three packet transmitted, node i is considered to be reachable from

node j otherwise it is not included as part of the load-balancing node space since

most likely, a load transmitted to this node will not be correctly delivered. Therefore,

it is more suitable for the policy to base its calculations on nodes where migration

of loads have higher probability od success. Note that, at every instance of the load

distribution process, the node space may end up with different elements according to

the nodes’ connectivity at that time. After that, the local queue average is calculated

where each queue is scaled by the Ci/Cj factor that accounts for the difference in

computational power of each node. In the queue excess calculations, a gain factor K

is used since it is becoming a requirement in any policy that operates on large-delay

systems where outdated state information is prominent. This fact appears in the

experimental and theoretical studies conducted in the literature and in this thesis.

The second and third steps employ the method introduced in Section 3.8 and used

earlier in the literature in the SID and RID policies (Section 2.4) to calculate the

fractions p′ij. This method is attractive since it only considers nodes that have queue

sizes less than the average, and therefore results in as few connections as possible

when the excess load is moved out of node j which makes the policy at hand more

scalable (Figure 3.5). Moreover, this method leads to optimal results when the policy

80

Chapter 6. Dynamic and Adaptive Load-Balancing Policy

is triggered once on each node and where no delay is present in the system. Note

that the formula is adjusted by the Ci/Cj factor.

The fourth step judges if the proportion p′ij determined is worth transmitting

to node i when transmission delays are present. This is accomplished by setting

an upper bound on the maximum proportion of the excess load that is profitable

when the exchange takes place. The task migration is said to be profitable if the

time needed to transmit the load to the other end is less than the time needed to

start executing the load on the current node (node j in this case). This statement is

interpreted as follows,

p′′ijqj,excess(sj/rij)︸ ︷︷ ︸
transmission delay

< (qj − qj,excess)Cj︸ ︷︷ ︸
start of load execution

Solving for p′′ij, we get the upper bound for pij as indicated in step 4. In case rij is not

available, rji is used instead to provide an approximation of the bandwidth between

node j and i. If neither parameter is available, step 4 is omitted for the node pair

(i, j). The rate rij is detected and updated each time a load is transmitted from node

i to node j as will be explained in the subsequent section where rji is received in

the state information packet transmitted by node i to node j. Both parameters are

saved respectively in the variables rate and symm rate in the info structure (Section

3.3).

The fifth step is included for completion and can be omitted at any time. The

rational behind it, is that after executing the algorithm, node j may find itself only

transmitting a small portion (i.e less than a variable a) of its excess load due to the

delay restrictions. Therefore, it is suitable to reassign the remaining untransferred

proportion to the nearest nodes (i.e nodes reached through links of higher rate) in

the hope that they may possibly have better connectivity to the system.

81

Chapter 6. Dynamic and Adaptive Load-Balancing Policy

6.1.1 Adaptive Parameters Computation

In this section, the computation procedure for the dynamic parameters C and rij is

explained. Note that the si parameter can be easily determined by averaging the

tasks’ sizes upon their creation.

Every time a task is completed by the application layer at node i, the Ci parameter

is updated as follows,

if Ci = 0 then Ci = Ttask

else Ci = αTtask + (1− α)Ci

where Ttask is the execution time of the last task and α is a gain parameter that

affects the Ci term in its ability to reflect the current computational power of the

system. Therefore, the values of α are critical to the stability and efficiency of the

load-balancing policy. That is, assigning values in the high range of (0,1] to α may

result in fluctuations in the Ci parameter which will have in turn an adverse impact

on the decision of the load distribution, leading to bouncing of tasks back and forth

between nodes. On the other hand, setting α to low values may not keep the load-

balancing policy informed about the latest state of the node. Consequently, the

value of α should be selected depending on the application used and the interference

degree of external users. The update procedure could be easily modified to suit other

methods.

The other parameter that is dynamically updated is the transfer rate rij incurred

between node j and node i. On each data (or tasks) transmission, the transfer delay

Tdelay is recorded and is calculated by taking the difference between the instance

the connection is initiated by node j and the instance node i acknowledgment of

tasks reception is received by node j. Consequently the average transmission rate

(rate = Tdelay/totalsize) is calculated, where totalsize is the total size of the tasks

migrated to node i. After each successful exchange of loads, the rij parameter is

82

Chapter 6. Dynamic and Adaptive Load-Balancing Policy

updated as follows,

if rij = 0 then rij = rate

else rij = β ∗ rate + (1− β)rij

This scheme is a simplified version of the method used to update the Round

Trip Time (RTT) of the packet exchanged during a TCP connection where the delay

variance is additionally taken into consideration [26]. In the next section, β was set

to 1/8 as suggested by [27] for the RTT update method.

Finally, both parameter Cj and rij are included in node j state information when

transmitted to node i for all i = 1, ..., n , i 6= j.

6.1.2 Experimental Evaluation

To test the performance of the newly proposed load-balancing policy denoted as

lb2, a comparative experiment was performed between this policy and the strategy

adopted by the stochastic model introduced in Section 3.8 and referred to as lb1.

The experiments were conducted over Planet-Lab [2] and the initial settings and

parameters are shown in Table 6.1. The average network transfer rates for each path

as detected by the system are shown in Table 6.2. The round trip end-to-end delay

values were consistent with the results obtained in Section 4.1 and were shown in

Table 4.1.

First, lb2 was evaluated for the gain values K between 0.3 and 1 with 0.1 incre-

mental steps. The α parameter introduced in the previous section was set to 0.05 by

running several experiments and observing the behavior of the C parameter. Note

that, the first time the load-balancing process was triggered was after 20s from the

start of the system and then the strategy was executed regularly at 10s intervals.

83

Chapter 6. Dynamic and Adaptive Load-Balancing Policy

node 1 node 2 node 3

Location
UNM
(University of
New Mexico)

Frankfurt -
Germany

Sinica -
Taiwan

Initial Distribution 600 tasks 250 tasks 100 tasks

Average Task Processing
Time C (ms) 160 400 500

Average size of a task (Kbytes) 3.12
Interval between 2 load balancing instances (s) 1.5
Interval between 2 state transmissions (s) 10

Table 6.1: Parameters and settings of the experiment.

From - To node 1 node 2 node 2
node 1 - 34.5 KB/s 73.3 KB/s
node 2 18.7 KB/s - 45.4 KB/s
node 3 48.9 KB/s 20.2 KB/s -

Table 6.2: Average transmission rates between the different nodes.

This was done to ensure that the C parameter had enough time to adapt and reflect

the current computational power of each node before the occurrence of any tasks

migration between the nodes.

Second, lb1 was evaluated under the same conditions as lb2. Since, there is a

discrepancy between the computational power of the nodes (as shown in Table 6.1),

the lb1 strategy was adjusted to account for these differences by scaling the queue

sizes in the pij computation as follow,

pij =





1
n−2

(
1− (Ci/Cj)Queue(i)∑n

k=1,k 6=j(Ck/Cj)Queue(k)

)
if all Q(i) are known.

1/(n-1) otherwise
(6.1)

Note that the ratio Ci/Cj are fixed over time. Their values were obtained from the

lb2 experiments by averaging over all the tasks processing time at each node.

Both policies were evaluated by conducting 5 runs for each value of K between

0.3 and 1 with 0.1 incremental step. Figure 6.1 shows the overall average completion

84

Chapter 6. Dynamic and Adaptive Load-Balancing Policy

time versus K and Figure 6.2 shows the total number of exchanged tasks between

all the nodes.

80

90

100

110

120

130

140

150

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
GAIN

A
V

G
. C

O
M

P
L

E
T

IO
N

 T
IM

E
 (s

) lb1

lb2

Figure 6.1: completion time averaged over 5 runs Vs different gain values K. The
graph shows the results for both policies.

110

130

150

170

190

210

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
GAIN

N
U

M
B

E
R

 O
F

 T
A

S
K

S
 E

X
C

H
A

N
G

E
D lb1

lb2

Figure 6.2: Total number of tasks exchanged averaged over 5 runs Vs different gain
values K. The graph shows the results for both policies.

We can clearly see that lb2 outperformed lb1 especially for K = 0.8 that corre-

sponds to lb2 earliest completion time whereas lb1 performed best at K = 0.5. The

85

Chapter 6. Dynamic and Adaptive Load-Balancing Policy

reason may be that lb1 used greater predictive computations before distributing the

loads, which makes it “more or less” independent of the gain value K (in the range

[0.60.9]). As for the network traffic generated during the lifetime of the system, lb2

had fewer tasks exchanged for most of the gain K values. It is expected that the

difference in total tasks migrated between the 2 policies will grow as the number of

nodes increases.

In this experiment, few aspects of the lb2 policy were examined. Further tests

should be performed under different conditions; a higher number of nodes (to test

scalability), bigger tasks size (to investigate the effect of transfer delays). Moreover,

theoretical and experimental studies should be done in the optimization of the α and

β parameters.

6.2 Summary

In this chapter, a dynamic load-balancing policy is introduced to take into account

the connectivity between the nodes, the variability in computational power and the

network transfer delays. Preliminary experimental results show that the proposed

strategy provides improvements over policies implemented earlier in this thesis. More

work should be done in investigating its capabilities and implementation enhance-

ment.

86

Chapter 7

Conclusions and Future Work

In this thesis, we first presented a brief description of the different taxonomies of load-

balancing policies followed by an overview of previous work in the field. We then

presented the design and implementation of a general framework where distributed

load-balancing policies can be tested and compared. The multi-threaded architecture

of the system provides high performance for the application at hand and is not

halted when transfer of information or loads takes place. We also showed that the

system provides flexibility in integrating different types of distributed, dynamic, and

adaptive strategies.

Delay probing experiments performed on the Internet and the wireless test-beds

(both ad-hoc and with infrastructure) showed that these environments are unstable

in the sense that high network delay variabilities and packet drops were observed

especially in the wireless network. Furthermore, connectivity between nodes in the

Internet is not always guaranteed. These facts had a considerable influence on the

performance of the implemented strategies in these different environments. The gain

parameter K was found to have a great impact on the stability of the system where

a value in the mid range of the interval (0, 1] provided the best results. Moreover,

87

Chapter 7. Conclusions and Future Work

load-balancing should always occur in an informed manner directly after the receipt

of the state information from all the nodes belonging to the current balancing space.

Based on the delay probing experiments and the performance of the dynamic load-

balancing strategies in different environments, we proposed a dynamic and adaptive

load-balancing policy that takes into account the connectivity in the network, the

variability in the transfer delays, and the computational power of each node. Pre-

liminary experimental results show that this policy provides improvements over the

previously implemented dynamic strategies.

In future work, we will provide improvements for the load-balancing software in

order to let any application run in a distributed manner and benefit from a wide range

of implemented load-balancing policies. This will be accomplished by integrating a

set of API (Application Program(ming) Interface) functions in the software package

through which any application will be able to communicate with the two lower layers

(load-balancing and network communication). Furthermore, the application will be

separated from the software package in the sense that it will have its own execution

space accomplished by using processes instead of the current thread implementation.

More delay probing experiments should be performed on the wireless network

which has shown unpredictable behavior and high packet drop. It would be inter-

esting also to consider the aspects of delay in mobile CEs (computational elements)

connected via a wireless ad-hoc network since nowadays several mobile applications

requiring load-balancing are present (e.g. wireless sensors, moving robots performing

a joint task).

Finally, further investigations of the newly proposed adaptive and dynamic load-

balancing policy (Chapter 6) are needed; more experiments should be conducted on

a larger number of nodes to test its performance and more importantly its scalabil-

ity. Moreover, the update methods of the adaptive parameters C and rij should be

88

Chapter 7. Conclusions and Future Work

enhanced by observing the impact of the gain values α and β on the stability of the

system.

89

References

[1] Cygwin website. http://www.cygwin.com.

[2] Planetlab website. http://www.planet-lab.org.

[3] RIPE NCC test traffic measurements. http://www.ripe.net/test-traffic.

[4] RIPE NCC website. http://www.ripe.net.

[5] C. T. Abdallah, N. Alluri, J. D. Birdwell, J. Chiasson, V.Chupryna, Z. Tang, ,
and T. Wang. A linear time delay model for studying load balancing instabilities
in parallel computations. In The International Journal of System Science, 2003.

[6] D.A. Bader, B.M.E. Moret, and L. Vawter. Industrial applications of high-
performance computing for phylogeny reconstruction. SPIE ITCom2001, Au-
gust 2001.

[7] S. A. Banawan and J. Zahorjan. Load sharing in heterogeneous queueing sys-
tems. In IEEE Infocom ’89, pages 731–739, April 1989.

[8] Sayed A. Banawan and Nidal M. Zeidat. A comparative study of load sharing
in heterogeneous multicomputer systems. In 25th Annual Proceedings of the
Simulation Symposium, pages 22–31, April 1992.

[9] Wolfgang Becker. Dynamic balancing complex workload in workstation net-
works - challenge, concepts and experience. In Proceedings High Performance
Computing and Networking (HPCN) Europe, 1995. http://www.informatik.uni-
stuttgart.de/ipvr/as/projekte/hicon/HPCNPaper.doc.html.

[10] J. Douglas Birdwell, John Chiasson, Zhong Tang, Chaouki Abdallah, Majeed M.
Hayat, and Tsewei Wang. Dynamic time delay models for load balancing part

90

References

I: Deterministic models. CNRS-NSF Workshop: Advances in Control of Time-
Delay Systems, January 2003.

[11] C.J. Bovy, H.T. Mertogimedjo, G. Hooghiemstra, H. Uijterwaal, and P. Van
Mieghem. Analysis of end-to-end delay measurements in the internet. In
Proceedings of the Passive and Active Measurements Workshop (PAM2001),
Ft.Collins, March 2001.

[12] Thomas L. Casavant and Jon. G. Kuhl. A taxonomy of scheduling in general-
purpose distributed computing systems. In IEEE Transactions on Software
Engineering, volume 14:2, pages 141 – 154, February 1988.

[13] J. Chiasson, J. D. Birdwell, Z. Tang, and C.T. Abdallah. The effect of time
delays in the stability of load balancing algorithms for parallel computations.
IEEE CDC, Maui, Hawaii, 2003.

[14] J. Chiasson, Z. Tang, J. Ghanem, C. T. Abdallah, J. D. Birdwell, M. M. Hayat,
and H. Jerez. The effect of time delays on the stability of load balancing al-
gorithms for parallel computations. In IEEE Transactions on Control Systems
Technology, Submitted.

[15] Yuan-Chieh Chow and Walter H. Kohler. Models for dynamic load balancing in
a heterogeneous multiple processor system. IEEE Transactions on Computers,
volume C-28(5):pages 354–361, May 1979.

[16] Douglas E. Comer and David L. Stevens. Client-Server Programming and Ap-
plications, BSD Socket Version with ANSI C, volume 3 of Internetworking with
TCP/IP. Prentice Hall, second edition, 1996.

[17] George Cybenko. Dynamic load balancing for distributed memory multiproces-
sors. Journal of Parallel and Distributed Computing, volume 7(2):pages 279–301,
October 1989.

[18] S. Dhakal, M. M. Hayat, J. Ghanem, C. T. Abdallah, H. Jerez, J. Chiasson,
and J. D. Birdwell. Advances in Communication Control Networks, in the series
Lecture Notes in Control an Information Sciences (LCNCIS), chapter On the
optimization of load balancing in distributed networks in the presence of delay.
Springer-Verlag: Berlin, 2004.

[19] S. Dhakal, B.S. Paskaleva, M. M. Hayat, E. Schamiloglu, and C. T. Abdallah.
Dynamical discrete-time load balancing in distributed systems in the presence
of time delays. IEEE CDC, Maui, Hawaii, 2003.

91

References

[20] Sagar Dhakal. Load balancing in delay-limited distributed systems. Master’s
thesis, Department of Electrical and Computer Engineering, The University of
New Mexico, December 2003.

[21] Fotis Georgatos, Florian Gruber, Daniel Karrenberg, Mark Santcroos, Ana Su-
sanj, Henk Uijterwaal, and Rene Wilhelm. Providing active measurements as a
regular service for isps. In Proceedings of the Passive and Active Measurements
Workshop (PAM2001), Amsterdam, April 2001.

[22] J. Ghanem, C. T. Abdallah, M. M. Hayat, S. Dhakal, J.D Birdwell, J. Chiasson,
and Z. Tang. Implementation of load balancing algorithms over a local area
network and the internet. 43rd IEEE Conference on Decision and Control,
Submitted, Bahamas, 2004.

[23] J. Ghanem, S. Dhakal, C. T. Abdallah, M. M. Hayat, and H. Jerez. On load bal-
ancing in distributed systems with large time delays: Theory and experiments.
IEEE Mediterranean conference on control and automation, Turkey, 2004.

[24] Majeed M. Hayat, Sagar Dhakal, Chaouki T. Abdallah, J. Douglas Birdwell,
and John Chiasson. Dynamic time delay models for load balancing part II: A
stochastic analysis of the effect of delay uncertainty. CNRS-NSF Workshop:
Advances in Control of Time-Delay Systems, January 2003.

[25] Gerard Hooghiemstra and Piet Van Mieghem. Delay distributions on fixed
internet paths. Technical Report 20011031, Delf University of Technology, 2001.

[26] Information Sciences Institute. Transmission control protocol darpa in-
ternet program protocol specification. RFC 793, September 1981.
http://www.ietf.org/rfc/rfc793.txt.

[27] V. Jacobson. Congestion avoidance and control. In Proceedings of SIGCOMM
’88, August 1988.

[28] Karim Y. Kabalan, Waleed W. Smari, and Jacques Y. Hakimian. Adaptive
load sharing in heterogeneous systems: Policies, modifications, and simulation.
International Journal of Simulation, Systems, Science and Technology, volume
3:pages 89–100, June 2002.

[29] S.N.V. Kalluri, J. JàJà, D.A. Bader, Z. Zhang, J.R.G. Townshend, and
H. Fallah-Adl. High performance computing algorithms for land cover dynamics
using remote sensing data. In International Journal of Remote Sensing, volume
21:6, pages 1513–1536, 2000.

92

References

[30] Frank C. H. Lin and Robert M. Keller. The gradient model load balancing
method. IEEE Transactions on Software Engineering, SE-13(1), January 1987.

[31] Peter Xiaoping Liu, Max Q.-H. Meng, Xiufen Ye, and Jason Gu. End-to-end
delay boundary prediction using maximum entropy principle (mep) for internet-
based teleoperation. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), pages 2701–2706, 2002.

[32] Hazem Hamed Lopa Roychoudhuri, Ehab Al-Shaer and Greg Brewster. On
studying the impact of the internet delays on audio transmission. IEEE Work-
shop on IP Operations and Management (IPOM’02), 2002.

[33] William Osser. Automatic process selection for load balancing. Master’s thesis,
University of California at Santa Cruz, June 1992.

[34] J. Postel. Internet protocol. RFC 791, September 1981.
http://www.ietf.org/rfc/rfc0791.txt.

[35] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flan-
nery. Numerical Recipes in C. The Art of Science Computing. Cambridge
University Press, second edition, 1992.

[36] Vikram A. Saletore. A distributed and adaptive dynamic load balancing scheme
for parallel processing of medium-grain tasks. In Proceedings of the Fifth Dis-
tributed Memory Computing Conference, pages 994–999, Charleston, SC, April
1990.

[37] R. Sandoval-Rodriguez, C.T. Abdallah, and P.F. Hokayem. Internet-like proto-
cols for the control and coordination of multiple agents with time delay. Houston,
TX, 2003. IEEE International Symposium on Intelligent Control.

[38] R. Sandoval-Rodriguez, C.T. Abdallah, P.F. Hokayem, and E. Schamiloglu. Ro-
bust mobile robotic formation control using internet-like protocols. IEEE Con-
ference on Decision and Control, December 2003.

[39] S. Shenker and A. Weinrib. Asymptotic analysis of large heterogeneous queuing
systems. In Proceedings of the 1988 ACM SIGMET-RICS Conference, pages
56–62, May 1988.

[40] Scott Shenker and Abel Weinrib. The optimal control of heterogeneous queue-
ing systems: A paradigm for load-sharing and routing. IEEE Transactions on
Computers, volume 38(12):pages 1724–35, December 1989.

93

References

[41] K. G. Shin and Y. C. Chang. Load sharing in distributed real-time systems with
state-change broadcasts. IEEE Transactions on Computers, volume 38(9):pages
1124–1142, September 1989.

[42] W. Richard Stevens. Networking APIs: Sockets and XTI, volume 1 of UNIX
Network Programming. Prentice Hall, second edition, 1998.

[43] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems: Principles
and Paradigms. Prentice Hall, 2002.

[44] Andras Veres and Miklos Boda. The chaotic nature of TCP congestion control.
In Proceedings of the IEEE Infocom, pages 1715–1723, 2000.

[45] Abel Weinrib and Scott Shenker. Greed is not enough: Adaptive load sharing
in large heterogeneous systems. In Proceedings of the IEEE Infocom ’88, pages
986–994, March 1988.

[46] Marc H. Willebeek-LeMair and Anthony P. Reeves. Strategies for dynamic load
balancing on highly parallel computers. IEEE Transactions on Parallel and
Distributed Systems, volume 4:pages 979–993, September 1993.

94

