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ABSTRACT 

We introduce in this thesis a set of procedures through which a user is given the ability to 

choose a particular desired output behavior from the circuit he is operating and obtain in 

return the corresponding set of design parameters that yield the requested output. We will 

demonstrate the applicability of these procedures on a Marx generator circuit. We 

proceed by introducing a general state space representation algorithm for any stages 

Marx generator, then develop a time shifting algorithm that shifts the state trajectories of 

the system by the desired amount of time and apply a nonlinear Least-squares 

optimization algorithm to determine the set of design parameters.  
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Chapter 1 Introduction 

We offer, in this thesis, a circuit operating user with the capability of specifying his 

system’s output trajectory and provide him in return with the design parameters whose 

output best tracks the desired trajectory or reference model. As an application of this idea 

we will use a Marx pulse power generator circuit. Marx generators are based on charging 

a number of capacitors in parallel and discharging them in series [1]. Several circuit 

representation of a Marx generator exists depending on the manufacturer‘s design and 

components used. It was originally described by E. Marx in 1924 and is primarily used 

because of its ability to repetitively provide high bursts of voltages especially when the 

available voltage sources cannot provide the desired voltage levels [1]. Hence, a voltage 

source initially charges the capacitors which are then connected and discharged in series 

into the corresponding parasitic capacitors.  

 

1.1 Motivation 

The Marx generator is used for a wide range of applications in different research areas 

some of which are according to [2]:  

 Generation of high power microwave using virtual cathode oscillator devices 

 Lightning testing on cables and insulators. 

 Material and dielectric testing. 

 Breaking of raw diamonds in mineralogy. 

 High voltage and magnetic pulser. 

 High repetition rate high power CO2 lasers. 
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 Generating EMP on parallel plate transmission lines. 

 Bridge wire exploring. 

 Electron injection into nuclear reactors. 

 Electron accelerators. 

 Kilo amp linear accelerators. 

 Current injection and generation. 

 Radiation generation for high voltage steep pulser. 

 Flash x-ray generation. 

 Pulsed electron generation. 

 Short duration luminous flash for ultra high speed photography. 

 Firing boxes for pyrotechnic substance reliability testing. 

 Exploding unattended munitions. 

 Nuclear electromagnetic pulse generator. 

 Generation of plasma focusing. 

 Generation of axial plasma for injection purposes. 

 Remote de-programming of processors used in computers and other control circuitry. 

 Educational demonstration of electrical pyrotechnics. 

However, so far, no one has attempted a state space representation of an  stages Marx 

generator, and hence no one was able to exploit the simplifications induced by such a 

realization to be better design and control the generator. Researchers have attempted to 

improve the performance of Marx generators in terms of the electronics and hardware 

involved in putting the generator together as was done in [3] and stated in [2]. Hence, 

N
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manufacturers deliver Marx generators with certain specifications and operational 

characteristics that the user has to adapt to. 

 

1.2 Objective 

The main objective of this thesis is to provide the end user with the ability to specify a 

desired behavioral performance from the output of his system, in our case from the Marx 

generator he is operating. Consequently, Marx generator models can be standardized, by 

providing their users with the ability of specifying the number of stages required for their 

application and the instant of time at which the spark should occur. This will eliminate 

the need to develop and produce a new generator for each application while freeing the 

end user from the constraints involved with some of the manufacturer’s preset 

specifications. 

 

1.3 Methodology 

To achieve our objective, we decided to first generate an algorithm that determines the 

state space model of any stages Marx generator. The next step was to choose a 

reference state space trajectory model, so we decided to start from a reference model that 

closely approximates the behavior of a Marx generator, but that is by no means ideal. 

Now, we want to provide the user with the ability to predefine the time at which the first 

spark is to occur. After providing the desired instant of time, we initialize a shifting factor 

parameter and develop an algorithm that exploits some of the state trajectory properties to 

move the state trajectories by the appropriate amount of time so that the spark occurs at 

N
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the new, user specified time. After obtaining a new state trajectory reference model, we 

use a nonlinear least-squares optimization algorithm to determine the values of the design 

parameters, in our case the parasitic capacitor values, that best track the reference model. 

To show the effectiveness of this technique, we will present a comparison between the 

new simulated state trajectories and the corresponding model reference. 

Hence, we will start Chapter 2 with the state space realization of an  stages Marx 

generator and then generalize the results to develop an algorithm that generates the state 

space model of for any stages Marx generator. In Chapter 3, we explain the system 

discretization process required to successfully apply a nonlinear least-squares algorithm 

that we introduce in the same chapter and show its application to a reference state 

trajectory model. In the following Chapter 4, we present an algorithm that shifts the 

reference state trajectories by a specific shifting factor such that the spark at the 

2=N

N

1+N  

parasitic capacitor occurs at a user-specified time. In the last chapter, Chapter 5, using 

two different shifting factors we apply the state-shifting algorithm of chapter 4 to our 

reference model, apply the nonlinear least-squares optimization algorithm to obtain the 

corresponding parasitic capacitor values and present the simulation results. Finally, we 

conclude this thesis by an overall conclusion summarizing the results that we obtained 

and proposing future work and applications.    

 

1.4 Conclusions: 

We have described in this chapter how a Marx pulse power generator works and listed 

some of the applications for which this generator is used. In addition, we have outlined 

 4



 

the procedures that will be used to achieve our objective of providing the users with more 

control over their Marx generators. 

 

 5



 

Chapter 2 State Space Realization 

We start this chapter by explaining the equations that govern the performance of 

any stages Marx generator, then we present an N 2=N  stages Marx generator, explain 

how it works and derive its corresponding state space model. Extrapolating from the state 

space representations of the 2=N  stages and 4=N  stages (presented in Appendix A) 

Marx generators, we develop an algorithm that automatically generates the state space 

realization any stages Marx generator. N

 

2.1 N-Stages Marx Generator General Characteristics: 

Figure 1 – stages Marx Generator. N

As explained in Chapter 1, an external voltage source simultaneously charges the 

 capacitors. After charging these capacitors to the desired initial charge, 

the discharging process starts into the corresponding parasitic capacitors through their 

respective inductances and load resistances. 

1 2 1, , ,NC C C C−L N

For all of the following stages Marx generator models, the load resistances are such 

that 

N

Ω==== 000,10021 NRRR L , thus the current , for ji Nj ≤≤1 , across the  thj
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resistor will be very small when compared to the corresponding . Hence, we will 

assume from now on that the current across the  inductor is  instead of .  

jI

thj jI jj iI −

As a direct consequence of the previous assumption, during the discharging process of 

the capacitors, the individual stages can be looked at as: N

The first stage of the circuit 

-

Vc1

+

L1

Vc’1
+
-

I1
I2

 

Figure 2- 1st stage discharge process 

the governing voltage law is 

2
1

2

11
'
1

1
11

'
1

dt
VcdLVcVc

dt
dILVcVc

+=⇒

−=
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The remaining stages can be looked at as N

 

Figure 3- Generator’s  stage discharging process thj

By examining Figure 2 we can write any  stage voltage equation as: thj

'
1

'
−+−= j

j
jjj Vc

dt
dI

LVcVc  (1) 

where 
dt

dVcCI jj
1−= , hence equation (1) becomes 

2
' '

12
j

j j j j j

d Vc
Vc Vc L C Vc

dt −= + +  

Note here that to write the previous two equations we assume the following: 

1. at the first stage the stage capacitor  discharges into  while the next stage 

capacitor  is not yet connected. 

1C '
1C

2C

2. For the remaining stages, the parasitic capacitor N '
1JC −  and  discharge into 

the corresponding 

jC

'
JC  while the next stages '

1JC +  

We now know that at the  stage the voltage equation is defined recursively in function 

of the previous parasitic capacitors voltages, therefore we can write a general voltage 

equation for any of the stages: 

thj

N
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2
1

2

1112
1

2

1112

2
'

dt
VcdCLVc

dt
Vcd

CLVc
dt
Vcd

CLVcVc j
jjj

j
jjjj ++++++= −

−−− L  (2) 

We can simplify the above equation if we have the following assumptions: 

LLLL jj ==== − 11 L  

CCCC jj ==== − 11 L  

Hence, if the previous two constraints are satisfied equation (2) becomes 

2 2 2
1' 1

1 1 2 2 2
j j

j j j

d Vc d Vc d VcVc Vc Vc Vc LC
dt dt dt

−
−

⎛ ⎞
= + + + + + + +⎜ ⎟⎜ ⎟

⎝ ⎠
L L  (3) 

Writing the voltage equation at the 1+N parasitic capacitor, we obtain 

2 '
'' 1

1 11 2

2 '
' ' 1

1 1 1 2

N
N N NN

N
N N N N

d VcVc L CVc
dt
d VcVc Vc L C

dt

+
+ ++

+
+ + +

= −

⇒ = +

(4) 

If we replace  by in equation (3), we obtain the following equality j N

2 2 2
' 1 1

1 1 2 2
N N

N N N
d Vc d Vc d VcVc Vc Vc Vc LC

dt dt dt
−

−

⎛ ⎞
= + + + + + + +⎜ ⎟

⎝ ⎠
L L 2 (5) 

If we examine equations (4) and (5) in more details we notice that to have a consistent 

expression for the resonant frequency at the 1stN +  stage, the following equality should 

be satisfied 

1 1N NL C LC+ + =  (6) 

When equality (6) is verified, the resonant radiant frequency of the stage capacitors 

and the 

N

1stN +  parasitic capacitor can be expressed by: 

LC
1

0=ω  
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Using the concept of conservation of energy, we know that all the initial energy stored in 

the  capacitors must be recovered at the stage, i.e. at . Hence, 

knowing that the energy across a capacitor is

NCCC ,,, 21 L thN 1+ 1+NC

2

2
1 CVcE = , if all the currents and voltages 

across stage capacitors are zeros at ft  then the following equality must hold  

∑=++

N

jjfNN VcCtVcC
1

22'
1

'
1 )0(

2
1)(

2
1  (7) 

Where  represents the initial voltage to which the corresponding  capacitor was 

charged and  is the total voltage discharged into the 

)0(jVc thj

)('
1 fN tVc + 1+N  parasitic capacitor.  

Knowing that CCCC NN ==== − 11 L  and 011 VVcVcVc NN ==== − L , the above 

equation (7) becomes 

2
0

2'
1

'
1 2

)(
2
1 CVNtVcC fNN =++  (8) 

the time ft is such that  

0

1
2ft

f
= , 

where 0 0 0
12

2
f f

LC
π ω

π
= ⇒ = . 

The objective of Marx generators is to have , hence equation (8) becomes 0
'

1 )( NVtVc fN =+

2
0

2
0

2'
1 22

1 CVNVNCN =+  

this can only be achieved if 

CNCN ⋅=+
'

1  

this in turn, according to equation (6), implies that 
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N
LLN =+1  

Note that these results are true for all the stages involved in any stages Marx generator. N

 

2.2 N=2-Stage Marx Generator State Space 

Representation 

 
Figure 4- A 2-stages Marx Generator 

The above figure displays an 2=N stages Marx generator. We derive in this section its 

corresponding state space representation. Let 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ).,,,

,,,,

382716
'
35

'
24

'
132211

tIXtIXtIXtVcX

tVcXtVcXtVcXtVcX

====

====
 

Using Graph analysis we can redraw the above circuit as a connection of branches, where 

tree branches represent voltage sources (in our case the capacitors), and links represent 

current sources (in our case the inductors) and resistors. The direction of the arrows is 
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along the voltage drop in the case of a voltage source, or along the current in the case of a 

current source [4]. The corresponding graph representation is therefore: 

 

Figure 5- Graph of N=2-stage Marx Generator 

Having chosen the states to be voltages across capacitors and currents across inductors 

we follow these two simple rules stated in [4]: 

1. Write KCL for every fundamental cut set (i.e. one tree branch and a number of 

links) in the network formed by each capacitor in the tree. 

2. Write KVL for every fundamental loop (i.e. one link and a number of tree 

branches) in the network formed by each inductor in the co-tree (complement of a 

tree). 

Cut set C1: 1
1 1 1 1 1 1 60 0dVcC i I C X i X

dt
+ + = ⇒ + + =&  (9) 

Cut set C2: 
'

' '1
1 1 1 2 2 1 6 1 3 2 70 0dVci I C i I i X C X i X

dt
− − + + + = ⇒ − − + + + =&  (10) 
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Cut set C3: ⇒=+⇒=+ 00 7222
2

2 XXCI
dt

dVcC &
2 7

2

1X X
C

= −&  (11) 

Cut set C4: 
'

' '2
2 2 2 3 2 7 2 4 80 0dVci I C I i X C X X

dt
− − + + = ⇒ − − + + =&  (12) 

Cut set C5: ⇒=−⇒=− 00 85
'
33

'
3'

3 XXCI
dt

dVc
C &

5 8'
3

1X X
C

= −&  (13) 

Loop 1 ( ): 1
'
11 VcVcI →→

⇒=−+⇒=−+ 00 13611
'
1

1
1 XXXLVcVc

dt
dIL &

6 1
1 1

1 1
3X X

L L
= −& X  (14) 

Loop 2 ( ): 2
'
1

'
22 VcVcVcI →→→

⇒=−−+⇒=−−+ 00 234722
'
1

'
2

2
2 XXXXLVcVcVc

dt
dIL &

7 2 3 4
2 2 2

1 1 1X X X X
L L L

= + −&  (15) 

Loop 3 ( ):  '
2

'
33 VcVcI →→

⇒=−+⇒=−+ 00 4583
'
2

'
3

3
3 XXXLVcVc

dt
dI

L &
8 4

3 3

1 1
5X X

L L
= −& X  (16) 

Eliminating  :, 21 ii

Loop 6 ( ): 1
'
11 VcVci →→

'
1 1 1 1 1 1 3 1 1 1 3

1

10 0 ( )R i Vc Vc R i X X i X X
R

+ − = ⇒ + − = ⇒ = −  (17) 

Loop 7 ( ): '
1

'
22 VcVci →→

' '
2 2 2 1 2 2 4 3 2 3 4

2

10 0 ( )R i Vc Vc R i X X i X X
R

+ − = ⇒ + − = ⇒ = −  (18) 
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Replacing (17) in (9) we obtain: 

⇒=+−+ 011
63

1
1

1
11 XX

R
X

R
XC &

1 1 3
1 1 1 1 1

1 1 1
6X X X

R C R C C
= − + −& X  (9) 

Replacing (17) and (18) in (11) we obtain: 

 

 

011

01111

3
'

1764
2

3
21

21
1

1

74
2

3
2

3
'

163
1

1
1

=++−−
+

+−⇒

=+−++−+−

XCXXX
R

X
RR

RRX
R

XX
R

X
R

XCXX
R

X
R

&

&

1 2
3 1 3 4 6' ' ' '

1 1 1 2 1 2 1 1 1

1 1 1R R
7'

1X X X X X
R C R R C R C C C

+
= − + + −& X  (11) 

Replacing (18) in (12) we obtain: 

 
⇒=+++−− 011

4
'
284

2
3

2
7 XCXX

R
X

R
X &

 

4 3 4 7' ' '
2 2 2 2 2 2

1 1 1 1
8'X X X X

R C R C C C
= − + −& X  (12) 

Now we have the following set of equations that best describe the state space model of an 

N=2-stage Marx generator: 

1 1 3
1 1 1 1 1

1 1 1
6X X X

R C R C C
= − + −& X  (9) 

2 7
2

1X X
C

= −&  (10) 

1 2
3 1 3 4 6' ' ' '

1 1 1 2 1 2 1 1 1

1 1 1R R
7'

1X X X X X
R C R R C R C C C

+
= − + + −& X  (11) 

4 3 4 7' ' '
2 2 2 2 2 2

1 1 1 1
8'X X X X

R C R C C C
= − + −& X  (12) 
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5 8'
3

1X X
C

= −&  (13) 

6 1
1 1

1 1
3X X

L L
= −& X  (14) 

7 2 3
2 2 2

1 1 1
4X X X

L L L
= + −& X  (15) 

8 4
3 3

1 1
5X X

L L
= −& X  (16) 

Hence, we can now write our state space representation in the following form: 

XMX ⋅=2& , 

Where  is an 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

22
2

21
2

12
2

11
2

2

MM

MM
M 88×  matrix and X  is a 1x8 column vector. 

11
2M  is a matrix with the following structure: 55×

11

1
CR

−  0 

11

1
CR

 0 0 

0 0 0 0 0 

'
11

1
CR

−  0 
'
121

21

CRR
RR +

−  '
12

1
CR

 0 

0 0 
'
22

1
CR

 '
22

1
CR

−  0 

0 0 0 0 0 

Table 1-  matrix 11
2M

12
2M  is a matrix with the following structure: 35×
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1

1
C

−  0 0 

0 

2

1
C

−  0 

'
1

1
C

 '
1

1
C

−  0 

0 
'
2

1
C

 '
2

1
C

−  

0 0 
'
3

1
C

 

Table 2-  matrix 12
2M

21
2M  is a matrix with the following structure: 53×

1

1
L

 0 

1

1
L

−  0 0 

0 

2

1
L

 
2

1
L

 
2

1
L

−  0 

0 0 0 

3

1
L

 
3

1
L

−  

Table 3-  matrix 21
2M
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22
2M  is a  matrix with the following structure: 33×

0 0 0 

0 0 0 

0 0 0 

Table 4-  matrix 22
2M

Please note for this stages Marx generator structure the following parameters were 

used: 

2N =

1 2 1FC C C= = = , 

1 2 1HL L L= = = ,  

1 2 100 KR R R= = = Ω , 

3 2 1 2H,L N L= × = × =  

' '
1 20.1578005F, 0.28165FC C= = ,  

'
5

1 F
2

CC
N

= =  

with resonant frequency, 0
1 1rad / sec
LC

ω = = . 

During the simulation of this system we initially set 1,2,3 0AI = ,  and 

V, which represents the initial voltage to which the  and  capacitors were 

charged. The following graph represents the voltage trajectories across the parasitic 

capacitors: 

,
1,2,3 0VVc =

12,1 =Vc 1C 2C
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Figure 6- State trajectory representing the voltage across the parasitic capacitors of a 2-
stage Marx generator 

Clearly when looking at Figure 6 one can notice that when the voltage across the first two 

parasitic capacitors is zero the voltage across the third parasitic capacitor 

, where '
3 1,2( ) (0) 2 1 2VfVc t N Vc= ⋅ = ⋅ = 2 2 1 3.142

2 2f
LCt π π π= = = ≈  seconds. Note 

here that at ft  the currents across the inductors and voltages across the stage capacitors 

are also zero. 
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Please refer to Appendix A for the derivation of the state space model of an  stages 

Marx generator. 

4=N

 

2.3 N-Stage Marx Generator general structure state 

space model 

Before delving into the development of the algorithm, it is now clear that the number of 

states for an N-stage Marx generator is 23 += NS . This formula was deduced from the 

fact that for 2 stages the number of states is 8 and for 4 stages the number of states is 14 

(as can be seen in Appendix A). 

Going from the state space models of  2N = and 4 stages Marx generator we can 

generalize and extrapolate the structure of the MN matrix for any number of stages as 

follows: 

N

 MN  can be divided into four blocks as follows: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

2221

1211

MM

MM
M

NN

NN
N  

  is a 11MN ( ) ( 1212 )+×+ NN  matrix with the following structure 

o , where 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+++

+

12,121,12

12,11,1

NNN

N

mm

mm

LLL

MM

MM

MM

LLLLL

o  
11

,11,1
1
CR

mm N −=−= , .0122,112,1 == +→+−→ NNN mm  
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o  0121,2 =+→→ NNm

o '
11

1,1
1
CR

mN =+ , 0123,12,1 == +→++→+ NNNNN mm , '
121

21
1,1 CRR

RRm NN
+

−=++ , 

'
12

2,1
1
CR

m NN =++ . 

o  0122,1, == +→++→+ NiNiNNiN mm , ')1(,
1

ii
iNiN CR

m =−++ , '
1

1
,

iii

ii
iNiN CRR

RRm
+

+
++

+
−= , 

'
1

)1(,
1

ii
iNiN CR

m
+

+++ = , for Ni →= 2 . 

o  0121,12 =+→+ NNm

  is a  matrix with the following structure 12MN ( ) ( 112 +×+ NN )

o  

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+++

+

1,121,12

1,11,1

NNN

N

mm

mm

LLL

MM

MM

MM

LLLLL

o 
i

ii C
m 1

, −= , for Ni ≤≤1 and 0, =jim , for ji ≠ such that and 

. 

Ni ≤≤1

11 +≤≤ Nj

o '1,,
1

j
iiii C

mm =−= +  for NiN 21 ≤≤+ and . Nj →= 1

o and 01,12 =→+ NNm 01,12 =++ NNm . 

  is an 21MN ( ) ( )121 +×+ NN  matrix with the following structure 
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o  

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+++

+

1,121,12

1,11,1

NNN

N

mm

mm

LLL

MM

MM

MM

LLLLL

o 
i

ii L
m 1

, =  for Ni ≤≤1  and 0, =jim , for ji ≠  such that and 

. 

Ni ≤≤1

Nj ≤≤1 0,1 =+ jNm  for Nj ≤≤1 . 

o 
1

1,1
1
L

m N =+  and 0,1 =jm  for 122 +≤≤+ NjN . 

o 
j

iiii L
mm 1

1,, =−= +  for 12 +≤≤ Ni and 11 +→= Nj ,  for 0, =jim ji ≠  

such that 12 +≤≤ Ni  and 121 +≤≤+ NjN . 

  is an  matrix with the following structure 22MN ( ) ( 11 +×+ NN )

o , where all entries 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+++

+

1,11,1

1,11,1

NNN

N

mm

mm

LLL

MM

MM

MM

LLLLL

0, =jim  for all 11 +≤≤ Ni  

and 11 +≤≤ Nj . 

As a direct application of this algorithm, we present in Appendix A the state space model 

of an  stages Marx generator. 8=N
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2.4 Conclusions 

This chapter demonstrated the use of graph theory to determine the state space realization 

of an 2 stages Marx generator. By carefully inspecting the state space models of an 

 and stages Marx generators, we developed an algorithm that generates the 

state space model of any stages Marx generator. To this extent, we have also included 

in Appendix A the state space model of an 

=N

2=N 4=N

N

8=N stages Marx generator using the 

algorithm of sectionXX.  
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Chapter 3 System Discretization and 

Optimization 

We start this chapter with the procedures involved in dicretizing the continuous time 

model obtained in the previous chapter. Then we explain the least-squares nonlinear 

optimization algorithm and use it in conjunction with the generator’s discrete time model 

to determine the values of the parasitic capacitors that will best track a reference state 

trajectory model. Please note that from now on, we will be using an  stages Marx 

generator to explain and demonstrate our work and results. 

4=N

 

3.1 System discretization  

Using the state space generation algorithm of 6Chapter 2, we can now determine the 

matrix MN such that  

)()( tXMtX N ⋅=&  

In particular for , we will have the following continuous time state space model: 4=N

)()( 4 tXMtX ⋅=&  

where M4 , is the  matrix presented in Chapter 2, and  is a  vector 

containing 14 states of the 

1414× )(tX 114×

4=N  stages Marx generator. 

The solution to the above equation is given by  

)0()exp()( 4 XtMtX ⋅⋅=  

Before applying this optimization scheme, the model was discretized using a time step of 

0.002=h  seconds, such that the discrete time model representation is of the form 
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)0()(
)()1(

XGkX
kXGkX

k ⋅=⇒

⋅=+
 

where, 

( )24
4 . . .

2!

Mh
G I Mh H O T= + + + , 

... TOH are the higher order terms that cancel out as the power of  increases i.e. 

as  and 

h

0.. →↑ TOHh I  is an identity matrix of size equal to the size of the M4  matrix, 

that is .  1414×

 

3.2 Optimization overview:  

Optimization is an approach used to determine the optimal value of a set of design 

parameters such that it minimizes or maximizes a defined objective function. Additional 

constraints could be defined as lower and upper bounds on the parameters and inequality 

or equality constraints on functions of the parameters. In the case where the objective 

function and the constraint equations are linear functions of the design variables then the 

problem can be solved as a Linear Programming problem. On the other hand, Nonlinear 

Programming problem, where the objective function and the constraint equations are 

nonlinear in the design variables, the solution is obtained using an iterative process 

during which a new direction of search is calculated at each of the iterations [5]. 

After determining the state space model that best describes the N=4 stages Marx 

generator, the objective became to find what values of the parasitic capacitors yield the 

desired state behavior. Based on our reference model and as a proof of concept, we will 
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try to track the states’ behavior using a nonlinear least-squares optimization algorithm 

and show the effectiveness of this approach when used for our application. 

 

3.3 Optimization algorithm 

The optimization scheme is based on minimizing a set of objective functions 

simultaneously. These functions are stored in a vector of functions called . To generate 

the entries in  F, we choose an interval of time for which we want to track the reference 

state trajectories. The general structure of the equations in  is  

F

F

( ) ( )jkXjiX dr ,1,1 +−+ , 

Where is, a  matrix, obtained from , using a time vector 

spanning the interval seconds, of size 

rX 1410001× rr XMX ⋅=4&

200 ≤≤ T 100011× , a step size , and the 

following initial conditions:  

002.0=h

[ ]0,0,0,0,0,0,0,0,3,3,3,3)0( =rX  

The non-zero entries represent the initial voltages up to which the the capacitors 

 were charged. 4321 ,,, CCCC

Thus,  represents the value of the  entry in matrix  at instant of time 

.  

( jiX r ,1+ )

)

thj rX

)1( +iT

( ) ( ':,:,1 kXGkX dd ⋅=+ , is a 114×  vector, is a G 1414×  matrix, and  a ( )':,kX d 114×  

vector containing the values of the 14 states at time instant 1+k . Therefore, ( )jkX d ,1+  

corresponds to the value of the state at time step thj 1+k . 
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The algorithm we use is a conjunction of line search procedures and a quasi-Newton 

algorithm; the Levenberg-Marquardt method.  The function that is minimized is 

considered as a sum of squares: 

)1()(
2
1)(

2
1)(min 22

2 ∑==
ℜ∈ p

p
U

UFUFUf
N

 

where ( ) ( 1, ) ( 1, )p r dF U X i j X k j= + − + .  

More accurately, according to [5], we are performing a nonlinear parameter estimation to 

fit a model function to data generated in . , has the following structure: rX )(UF

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

)(

)(
)(

)( 2

1

UF

UF
UF

UF

n

M
 

Please note that in the following, represents the number of stages in the Marx 

generator and therefore, for the current case we are studying, 

N

4=N .  has the 

following properties: 

)(UF

  is an ][ ''
2

'
1 N

T CCCU LL= N×1 vector containing the values of the  design 

parameters to be determined. 

N

 is a )(UJ n N×  Jacobian matrix of . )(UF

  the  gradient vector of . )(UG 1×N )(Uf

  the  Hessian matrix of . )(UH N N× )(Uf
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3.3.1 Quasi-Newton Methods: 

Quasi-Newton methods are the most popular methods that use gradient information. 

These methods formulate the problem as a quadratic problem represented by: 

⎟
⎠
⎞

⎜
⎝
⎛ ++= bUcUHUUf TT

U 2
1min)(  

where the Hessian matrix, H , is a positive definite symmetric matrix, is a constant 

vector, and b is a constant. The optimal solution of this problem occurs when the partial 

derivatives of go to zero [5]: 

c

)(Uf

0)( =+=∇ ∗∗ cUHUf  

Where, according to [6], UH
dU

UHUd T

=
⎟
⎠
⎞

⎜
⎝
⎛

2
1

, ( ) c
dU

Ucd T

=  and  represents the 

optimal solution point. 

∗U

The advantage of quasi-Newton methods over Newton methods is the way the Hessian 

matrix H is calculated. Newton-type methods calculate H directly and proceed in a 

direction of descent to iteratively locate the minimum, which introduces computational 

complexities that comes from the numerical generation of H . On the other hand, Quasi-

Newton methods use values of  and )(Uf )(Uf∇  to construct curvature information and 

generate an approximation of what H  should be using the appropriate updating 

technique. The most efficient updating method, that proved to guarantee fast convergence 

rate and global convergence under the right conditions [13], has been developed by 

Broyden [7], Fletcher [8], Goldfarb [9], and Shanno [10], hence its name BFGS: 

kk
T
k

kk
T
k

T
k

k
T
k

T
kk

kk sHs
HssH

sq
qqHH −+=+1  
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where 

)()( 1

1

kkk

kkk

UfUfq
UUs

∇−∇=
−=

+

+  

0H , the starting point of the updating technique, can be set to any positive definite 

symmetric matrix in particular to the identity matrix. Instead of calculating the inverse of 

the Hessian 1−H , the DFP formula, derived by Davidon [11], Fletcher and Powell [12], is 

used. The DFP formula uses the same formula as BFGS however while substituting  

by : 

kq

ks

kk
T
k

kk
T
k

T
k

k
T
k

T
kk

kk qHq
HqqH

qs
ssHH −+= −−

+
11

1  

Similarly, the gradients of the objective function entries are obtained using a numerical 

differentiation method via finite differences based on changing the value of each of the 

design parameters and calculating the corresponding rate of change in the objective 

function [5].  

The direction of search for each iteration can be calculated as follows: 

1 ( )k kd H f U−= − ⋅∇ k  

3.3.2 Line Search: 

Line search is the search method used by the Levenberg-Marquardt algorithm to find the 

search direction towards the minimum of the objective function. At each step of the main 

algorithm, the line-search method generates a new set of design variables for the next 

iteration: 

kkk dUU ∗
+ += α1  
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where  denotes the current iterate,  is the search direction and is a scalar step 

length parameter. 

kU kd ∗α

The line search method attempts to decrease the objective function along the line 

by continuously minimizing the objective function. The line search procedure 

consists of two phases: 

kk dU ∗+α

1. The bracketing phase: corresponding to an interval specifying the range of values 

α to be tried-out along the line  to be searched such that 

.  

kkk dUU ∗
+ += α1

)()( 1 kk UfUf <+

2. The sectioning phase: dividing the bracket determined in the bracketing phase 

into subintervals on which the minimum of the objective function is 

approximated by polynomial interpolation. 

The resulting step length α satisfies the Wolfe conditions: 

( )
( ) k

T
kk

T
kk

k
T

kkkk

dfcddxf

dfcxfdx

∇≥+∇

∇+≤+

αα

αα

2

1)(
 

where  and are constants with 1c 2c .10 21 <<< cc  

These conditions guarantee that we will be using the largest value of α that decreases the 

objective function.  

3.3.3 Quasi-Newton Implementation: 

The quasi-Newton method used consists of two parts: 

 Determining the direction of search from the updated Hessian matrix using the BFGS 

formula; 

By looking at the Hessian update formula again: 
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kk
T
k

kk
T
k

T
k

k
T
k

T
kk

kk sHs
HssH

sq
qqHH −+=+1  

where 

)()( 1

1

kkk

kkk

UfUfq
UUs

∇−∇=
−=

+

+  

The sign of  is dominated by the term : 1+kH k
T
k sq

( ) ( )
( ) ( )
( ) ( )kk

T
k

T
kk

T
k

kkkk
T

k
T

kk
T
k

kk
T

kkk
T
k

dUfUfsq

UdUUfUfsq

UUUfUfsq

α

α

⋅∇−∇=

−+⋅∇−∇=

−⋅∇−∇=

+

+

++

)()(

)()(

)()(

1

1
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Knowing that kα  is a constant 11×  term, we obtain the following expression for : k
T
k sq

( ) k
T

k
T

kkk
T
k dUfUfsq ⋅∇−∇= + )()( 1α  

We know that ∑=
p

kpk UFUf 2)(
2
1)( , then it is guaranteed that  and 

.  Consequently, 

0)( >kUf

0)( >∇ kUf 0)( <− kUf  and . From 

section XX , hence 

0)(0)( <−∇→<∇− T
kk UfUf

)(1
kkk xfHd ∇⋅−= − 0<kd : 

0)( >∇− k
T

k dUf  

k
T

k dUf )(∇−⇒ α  is guaranteed to be positive negative. However, the term 

 can still be negative. This is where the design of k
T

k dUf )( 1+∇−α kα comes into play to 

guarantee that  is positive definite by guaranteeing: k
T
k sq

k
T

kk
T

k

k
T

kk
T

k

dUfdUf

dUfdUf

)()(

0)()(

1

1

∇−>∇−⇒

>∇−+∇−

+

+

αα

αα
 

Hence, the Hessian matrix at each iteration is guaranteed to be positive definite so that 

the direction of search is always negative and hence in a descent direction. d
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Consequently, a small step α  in the same direction of  will decrease the magnitude of 

the objective function.  

d

 The line search procedures; 

At each iteration, before a Hessian update is made, the following condition must be 

checked: 

)()( 1 kk UfUf <+  

where dUU kkk α+=+1 . 

If  does not satisfy the condition above then 1+kU kα  is reduced to form a new iteration 

step 1+kα . The usual reduction method is a bisection method that involves halving the 

current value of α until a reduction in is observed. )(Uf

When a U that satisfies the condition above is found, the Hessian matrix is updated if the 

term  is positive. If  is not positive then further cubic interpolation is performed 

such that a valid is found that satisfies the following conditions: 

k
T
k sq k

T
k sq

1kU +

)()( 1 kk UfUf <+  

dUf T
k )( 1+∇ is small enough such that  0>k

T
k sq

As  approaches the solution point, the procedure goes back to using an kU kα  that is close 

to unity. 
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3.4 Application to the reference model: 

That being said, we applied the nonlinear least-squares optimization algorithm explained 

above to the reference state matrix , displayed in Figure 36 of  Appendix A. The 

results turned out as follows: 

rX

0359876.0'
1 =C , , , . 06721539.0'

2 =C 02362871.0'
3 =C 12467976.0'

4 =C

Looking at the parasitic capacitor values used for the reference model 

0359864.0'
1 =Cr , , ,  067215.0'

2 =Cr 02362875.0'
3 =Cr 12467875.0'

4 =Cr

Hence, we have the following differences between the reference model parasitic 

capacitors values and the one obtained from the least-squares optimization algorithm: 

6'
1

'
1 102.1 −×−=−CCr  ,  ,  , 

. 

7'
2

'
2 109.3 −×−=−CCr 8'

3
'
3 104 −×=−CCr

6'
4

'
4 1001.1 −×−=−CCr

Which shows that the error between the two sets of parasitic capacitors is relatively small 

with an average of 6^1056.2 −×− . 

By using the values for the parasitic capacitors obtained from the optimization algorithm 

we obtained the following state trajectories stored in : optX
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Figure 7- State trajectories  obtained using the parasitic capacitor values from the 
optimization algorithm 

optX

  The relative error between the  and , calculated using the following formula: rX optX

),(
),(),(

),(
jiX

jiXjiX
jierr

r

optr −
= , for 100011 ≤≤ i  and  141 ≤≤ i

Looks as follows: 
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Figure 8- Relative error between  and  rX optX

Clearly the errors overlap at some of the time intervals. The spikes seen in this graph are 

due to the fact that we are plotting the relative error and dividing by which, at 

some points in time, when the voltages across the 

),( jiXr

51=+N  parasitic capacitors are 

approaching zero, have very small values that are reflected at spikes in the graph. 

For example, the minimum of  is , this minimum occurs at index 

 which corresponds to 

)5(:,err 278.6434-

6346=i 69.12)6346( =T  seconds. Hence we have 

, which corresponds to 6434.278)5,6346( −=err

)5,6346(
)5,6346()5,6346(

)5,6346(
r

optr

X
XX

err
−

= , where V 007--1.2786e)5,6346( =rX and 
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V 005--3.5755e)5,6346( =optX . We can see that the difference between these two 

values is very small and both of them are very close to zero however  is of 

order  and is of order  which introduces the spike of  

in the relative error plot. 

)5,6346(rX

710− )5,6346(optX 510 − 6434.278−

Plotting the average of the error between the two set of states and , we obtain the 

following: 

rX optX

 

 

Figure 9- Average error plot between  and rX optX  
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As we can see in the figure, the averages are small having absolute values smaller than 

1.1%, more precisely: 

1.09%))5(:,( =errmean , %2.0))6(:,( =errmean , 0.0112%))7(:,( =errmean , 

4%-4.8104e))8(:,( =errmean , 0.8729%))9(:,( =errmean . 

These results show that the parasitic capacitor values obtained using the least-squares 

nonlinear optimization algorithm yield a set of state trajectories that closely follow our 

reference model  with a relatively negligible error. 

 

3.5 Conclusions 

We have seen in this chapter that using the least-squares nonlinear optimization algorithm 

yields an optimal set of parasitic capacitor values that, when used for input to the Marx 

generator, result in a state model that closely follows the reference model with a 

relatively negligible er

rX

ror. 
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Chapter 4 Generating a new reference model 

 

 user 

4.1 Generating a new reference state model: 

It is worth noting that the trajectories of the 14 states have all the following properties: 

1. They are periodic with period . 

2. Symmetric with respect to, depending on the state in consideration, either their 

minimum or maximum value which occurs at

We introduce in this chapter some of the properties associated with the Marx generator 

state trajectories and develop a state shifting algorithm that shifts the state trajectories by

a specific shifting factor such that the spark generated by the generator occurs at a

specified time instant.  

perT

 
2
per

f

T
t = seconds for each  time 

interval. 

As an illustration of these two properties, consider the voltage across the  capacitor, 

which corresponds to the 9th state of our model: 

 perT

1+N
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Figure 10- Voltage across the 5th parasitic capacitor 

Clearly the state trajectory is periodic with period T 6.284= seconds.   per
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perT  Figur

The maximum during the first period is 11.9999 at 

e 11- Voltage across the 5th parasitic capacitor up to 

3.142
2
per

f

T
t = = seconds, 
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 ft  Figure 12- Voltage across the 5th parasitic capacitor up to

Having this portion of the state up to t 3.142f = seconds, we can rebuild the state 

trajectory for the first period using the symmetrical property with respect to the time 

index at which the maximum occurs. 
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e 13- Rebuilding '
5Vc up to perT using symmetry with respect to ft  Figur

Having rebuilt the data up to the first p  full state trajectory can be genera

adding up the rebuilt data for successive multiples of the period up to 20=T  seconds

eriod, the ted by 

: 
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Figure 14- Rebuilding up to '
5Vc  20totalT =  seconds using the periodicity property 

Having shown the symmetrical and periodical properties of one of the states, in particular 

the voltage across the  capacitor, we will display one more example of these 

properties at the 14th resents the current across the  inductor. The 

corresponding reference trajectory is displayed in the following figure: 

1+N

 state which rep 1+N
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Figure 15- Current across the fifth inductor 

Again by looking at Figure 15 we can see that the trajectory is periodic having the same 

period as the 9th state, that is 6.284=perT  seconds. Displaying the trajectory for the first 

period: 
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Figure 16- Current across the fifth inductor up to per

T

T  

  This trajectory is symmetric with respect to its minimum at 3.142
2
per

f

3.142ft =

t = =  seconds. 

Plotting the curve to  seconds: 
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Figure 17- Current across the fifth inductor up to ft  

Rebuilding the state path up to the first period can be achieved by using the 

symmetrical property of the curve with respect to the time index at which the minimum 

occurs: 

Tper
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Figure 18 es ect to - Rebuilding 5Ic up to perT using symmetry with r p'
ft  

The full path can be, hence, built using the peri city of the original curve as is odi

explained for the 9th state trajectory: 
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Figure 19- Rebuilding Ic up to '  20totalT =5  seconds using the periodicity property 

4.2 Generating the New Reference Model 

The next step to be considered is generating a new ; that is a desired trajectory to be 

followed, during which the peak voltage at the  capacitor is set to be at a new 

desired time value. Hence, this would require shifting all of the 14 states of the 

nX

thN 51=+

4=N  

stages Marx generator by the right fraction of time. As an example, knowing that in our 

reference model  seconds, and wanting the maximum of the 9th state ( 1572) 3.14ft i = =

during the first period to occur at 802.2)1402( ==iT  seconds, than the factor by which 
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the state trajectories should be shifted by is
1572
1402

=fc

etry

tate shift: 

 duri

. To this extent and exploiting the 

stated state trajectory properties of symm  and periodicity, we developed the following 

two steps algorithm to reflect the desired s

1st step: 

• Define both the maximum and minimum ng the first period and their respective 

indices in a variable called temp. 

•  Define a new array called in which values ranging from 0.01% up to 100% 

of the maximum corresponding state variable are stored. 

• Go through the entries in  and compare them to actual values in in order 

to determine their respective indices in . At this stage we consider two scenarios 

o The value in  is exactly equal to one of the entries of  in 

this case its entry index would be the same as in

o The value in  does not have an exact match in . Therefore it 

will eventually be in an interval between a lower and higher bound values 

wer 

bound entry index of its interval. 

The 2nd step: 

• We define the shift factor

• We multiply the corresponding maximum value index by , round the result and store 

it in

tempXnd _

tempXnd _ dX

dX

 tempXnd _  dX

dX . 

 tempXnd _ dX

in dX . Hence its stored entry index is chosen to be equal to the lo

fc . 

fc

inew max__ . 
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• Similarly, we multiply the corresponding  value index by fc , round the result

n

minimum  

and store it in

• Store at  the corresponding maximum value of . 

t the corresponding minimum value of

 

for half a 

new period is 

inew min__ . 

),_max_( jixnewX dX

 ),min__( jinewX n dX . • Store a

• Move the values stored in tempXnd _  into nX  with the corresponding indices being

multiplied by fc . 

• Until now we have built nX period, therefore we use the symmetric property 

of dX  to built nX  for a one period duration such that the 

 

min__per ( ) 2)(max__ ×= ineworinewT . 

Using the periodicity property of , we fill out the remaining entries of  up to • 

 

4.3 Co c

This chapter showed the symmetrical and periodical properties of the  states and 

presented the algorithm used to generate a new reference trajectory  based on these 

properties and the reference model , such that the maximum of the  parasitic 

 time.  

 

dX nX

( 10001) 20totalT i = = seconds. 

n lusion: 

12 +N

nX

rX 1+N

capacitor occurs at a desired point in
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Chapter 5 Implementation and Results 

In this chapter, we apply the state shifting algorithm developed in Chapter 4 to the 

reference state model of the 4=N

thN 51 =+  

 stages Marx generator using two different shifting 

nce, we obtain two

tic

squares nonlinear optimization algorithm explained in 23Chapter 3 to obtain the set of 

co ari en ults and the 

corresponding reference model. 

5.1 Case 1: Maximum voltage across fifth capacitor at 

T= 2.802 seconds 

sing the previous algorithm, we first generated a new  where the maximum voltage 

tic capacitor occurs at 

factors. He  new reference state trajectory models with different 

voltage peaking times at the parasi  capacitor. Next, we apply the least-

parasitic capacitor values that best track the corresponding reference model and present a 

mp son betwe  the state trajectory obtained using the optimization res

 

U 1nX

802.2)1402( ==iTacross the thN 51 =+  parasi  seconds, i.e.  

1572 1
1402

=fc  and .12)9,1402( VX =  n

1nX  By using the algorithm developed in the previous chapter the new state trajectory 

looks as follows: 
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Figure 2 state model

ry. To 

 will only plot the voltage across the  parasitic capacitor in  and 

: 

 1nX  0- New 

The subsequent figure reflects better the time shift applied to the new state trajecto

avoid confusion, I th9 rX

1nX
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Figure 21- Voltage across the fifth parasitic capacitor in  lagging the voltage across 

the fifth parasitic capacitor in 

Please note that this same time shift of

 1nX

rX  

 

4=N  )9(:,1nX  

)9(:,rX

340.0802.2142.3)1402()1572( =−=−TT

1572
1402

=fc  is reflected in all of the 14 states of our 

 stages Marx generator. You can see from the figure that the maximum of

is leading the maximum of our reference model  by 

 seconds.  

Using the nonlinear least-squares optimization algorithm, the optimal set of parasitic 

capacitor values that best follows the new state trajectories in  is the following: 1nX

.F032176.0'
1 =C , .F060065.0'

2 =C , .F02111.0'
3 =C , .F1115.0'

4 =C  

 52



 

Using these values as inputs for the parasitic capacitor values and multiplying 

both andC L  by  to reflect the time shift into the resonant frequencyfc 0ω , we obtain the 

following state trajectories stored in : optX

 

 

Figure 22- State trajectories optX  using the optimal set of parasitic capacitors 
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The states generated using the new set of parasitic capacitors seems to be close

following t tories in 1nX  shown in Figure 20. The relative error etween he two 

set of state trajectories 1nX  and optX

ly 

he trajec  b

 is reflected in the following plots: 

 

Figure 23- Relative error between  and 

As is reflected in the figure, the spikes of the errors along the different states have larger 

magnitudes at certain points in time than the relative error plot shown in Figure 8. The 

absolute maximum magnitudes reached by the error between the, new, reference state

trajectories es

1nX optX  

 

1nX  and the simulated on optX  are as follows:  

3005.8))5(:,(max =err , 479.2271))6(:,(max =err , 684.7525))7(:,(max =err , 

1))8(:,(max =err , 142.0193))9(:,(max =err . 
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The next plot shows the mean of the relative error between the states in 1nX  gener

using the algorithm in the previous chapter and the ones obtained by simulation using the

optimal set of parasitic acitor d stored in optX : 

ated 

 

cap s an

 

 

Figure 24- Average error between 1nX  and optX  

 More precis  the absolute values of the average percentageely s are: 

0.2753%))5(:,( =errmean 12.8018%))6(:,( =errmean 15.9186%))7(:,( =errmean , 

0.5530%))8(:,( =errmean , 2.5711%))9(:,( =errmean . 

, , 
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The above percent averages are small and relatively negligible except for the 6th and 7th 

states that have a bit higher average percent error.  

If we consider the 5th state more closely, we hav ene se  that it has a very large peek of 

3005.8, however it has an overall average relative error of 0.2753% which shows that the 

peek happens at a fixed instant of time, i.e. at 10.7840)5393( ==iT  whereas for the 

remaining time indices the corresponding relative error is very small. 

It is worth noting that the spikes in the relative error magnitude occur at points in time 

where the voltages across the 51=+N parasitic capacitors approach zero volts. Hence, 

choosing smaller time intervals during which there are no sudden jumps in the error 

magnitude decreases the mean error between any two pair of states significantly.  

To better illustrate this statement, the next figure, simultaneously, displays the voltage 

across the first parasitic capacitor (i.e. the 5th state in ) and the relative error between 

 and : 

 

 

 

 

 

 

 

 

 

optX

)5(:,1nX )5(:,optX
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Figure 25- Voltage across the first capacitor and the corresponding relative error 

As stated the spikes occur when the state approaches zero volts. Choosing a time interval 

during which the voltage across the fifth state in  is not approaching zero, in 

articular between 15 and 16 seconds and repeating the same plot as above: 

optX

p
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Figu  
fo

re 26- Voltage across the first capacitor and the corresponding relative error between
r .sec16.sec15 ≤≤ T  

As seen in this figure, the relative error has a small magnitude in this interval: 

and absolute mean percentage of: 

0.0253 (7501:8001,5) 0.0198err− ≤ ≤  

0.0426%))5,8001:7501(( =errmean  

Where seconds and 15)7501( =T 16)8001( =T seconds. 

The spikes observed in Figure 23 are due to numerical discrepancies induced by the 

relative error calculation. For instance, if we again consider in more details the maximum 

of the relative error corresponding to the 5th state: 
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8.0053))5(:,(max =err  

err  matrix, i.e. 8.3005)5,5393( =err . Knowing that  This occurs at index 5393 of the 

),(
),(),(

),(
1

1

jiX
jiXjiX

jierr
n

optn −
= , for 100011 ≤≤ i  and 

 Hence, 

141 ≤≤ i  

)5,5393(
)5,5393()5,5393(

)5,5393(
1

1

n

optn

X
XX

err
−

=

006-5.8184e)5,

, where 

 and . Both of these values have 

small magnitudes, however one of them e other  which induced 

the large jump in the relative error magnitude. To overcome this issue, I will set a 

threshold value such that whenever the order of  is less than  while the order 

of  is less than , set the corresponding relative error value to zero. Hence, with 

the application of this constraint, the absolute maximums of the relative state errors 

become

5393(1 =nX 2101.75)5,5393( −×=optX

 has order 210 − and th  610 −

1nX 310 −

optX  210 −

: 

19.3360))5(:,(max =err , 1))6(:,(max =err , 0.9865))7(:,(max =err , 

0.3239))8(:,(max =err 0.9475))9(:,(max =err, . 

with the following absolute mean percentages: 

2.1227% ))5(:,( =errmean , 3.1654%))6(:,( =errmean , 0.8188%))7(:,( =errmean , 

0.4509%))8(:,( =errmean , 1.3447% ))9(:,( =errmean . 

Thus the absolute maximum and percentage average of the relative errors have been 

greatly decreased, which shows the effect of calculation discrepancies on the error 

especially in regions where the state variable values become minute when approaching 

zero. 
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5.2 Case 2: Maximum voltage across fifth capacitor at 

The next case considered is when the maximum voltage across the  parasitic 

capacitor occurs at 

T= 3.302 seconds 

thN 91=+

3.302 )1652( ==iT  seconds, i.e. 

.12)9,1652(2 VX n =  
15

 

 

 

72
1652

=fc  and 

Hence, the new state trajectories look as follow: 
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Figure 27- New state trajectories

he subsequent figure reflects better the time shift applied to the new state trajectory. To 

void confusion, I will only plot the voltage across the  parasitic capacitor in  and 

: 

2nX  

T

a th9 rX

2nX
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Figure 28- Voltage across the fifth parasitic capacitor in  leading the voltage across 

the fifth parasitic capacitor in 

Please note that this same time shift of

 2nX

rX  

 
1572
1652

=fc

ou can see from

 is also reflected in all of the 14 states 

of our N=4 stages Marx generator. Y  the figure that the maximum of 

 is lagging the maximum of our reference model  by )9(:,2nX )9(:,rX

16.0142.3302.3)1572()1652( =−=−TT  seconds. 

Again using the nonlinear least-squares optimization algorithm, the optimal set of 

parasitic capacitor values that best follows the new state trajectories  is the following: 2nX

.F037819.0'
1 =C , .F070636.0'

2 =C , .F024877.0'
3 =C , .F13122.0'

4 =C  
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Using these values as inputs for the parasitic capacitor values and multiplying 

both andC L  by  to reflect the time shift into the resonant frequencyfc 0ω , we obtain the 

following state trajectories stored in : optX

 

 

Figure 29- State trajectory optX  obtained using the set of optimal parasitic capacitors 

From the above plot, the state trajectories seam to follow the new reference mod

much better

el

 than the previous case. The resulting relative error plots are as follows: 

 2nX  
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Figure 30- Relative error between  and 

Still one can notice the jumps in the magnitude of the relative error that are larger than 

the ones shown in Figure 8, however much smaller than the spikes obtained in the 

previous study case. The absolute maximums of the relative error magnitudes are as 

follows: 

2nX optX  

258.8794))5(:,(max =err , 2319.9))6(:,(max =err , 558.8778))7(:,(max =err , 

1))8(:,(max =err , 418.3080))9(:,(max =err . 

The subsequent plot shows the mean of the relative error between the states in  and 2nX

the ones obtained by simulation optX : 
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Figure 31- Average error between 2nX  and optX  

The absolute values of the averages are: 

( (:,5)) 26.6565%mean err = , ( (:,6)) 3.8268%mean err = , ( (:,7)) 1.0534%mean err = , 

( (:,8)) 0.3932%mean err = , ( (:,9)) 0.5068%mean err =

 

.  

eptio  of the one corresponding to the 5th state. The large 

average error value is due to the larger spikes in the corresponding relative error as 

shown in Figure 30. 

Similarly to the reasoning behind the first case study, the percentages shown above are 

clearly small enough for the exc n
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Again the spikes in the relative error magnitude occur at points in time where the voltage 

across the parasitic capacitors approaches zero volts.  

Similarly to the previous case, choosing smaller time intervals during which there are no 

sudden jumps in the error magnitude decreases the mean error between any two pair of 

states significantly. The following figure, gives a better pictorial explanation of this fact 

by simultaneously displaying the voltage across the fifth parasitic capacitor (i.e. the 9th 

state in ) and the relative error between  and : 

1+N

optX )9(:,2nX )9(:,optX

 

 

 

Figure 32- Voltage across the ninth capacitor and the corresponding relative error 
between  
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As stated the spikes occur when the state approaches zero volts. Choosing a time interval 

during which the voltage across the ninth state in optX  is not approaching zero, in 

particular between 9 and 12 seconds and repeating the same plot as above: 

 

 

 

Figure 33- Voltage across the ninth capacitor and the corresponding relative error 
between for .sec12.sec10 ≤≤ T  

As is reflected by the figure above, the relative error of the 9th state has a small 

magnitude in this interval: 

005--5.51697e6001,9):err(50010.024329- ≤≤ , 

and absolute mean percentage of: 

0.50413%))9,6001:5001(( =errmean  
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Where 10)5001( =T seconds and 12)6001( =T seconds. 

As stated for the previous study case, the spikes observed in Figure 32 are due to 

numerical discrepancy induced by the relative error calculation. For instance, if we 

consider the maximum of the relative error corresponding to the 5th state: 

258.8794))5(:,(max =err  

This occurs at index 6831 of the err  matrix, i.e. 8794.258)5,6831( =err . Knowing that  

),(
),(),(

),(
2

2

jiX
jiXjiX

jierr
n

optn −
= , for 100011 ≤≤ i  and 

 Hence,

141 ≤≤ i  

)5,6831(
)5,6831()5,6831(

)5,6831(
2

2

n

optn

X
XX

err
−

=

5

, where 

 and . Both of these 

values have small ma  and the other 

which induced the large jump in the relative error ma ld value 

such that whenever the order of both  and  is less than or equal to set the 

corresponding relative error value to zero. Hence, with the application of this constraint, 

the absolute maximums of the relative error become: 

2 1027509698.3)5,6831( −×−=nX 3104458.8)5,6831( −×=optX

gnitudes however one of them has order 510 − 310 −  

gnitude. By setting a thresho

2nX optX 310 −

0.4166))6(:,

0.0239))8(:,(max =err , 80.756))9(:,(max =err

6.0306))5(:,(x =err , (max =err , 0.058))7(:,(max =errma 2 , 

. 

 mean percentages: with the following absolute

0.0524%))5(:,( =errmean , 0.0436%))6(:,( =errmean , 0.1377%))7

0.1121% , 4.4930%))9(:,( =errmean . 

(:,( =errmean , 

))8(:,( =errmean
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Again, the absolute maximum and verages h percentage a ave been greatly decreased, 

ns 

5.3 Conclusions: 

The main area of interest in the state trajectories is when the voltage across the 

which shows the effect of calculation discrepancies on the error especially in regio

where the state variable values become minute when approaching zero. 

 

1+N  

capacitor reaches its maximum of '
1N NVc =+ , where )0 }Ni ,,

N

nX

de,

a e error value which underm

('iVc⋅ { 2,1 L=  while the 

voltage across the remaining  parasitic capacitors is approaching zero. Using the state 

space generation algorithm we have explained in Chapter 2 to generate a new desired 

state trajectory  and the least-square nonlinear optimization algori  

ate 

 tha

tiv ines 

the effect of the sudden jumps in the relative error magnitude. It is worth noting here that 

the time shift in this section could have been reproduced by time scaling the state space 

thm to obtain the

optimal set of parasitic capacitors to track the new nX , we obtained optX whose st

trajectories closely follow the desired nX  especially in the interval of interest. Adding a 

constraint to the relative error magnitu  such t whenever the value of the states go 

down below a certain threshold value set the corresponding relative error to zero, proved 

that optX  closely follows nX  with negligible mean rel

model of the Marx generator 

1( ) ( )N

i

X t M X
fc

= ⋅&  t

It is worth noting here that the time shift in ection could have been y 

time scaling the state space model of the Marx generator 

this s reproduced b
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1( ) ( )N

i

X t M X t= ⋅&  

However, even though this concept is applicable for the case of a Ma

fc

rx generator it is 

annot be generalized for any state space mode. The goal here is to show that by shifting 

the state trajectories of a particular system it is still possible to determine the design 

e desired output. 

c

param ters that will yield the 
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Chapter 6 Conclusion 

ze Marx generators with arbitrary large 

number of stages and introduces the advantage of knowing the behavior of the voltages 

across the capacitors and the currents across the inductors at all instance of time and 

hence prevent any unpleasant behavioral surprise.  

We developed in Chapter 4 an algorithm that exploits the state trajectory properties of 

periodicity and symmetry to construct a new set of states that comply with the user’s 

desired specifications. Hence, a user can now specify the time at which he desires the 

voltage across the  parasitic capacitor to peek, that is the time instant 

We demonstrated in this thesis how to generate the appropriate state space model for any 

N stages Marx generator by simply following the algorithm developed in Chapter 2. This 

state space representation can be used to analy

1+N ft  at which 

, where ' '
1( ) (0)N f iVc t N Vc+ = ⋅ { }Ni ,,2,1 L= , and the algorithm generates the appropriate 

state trajectories that achieve that goal. This is where the application of the nonlinear 

least-squares algorithm comes into play. Up till now the new desired state trajectories are 

just theoretical and not the resulting output of the corresponding Marx generator. To be 

able to determine the parasitic capacitor values that produce the desired state behavior, 

we used a nonlinear least-squares optimization algorithm based on the quasi-Newton 

Levenberg-Marquardt algorithm with line search procedures.  

 This strategy was shown to be successful with small relative error between the state 

trajectories in , obtained from the new set of parasitic capacitors, and the new 

desired trajec , generated using the algorithm of Chapter 2. At some particular 

optX

tories in nX
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instants of time, we encountered large jumps in the relative error magnitude. More 

e error peeks occur at instants of time when the voltages across the 

 parasitic capacitors are approaching zero. These jumps can be undermined without 

behavior of a Marx generator using a base 

e 

voltage across the  parasitic capacitor is peeking while the remaining voltages 

and currents are app oaching zero. In addition to the numerical discrepancies induced by 

the calculation of the relative error, these error magnitude jumps might be due to the 

optimization algorithm we are using that has proven to be less efficient when 

encounterin  inaccuracies. Hence, by setting a threshold value such that 

whenever the state value goes below that threshold the error is set to zero, we were able 

to eliminate all the spikes and hence obtain both relative error and mean error values that 

are negligible. It i g that we gen

tages generator using the 

e 

are 

precisely, the relativ

1+N

any seriou

N 1+

r

g line search

s wo

trajectory models of 1, 2, , 2N N− − L stages Marx generators. Besides that, it would b

interesting to apply the concepts in this thesis to an actual Marx generator and comp

s effect on the system’s behavior; primarily because we are approximating the 

reference model that is by no means ideal and 

because they do not occur at time intervals of interest that is the time intervals when th

( )st

rth notin erated the new sets of “desired” state 

trajectories based on a model that is an approximation of what the behavior of a Marx 

generator would be. Therefore, obtaining and basing our new state trajectories on a 

reference model that has proven to be more accurate can greatly improve our results as 

we will be attempting to track more realistic state trajectory models. Other issues worth 

looking at are using another variation of the optimization algorithm such as the Guass-

Newton methods and predicting the state trajectories of an N s
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the simulation results to the practical results and, thus, obtain a better idea of the acc

and effectiveness of the results obtained in this thesis.  

fore by applying the concepts developed in this thesis to a Marx generator circuit, 

we have showed that by generating the state space model of any circuit in combination 

with the appropriate optimization algorithm, a user can specify a desired output trajectory

of hi circuit at a particular instant of time and determine in return the design parameters 

that yield a trajectory that best tracks his output reference model.  

As an interesting application of the concepts developed in this thesis, provided 

appropriate safety measures are taking into consideration, I propose providing the use

with an interface through which he can specify the instant of time he desires th

the 1N +  parasitic capacitor to occur and the number of stages he desires, this numb

would be dependant on the charging voltage sources available for the user and the 

maximum output voltage value he is seeking. The device’s memory will contain the state 

space trajectories for a wide range of stage numbers. The tool will then use the shif

algorithm of Chapter 4, the state space generation algorithm of Chapter 2 and the 

nonlinear least-squares optimization algorithm of Chapter 3 to generate the appropria

parasitic capacitor values that will simulate the state space trajectories that conform to th

user’s specifications. 

uracy 

There

 

r 

e spark at 

er 

ting 

te 
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Appendix A: 

A.1 N=4-Stage Marx Generator 

Now computing the state space realization of an N=4 stages Marx generator: 

Figure 34- A N=4-Stage Marx Generator 

Let 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

.,
,,,,,

,,,,,,

514413

312211110
'
59

'
48

'
37

''

tIXtIX
IXtIXtIXtVcXtVcXtVcX

tVcXtVcXtVcXtVcXtVcXtVcX

==
======

======

Similarly to the 2-stage Marx generator, using graph theory we obtain the following 

graph 

( )
( ) ( )

,
261544332211

t  
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Figure 35- Graph representation of a 4-stage Marx generator 

Having chosen the states to be voltages across capacitors and currents across inductors 

we follow these two simple

. Write KCL for every fundamental cut set (i.e. one tree branch and a number of 

links) in the network formed by each capacitor in the tree. 

4. Write KVL for every fundamental loop (i.e. one link and a number of tree 

branches) in the network formed by each inductor in the co-tree (complement of a 

Cut set C1:

 rules stated in 93[4]: 

3

tree). 

 1
1 1 1 1 1 1 100 0dVcC i I C X i X

dt
+ + = ⇒ + + =& (A.1.1) 

Cut set C2: 
'

' '1
1 1 1 2 2 1 10 1 5 2 110 0dVci I C i I i X C X i X

dt
− − + + + = ⇒ − − + + + =&  (A.1.5) 

Cut set C3: ⇒=+⇒=+ 00 11222
2

2 XXCI
dt

dVcC &  2 1
2

1
1X X

C
= −&  (A.1.2) 

Cut set C4: 
'

' '2
2 2 2 3 3 2 11 2 6 3 120 0dVci I C i I i X C X i X

dt
− − + + + = ⇒ − − + + + =&  (A.1.6) 
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 ⇒=+⇒=+ 00 12333
3

3 XXCI
dt

dVc
C &

3 1
3

1
2X X

C
= −&Cut set C5:  (A.1.3) 

Cut set C6: 
'

' '3
3 3 3 4 4 3 12 3 7 4 120 0dVci I C i I i X C X i X

dt
− − + + + = ⇒ − − + + + =&  (A.1.7) 

Cut set C7: ⇒=+⇒=+ 00 13444
4

4 XXCI
dt

dVcC &
4 1

4

1
3X X

C
= −&  (A.1.4) 

Cut set C7: 
'

' '4
4 4 4 5 4 13 4 8 140 0dVci I C I i X C X X

dt
− − + + = ⇒ − − + + =&  (A.1.8) 

Cut set C8: ⇒=+−⇒=+− 00 9
'
514

'
5'

55 XCX
dt

dVc
CI &

9 1'
5

1
4X X

C
=&  (A.1.9) 

Loop 1 ( VcI →→ '
11 1Vc ): 

⇒=−+⇒=−+ 00 151011
'
1

1
1 XXXLVcVcdIL &

10 1 5
1 1

1 1

X X X= −&  (A.1.10) 
dt L L

Loop 2 ( ' VcVcVcI →→→ ): 2121

⇒=−−+⇒=−−+ 00 2561122
'
1

'
2 XXXXLVcVcVc &

'

11

2
2 dt

dIL

2 5 6
2 2 2

1 1 1X X X X= + −  (A.1.11) 

3I →

L L L
&

Loop 3 ( VcVcVc →→ ): 3
'
2

'
3

12 3 6 7

⇒=+ 03
'
3

3
3 Vc

dt
L −−+⇒=−− 0 671233

'
2 XXXXLVcVc

dI &

3 3 3

1 1 1X X X X
L L L

= + −&  (A.1.12) 

Loop 4 ( ): 4
'
3

'
44 VcVcVcI →→→

⇒=−−+⇒=−−+ 00 4781344
'
3

'
4

4
4 XXXXLVcVcVc

dt
dIL &

13 4
4 4

7 8
4

1 1 1X X
L

=& X X
L L

+ −  (A.1.13) 
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Loop 5 ( 5I → '
4

'
5 VcVc → ): 

⇒=−+⇒=−+ 00 89145
'
4

'
5

5
5 XXXLVcVc 14 8 9

5 5

1 1X X X
L L

= −&
dt
dI

L &  (A.1.14) 

Eliminating

Loop 6 ( ): 

 :,,, 4321 iiii  

1
'
11 VcVci →→

'
1 1 1 1 1 1 5 1 1 1 5

1

10 0 ( )R i Vc Vc+ −  R i X X i X X
R

= ⇒ + − = ⇒ = −  (A.1.15)

VcVc → ): '
1

'
2Loop 7 ( 2i →

' '
2 2 2 21 2 6 5 2 5 6

2

10 0 ( )R i Vc Vc R i X X i X X
R

+ − = ⇒ + − = ⇒ = −  (A.1.16) 

Loop 8 ( ): '
2

'
33 VcVci →→

' '
3 3 3 2 3 3 7 6 3 6 7

3

10 0 ( )R i Vc Vc R i X X i X X
R

+ − = ⇒ + − = ⇒ = −  (A.1.17) 

Loop 9 ( ): '
3

'
44 VcVci →→

' '
4 4 4 3 4 4 8 7X X− = 4 7 8

4

10 0 ( )R i Vc Vc R i i X X
R

+ − = ⇒ + ⇒ = −  (A.1.18) 

 (A.1.15) in (A.1.1) we tain: Replacing  ob

⇒=+−+ 011
105

1
1

1
11 XX

R
X

R
XC &

1 1 5
1 1 1 1 1

1 1 1
10X X X

R C R C C
= − + −& X  (A.1.1) 

Replacing (A.1.15) and (A.1.16) in (A.1.5) we obtain: 

 

011

01

1 2
5 1 5 6' X

R C
+ 10 11' ' ' '

1 1 1 2 1 2 1 1 1

1 1 1 1R RX X X X X
R C R R C C C

+
= − + −&  (A.1.5) 

11
1 +− X 1

5
'

111106
2

5
21

21
1

1

116
2

5
2

5
'
1105

11

=++−−
+

+−⇒

=+−+−+

XCXXX
R

X
RR

RRX
R

XX
R

X
R

XCXX
RR

&

&
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Replacing .1 (A.1.16) and (A .17) in (A.1.6) we obtain: 

011

01111

6
'
212117

3
6

32

32
5

2R

127
3

6
3

6
'
2116

2
5

2

=++−−
+

+−⇒

=+−++−+−

XCXXX
R

X
RR

RR
X

XX
R

X
R

XCXX
R

X
R

&

&

 

2 3
6 6

1
5 7 11 12' ' ' ' '

2 2 2 3 2 3 2 2 2

1 1 1R RX X X X X X
R C R R C R C C C

+
+ + −  (A.1.6) 

Replacing (A.1.17) and (A.1.18) in (A.1.7) we obtain: 

= −&

011

01111 '
36− CX

R

7
'
313128

4
7

43

43
6

3

138
4

7
4

7127
33

=++−−
+

+−⇒

=+−++−+

XCXXX
R

X
RR

RR
X

R

XX
R

X
R

XXX
R

&

&

 

3 4
7 7

1
6 8 12 13' ' ' ' '

3 3 3 4 3 4 3 3 3

1 1 1R RX X X X X X
R C R R C R C C C

+
− + −  (A.1.7) 

Replacing (A.1.18) in (A.1.8) we obtain: 

= +&

011
8

'
414138

4
7− XX

R4

=++−+ XCXX
R

&  

8 7 8 13' ' ' '
4 4 4 4 4 4

1 1 1 1
14X X X X

R C R C C C
= − + −& X  (A.1.8) 

ns: Now we have the following set of equatio

10
1

5
11

1
11

1
111 X
C

X
CR

X
CR

X −+−=&  

11
2

2
1 X

C
X −=&  

12
3

3
1 X

C
X −=&  

13
4

4
1 X

C
X −=&  
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11'
1

10'
1

6'
12

5'
121

21 1111 XXXXRRXX −++
+

−=&
1'

11
5 CCCRCRRCR

 

12'
2

11'
2

7'
23

6'
232

32
5'

22
6

1111 X
C

X
C

X
CR

X
CRR
RRX

CR
X −++

+
−=&  

13'
3

12'
3

8'
34

7'
343

43
6'

33
7

1111 X
C

X
C

X
CR

X
CRR
RRX

CR
X −++

+
−=&  

14'
4

13'
4

8'
44

7'
44

8 X
C

X
C

X
CR

X
CR

X −+−=  1111&

14'
5

9
1 X

C
X =&  

5
1

1
1

10
11 X
L

X
L

X −=&  

6
2

5
2

2
2

11
111 X
L

X
L

X
L

X −+=&  

7
3

6
3

3
3

12
111 X
L

X
L

X
L

X −+=&  

8
4

7
4

4
4

13
111 X
L

X
L

X
L

X −+=&  

9
5

8
5

14 X
L

X
L

X −=&  11

Hence, we can now write our state space representation of the form: 

XMX ⋅=4& , 

Where 4

MM

MM
M  is a 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

22
4

21
4

12
4

11 1414×  matrix and X is a 1x14 column vector. 
4
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11
4M  is a 9x9 matrix and has the following structure 

RC
1

−  0 0 0 
RC
1  

'
1

1
RC

 '
1

)(
RRC

RR +
−  '

1

1
RC

 

'
2

1
RC

 '
2

)(
RRC

RR +
−  '

2

1
RC

 

'
3

1
RC

 '
3

)(
RRC

RR +
−  '

3

1
RC

 

'
4

1
RC

 '
4

1
RC

−  

0 0 0 0 

0 

 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

Table 5-  matrix 11
4M
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21
4M  is a 6x9 matrix and has the following structure: 

L
1  0 0 0 

L
1

−  

L
1  

L
1  

L

L L
1

L
1

−  

L
1  0 0 

L
1  

L
1

−  

5

1
L

 
5

1
L

−  

0 0 0 0 

0 1

1  

0

−

0  0 
−  0 0 0 

0 0  0 0 0 0 

0 0  0 

0 0 0 0 0 0 0 

Table 6-  matrix 

 is a 9x5 matrix and has the following structure: 

21
4M

12
4M

C
1

C
1

−  

C
1

−  

C
1

−  0 

'
1

1
C

 '
1

1
C

−  

'
2

1
C

 '
2

1
C

−  0 0 

 0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 

0 0 0 

0 
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0 0 1  '
3

'
3

1
C

−  

'
4

1
C

 '
4

1
C

−  

'
5

1
C

 

s to all the constraints  fo sta ato

C
0 

0 0 0 

0 0 0 0 

Table 7-  matrix 

 is a 5x5 matrix and has the following structure: 

0 0 0 0 0 

12
4M

22
4M

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

Table 8-  matrix 

Please note that the stages Marx generator structure that we are presenting 

conform set in Chapter 2 r a general ges Marx gener r and 

has, similarly to the stages Marx generator, the following parameter values: 

,  

, 

F

22
4M

4N =

N

2N =

1 2 3 4 1C C C C C F= = = = = , 

1 2 3 4 1L L L L L H= = = = =

1 2 3 4 100,000R R R R R= = = = = Ω

5 4 1 4L N L H= × = × = , 

' ' ' '
1 2 3 40.03599 , 0.067215 , 0.02363 , 0.12468C F C F C F C= = = = , 
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'
5

1
4

CC F
N

= =  

The sim  were obtained by initially setting ulation results for this system 1,2,3,4,5 (0) 0I A= ,  

 and ,
1,2,3,4,5 (0) 0Vc V= 1,2,3,4 (0) 3Vc V= , which represents the voltage value to which the 

 capacitors were initially charged: 1 2 3 4, , ,C C C C

 83



 

 

 

Figure 36-State trajectory representing the voltage across the parasitic capacitors of a 4-
stage Marx generator 

Similarly to the N=2-stage Marx generator, at the instant of time seconds, the 

voltage across the first four parasitic capacitors, , is approximately zero, 

and the voltage across the fifth parasitic capacitor, 

 3.142ft =

,
4

,
3

,
2

,
1 ,,, VcVcVcVc

,
5 1,2,3,4( ) (0) 4 3 12 .fVc t N Vc V= ⋅ = ⋅ =  
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A.2 N=8-Stage Marx Generator 

Using the algorithm developed in Chapter 2 we can generate the corresponding 

M8 matrix for an N=8-stages Marx generator.  

First we know that the number of states expected from an N=8 stages Max generator 

would be 2628323 =+⋅=+= NS , therefore our matrix would 

have to be a 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

22
8

21
8

12
8

11
8

8

MM

MM
M

2626× matrix. 

If we start by considering , we know that it will have a size of 11
8M ( ) ( )1212 +×+ NN , 

that is  with the following structure:   1717×

[ ]12
11

11
11

11
8 mmM = , where  and  are respectively 11

11m  12
11m 817×  and 

matrices: 

917×  
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11
11m  looks as follows: 

11

1
CR

−  0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0  0 0 0  0 0

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

11CR
1  0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

Table 9- matrix 11
11m
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Due  of entries in , it will be expressed as , where 

 and re res ctively and 

to the large number  12
11m [ ]bam =12

11

a b a 41 17pe 7× 5×  matrice

Hence,  has the following structure: 

s. 

−  

−  

a

11

1
CR

 

'
121

21

CRR
RR +

−  '
12

1
CR

 0 0 

'
22

1
CR

 '
232

32

CRR
RR +

'
23

1
CR

 

'
33

1
CR

 '
343

43

CRR
RR +

'
34

1
CR

 

'
44

1
CR

 '
454

54

CRR
RR +

−  

'
55

1
CR

 

0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 

0 

0 0 

0 0 0 

0 0 0 0 

0 0 0 0 
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0 0 0 0 

0 0 0 0 

[ ]bam =12
11  Table 10- a matrix such that 

And the fo owing structure: 

0 0 0 

b ll

0 0  

0 0 0 0 0  

0 0 0 0 0  

0 0 0 0 0  

0 0 0 0 0  

0 0 0 0 0  

0 0 0 0 0  

'
7C 8C

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

'
45

1
CR

 0 0 0 0 

'
565

65

CRR
RR +

−  '
56

1
CR

 0 0 0 

'
66

1
CR

 '
676

76

CRR
RR +

−  '
67

1
CR

 

'
7

'
78

1
CR

 0 

0 0 

0 

7

87

RR
RR +

−  
7

1
R
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0 0 

8
' '

88

1
CR

−  

12

0 0 0 0 0 0 

−

1
C

C

8

1
CR

 
0 

0 0 0 0 0 

Table 11- matrix such that b [ ]bam =12
11  

Similarly if we now consider , it will have be a 8M ( ) ( )112 +×+ NN  matrix, that is 

 with the following structure: 917×

1

1
C

−  

2

1
C

−  

3

1
C

−  

4

1
C

5

1
C

−  

6

7

1
C

−  

8

1

'
1

1
C

 '
1

1
C

−  0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 

0 0 0  0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 
−  0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 
−  0 
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0 
'
2

1
C

 '
2

1
C

−  

'
3

1
C

 '
3

1
C

−  

' '

'
5

1
C

 '
5

1
C

−  

'
6

1
C

 '
6

1
C

−  

'
7

1
C

 '
7

1
C

−  

'
8

1
C

 '
8

1
C

−  

'
9

1
C

 

( )

21
8 mmM = here 21  and 21  are respectively , w 11m 12m × ices. 

0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 

4 4C
1

C
 1

−  0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

Table 12-  matrix 

’s size is ), i.e. it is a 

12
8M

21
8M ( 121 +×+ NN 179×  matrix with the following structure: 

[ ]12
21

11
21   89×  and  matr

 has the following structure: 

99

11
21m

1

1
L

 

2

1
L

 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 
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0 0 

0 0  0

0 0

0 0

0 0  0 

0 0

0 0

3

1
L

 

4

1
L

 

5

1
L

 

6

1
L

 

7

1
L

8

1
L

 

0 0 0 0 0 

0 0 0 0 

 0 0 0 0 0 

 0 0 0 0 0 

 0 0 0 0 

 0 0 0 0 0 

 0 0 0 0 0 0 

Table 13-  matrix 

 has the following structure: 

11
21m

12
21m

1

1
L

−  0 0 0 0 0 0 0 0 

2

1
L

 
2

1
L

−  

3 3

4

1
L

 
4

1
L

−  

5

1
L

 
5

1
L

−  0 0 0 0 

0 0 0 0 0 0 0 

0 1
L

 1
L

−  0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 

 91



 

0 0 0 0 

0 0 0 0 0 
−  0 0 

0 0 0 0 0 0 
−  0 

0 0 0 0 0 0 0  1

e 1 mat

 th trix 22 1 +×

0 

6

1
L

 
6

1
L

−  

7

1
L

 
7

1
L

8

1
L

 
8

1
L

9

1
L

 
9

0 

0 0 0 0 0 0 0 0 0 

0 0 0 

L
−  

Tabl 4- rix 

The last part of e

12
21m  

 M8  ( ) ( )1

99×

ma  is the 8M block which has a size of + NN , 

therefore it is a matrix full of zeros: 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

Table 15-  matrix 22
8M
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