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Abstract

Finite-time stability of nonlinear networked control systems is studied

in a stochastic and in a deterministic setting. Focusing on packet dropping, a de-

terministic model for networked control systems is realized by including the network

dynamics in such model. This links the fields of study in control of networks and

networked control systems.
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Chapter 1

Introduction

1.1 Introduction

In several recent works, the problem of networked control systems (NCS) has been

posed and partially investigated. This new problem deals with the possibility of con-

trolling a system remotely via a communication network and as such, instantaneous

and perfect signals between controller and plant are not achievable (see Figure 1.2).

This casts classical control problems into a setting that provides control solutions to

remotely located systems such as: assembling space structures, exploring hazardous

environment, executing tele-surgery, and many others.

Within this new setting we are able to overcome the necessity of collocated control

and processes, thus overcoming many of the spatial restrictions. Networked control

systems however, do not exist without new challenging sets of problems. In fact, the

networks introduce delays of time-varying and possibly random nature, packet losses

that degrade the performance of the system and possibly destabilize it, and limited

bandwidth that compromises our otherwise achievable control objective. Most of

classical control theory is based on the assumption that the controller, system, and

1
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Plant

Network

Controller

Figure 1.1: Networked Control System

sensors are collocated so the aforementioned problems were not apparent. A chal-

lenging aspect of the networked setting is that we need to compensate for the effects

of the network in order to retain stability and performance of the system under study.

Many models have been proposed to study the effects of the network, and in this

thesis we aim to provide a novel model that links the effects of the network to the

traditional control design.

Another novel aspect of this thesis is that, unlike the current trends that study the

Lyapunov stability of networked systems, we use the concept of finite-time stability

where specific bounds are desired on the performance of the system and the study is

restricted to a finite interval of time. This issue appears in several problems where

we are interested in the system’s behavior only over a specific, finite-time interval.

We also study how to control a system through a network which may subject the

system to the loss of data.

2



Chapter 1. Introduction

1.2 Thesis Outline

The remainder of this thesis is divided as follows.

1.2.1 Chapter 2

Chapter two states the general problem and in particular describes the model used

to control a nonlinear plant, assuming a model of the original plant available on the

controller’s side of the network. The state of the plant is sent through the network

and is therefore subject to packet dropping. On the other side of the network, when

a state is received it is used to update the model and the controller, or else the state

provided by the model is used to update the controller. In both cases the controller

is attempting to stabilize the closed-loop plant. The stability of the plant depends

on the rate of packets lost, the accuracy of the model, and the initial conditions for

the model and the plant. We also define in this chapter a specific class of networked

control systems to study, and describe some of its properties.

1.2.2 Chapter 3

In this chapter we provide a model description of the networks used. For such models

we describe how packets are dropped, and thus complete our model of the networked

control system. In particular we describe two possible scenarios (stochastic and

deterministic) of packet loss and complete the dynamics of the overall network.

1.2.3 Chapter 4

In chapter four finite-time stability of a general control systems is detailed. We

focus in the first part on deterministic finite time stability, while in the second part

3
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Model

Plant

NetworkController

Figure 1.2: Model-Based Networked Control System

stochastic finite-time stability is studied.

1.2.4 Chapter 5

Exploiting the tools provided in the previous chapters we study in this chapter finite-

time stochastic stability of the networked control system, in which the packet drop-

ping is modelled as a random variable.

1.2.5 Chapter 6

In chapter six the deterministic model for the packet dropping is considered, and the

deterministic finite-time stability is investigated for this case.

4



Chapter 1. Introduction

1.3 Contributions

One major contribution of this thesis lies in applying finite-time stability theory to

a networked control system. Moreover, we provide a new link between two different

areas of study, namely control of networks and networked control systems. Several

efforts have been applied into the research of both areas [1]-[25], [34]-[38], and this

thesis proposes a method to bridge their gap. Other contributions may also be found

in extending model-based networked control systems into the nonlinear domain.

5



Chapter 2

Networked-Control-Systems

2.1 Introduction

In [1] a model for the networked control of linear time invariant systems was pro-

posed. The network is modelled as a sampler placed between the plant and sensors

on one side, and the controller on the other side of the network. Utilizing an ap-

proximate model of the process at the controller’s side, the controller may be able

to maintain stability while receiving only periodic updates of the actual state of the

plant. Whenever a new update is received, the model is initialized with the new

information. This idea was utilized in [2], where the system evolved in discrete-time,

and state updates were either received or dropped at each sampling time due to the

effects of the network. The characterization of such a dropout is achieved through the

use of a Markov chain that takes on values of 0 or 1 depending on whether a sample

was lost or received, respectively. Recently in [11], the model for a continuous-time

plant and a network modelled with a fixed rate sampler was extended to bounded,

yet random sample times driven by a Markov chain.

In this chapter, we extend the discrete-time result of [2] into a nonlinear setting,

6
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i.e. our plant and model used for state estimation are both nonlinear. We utilize the

same model of packets being dropped according to either a stochastic model, or a

deterministic one. In both cases we obtain results that guarantee finite-time stability

in a stochastic or deterministic setting respectively.

The chapter is organized as follows: in Section 2.2, we reformulate the model-

based networked control problem in the nonlinear discrete-time setting with generic

packet dropout. We then describe in Section 2.3 a particular class of NCS and

describe its properties. Finally Section 3.5 reports our conclusions.

2.2 Problem Formulation

In [2] a discrete-time model-based control with observation dropouts is proposed for

linear discrete-time systems. Our objective in this chapter is to propose a similar

framework in the case of nonlinear systems, and to study the finite-time stability of

the resulting closed-loop system.

We consider the nonlinear discrete time plant described by the following

xk+1 = f(xk) + g(xk)uk. (2.1)

where xk ∈ IRn, and f, g : IRn → IRn are two sufficiently smooth vector functions,

and uk ∈ IR is a scalar input.

As depicted in Figure 2.1, discrete-time model-based control contains a plant and

a model with the network residing between the sensors of the plant and the model

and actuators.

The network is modelled as a two-value variable sequence θk, (assumed for now

to be generic), where a measurement is dropped if θk = 0, and a measurement is

7
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xk+1 = f(xk) + g(xk)uk

x̂k+1 = f̂(x̂k) + g(x̂k)uk

Sensor

x̂k

xk

x̂k := xk

Network

Controller

uk = K(x̂k)

Figure 2.1: Model-Based NCS

received when θk = 1. Due to our inability of receiving an update of the plant’s state

at each discrete instant of time, we use an inexact plant model on the controller side

to provide us with a state estimate when packets are dropped. Such a model is given

by

x̂k+1 = f̂(x̂k) + ĝ(x̂k)uk. (2.2)

in which x̂k ∈ IRn, and f̂ , ĝ are two smooth vector functions that map IRn into IRn.

In order to carry out the analysis, we define the estimation error as ek = x̂k −xk,

and augment the state vector xk with ek so that the closed-loop state vector is given

by zk =
(

xT
k ; eT

k

)T
, zk ∈ IR2n. The closed-loop system evolves according to

zk+1 =





f(xk)

(f(xk) − f̂(xk)) + (1 − θk)((f̂(xk) − f̂(x̂k)))





+





g(xk)K(x̂k)

(g(xk) − ĝ(xk))K(x̂k) + (1 − θk)(ĝ(xk) − ĝ(x̂k))uk



 . (2.3)

8
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In the above model θk ∈ {0, 1} is a sequence (or equivalently, ϕk = θk is a dropping

sequence) that indicates the reception (θk = 1) or the loss (θk=0) of the packet

containing the state measurement xk. We assume that at each step time k a state

is sent across the network in one packet. If a packet is received, it is used as an

initial condition for the next time step in the model, otherwise the previous state of

the model is used. Note that uk = K(x̂) is a scalar state-feedback input. We then

classify the NCS errors as follows:

(I). Model structure errors

ef1(xk) = f(xk) − f̂(xk) (2.4)

eg1(xk) = g(xk) − ĝ(xk). (2.5)

These are the errors between the plant and the model evaluated at the plant’s

state, and are therefore dependent on the system’s structure.

(II). State dependent errors

ef2(xk, x̂k) = f̂(xk) − f̂(x̂k) (2.6)

eg2(xk, x̂k) = ĝ(xk) − ĝ(x̂k). (2.7)

These represent the errors between the model evaluated at the plant’s state

and at its own state, i.e. the error introduced by the difference in the states.

(III). Structure and state dependent errors

ef3(xk, x̂k) = f(xk) − f̂(x̂k) (2.8)

eg3(xk, x̂k) = g(xk) − ĝ(x̂k), (2.9)

which include both model structure and state dependent errors.

9
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With the new notation, the system (2.3) becomes

zk+1 =





f(xk) + g(xk)uk

ef1(xk) + eg1(xk)uk + (1 − θk)(ef2(xk, x̂k) + eg2(xk, x̂k)uk)





Based on the value of θk we have two possible situations:

1. for θk = 1 the closed-loop system becomes

zk+1 =





f(xk) + g(xk)uk

ef1(xk) + eg1(xk)uk



 (2.10)

2. for θk = 0, we have

zk+1 =





f(xk) + g(xk)uk

ef3(xk, x̂k) + eg3(xk, x̂k)uk



 (2.11)

For the remainder of this work we use the following compact form to represent

the closed-loop system, and to highlight the fact that θk represents packet dropouts,

zk+1 = H1(zk) + H2(zk)(1 − θk), k ≥ 0 (2.12)

with

H1(zk) = F1(zk) + G1(zk)uk (2.13)

H2(zk) = F2(zk) + G2(zk)uk. (2.14)

10
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F1(zk) =





f(xk)

ef1(xk)



 (2.15)

F2(zk) =





0

ef2(xk, x̂k)



 (2.16)

G1(zk) =





g(xk)

eg1(xk)



 (2.17)

G2(zk) =





0

eg2(xk, x̂k)



 (2.18)

in which Hi, Fi, Gi ∈ IR2n, i = 1, 2, are vector functions that map IR2n into IR2n.

Moreover, we assume that the control law uk = K(x̂k) stabilizes, in some sense,

the plant in the case of full-state availability.

In the following we will refer to such networked-control-system (NCS) as a quadru-

ple (Plant,Model, Controller,Dropping Sequence {ϕk}) and denote it as model-

based networked control system MB − NCS.

2.3 Bounded Networked Control System

Next we define a particular class of NCS for which we characterize the accuracy of the

model in representing the plant’s dynamics, and describe how the model discrepancy

affects the NCS structure.

Definition 2.1 Class CB−NCS NCS

A MB-NCS of the form (2.12), belongs to a class CB−NCS with the bounds

(Bf , Bg, Befi, Begi; Bhi
), i = 1, 2 if for all k = 0, . . . , N, N ∈ N and for all xk ∈ S,

11
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where S is a given subset of IRn, the system structure and error norms are bounded

as follows

||f(xk)|| ≤ Bf (2.19)

||g(xk)u(x̂k)|| ≤ Bg(x̂k)

||ef1(xk)|| ≤ Bef1

||ef2(xk, x̂k)|| ≤ Bef2(x̂k)

||eg1(xk)u(x̂k)|| ≤ Beg1(x̂k)

||eg2(xk, x̂k)u(x̂k)|| ≤ Beg2(x̂k)

where Bf , Bef1 are constant bounds and Bg(x̂k), Bef2(x̂k), Beg1(x̂k), Beg2(x̂k) are

bounds that depend on the model state. Such NCS are called bounded model-based

NCS (B-MB-NCS).

N

The above definition describes the class of NCS, for which it is possible to define

bounds on the plant and the NCS errors, and where such bounds depend only on

the model’s state.

Next we state a lemma that describes properties of class CB−NCS. In particular

the lemma describes how bounds on the norm of the B-MB-NCS errors imply bounds

on the weighted norm of the NCS dynamics, i.e. on ||zk||M = zT
k M(k)zk.

Lemma 2.1 Consider the NCS (2.12) and M(k) > 0, (2n × 2n) time-varying real-

valued matrix,

M(k) =





m1(k) m2(k)

m3(k) m4(k)



 , mi(k) ∈ IRn×n, m2(k)T = m3(k) (2.20)

12
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Also assume the system belongs to class CB−NCS. Then the following bounds hold on

the norm of the NCS dynamics weighted by M(k) for

i, j = {1, 2}, j 6= i, k = 0, . . . , N, N ∈ N and for all xk ∈ S, where S ⊂ IRn,

HT
i M(k + 1)Hj ≤ BHi,j

(x̂k) (2.21)

HT
i M(k + 1)Hi ≤ BHi

(x̂k)

and

F T
i (zk)M(k)Fi(zk) ≤ BFi(x̂k) (2.22)

GT
i (zk)M(k)Gi(zk) ≤ BGi(x̂k)

|F T
i (zk)M(k)Gj(zk)|uk ≤ BFiGj(x̂k)uk

where the bounds on the vector functions are related to the bounds on the errors as

follows:

BH1(x̂k) = (Bf + Bg(x̂k))λmax(m1(k + 1)) + (Bef1 + Beg1 (2.23)

(x̂k))(||m3(k + 1)|| + ||m2(k + 1)||)(Bf + Bg(x̂k))

+(Bef1 + Beg1(x̂k))λmax(m4(k + 1))

BH1,2(x̂k) = (BT
ef2(x̂k) + BT

eg2(x̂k))λmax(m4(k + 1)) (2.24)

BH2(x̂k) = (Bef1 + Beg1(x̂k))(||m4(k + 1)||)(Bef2 + Beg2(x̂k)) (2.25)

(Bf + Bg(x̂k))(||m4(k + 1)||)(Bef2 + Beg2(x̂k))

13
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and

BF1(x̂k) = BT
f (x̂k)λmax(m1(k + 1)) + Bef1(||m3(k + 1)|| + (2.26)

||m3(k + 1)||)Bf (x̂k) + Bef1λmax{m4(k + 1)}

BG1(x̂k) = Bg(x̂k)λmax{m1(k + 1)} + BT
eg1(x̂k)(||m3(k + 1)|| +

||m2(k + 1)||)Bg(x̂k) + Beg1(x̂k)λmax{m3(k + 1)}

BFG2(x̂k) = BT
ef2(x̂k)||m4(k + 1)||Beg2(x̂k)

BF2(x̂k) = Bef2(x̂k)λmax{m4(k + 1)}

BG2(x̂k) = Beg2(x̂k)λmax{m4(k + 1)}

BF1G2(x̂k) = BT
f (x̂k)||m2(k + 1)||Beg2(x̂k) + BT

ef1(x̂k)||m4(k + 1)||Beg2(x̂k)

BF2G1(x̂k) = BT
ef2(x̂k)||m3(k + 1)||Bg(x̂k) + BT

ef2(x̂k)||m4(k + 1)||Beg1(x̂k)

Proof. We will only prove the statement for HT
1 (zk)M(k + 1)H1(zk) in (2.21), as

the proof for all other inequalities is similar. Consider the vector function

HT
1 (zk)M(k + 1)H1(zk), zk ∈ IR2n (2.27)

Expanding (2.27) using the NCS errors bounds and the fact that xT Mx ≤ λmax{M}
and xT My ≤ ||xT ||||M ||||y||, we obtain

HT
1 (zk)M(k + 1)H1(zk) ≤

(f(xk) + g(xk)u(x̂k))
T (f(xk) + g(xk)u(x̂k))λmax{m1(k + 1)} +

(ef1(xk) + eg1(xk)u(x̂k))
T ||m2(k + 1) + m3(k + 1)||(f(xk) + g(xk)u(x̂k)) +

(ef1(xk) + eg1(xk)u(x̂k))
T (ef1(xk) + eg1(xk)u(x̂k))λmax{m4(k + 1)} ≤

(Bf + Bg(x̂k))λmax(m1(k + 1)) + (Bef1 + Beg1

(x̂k))(||m3(k + 1)|| + ||m2(k + 1)||)(Bf + Bg(x̂k))

+(Bef1 + Beg1(x̂k))λmax(m4(k + 1)) = BH1(x̂k) (2.28)

14
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which completes the proof.

¥

The above lemma states that if in a NCS the norms of the plant and of the NCS

errors are bounded by constants, or by a model’s state bound in the finite interval

of time [0, N ], see (2.19), then there exists a bound on the weighted norm of the

NCS dynamics in the interval of time [0, N ], and moreover this bound depends on

the errors bounds. Assuming the NCS is such that the above bounds on the errors

hold, then it is possible to bound the weighted norm defined by the matrix M of

the B-MB-NCS dynamics. In particular bounds defined on the vector function H1

do not depend on packet dropping, whereas those on H2 do, see equations (2.21).

Also, going into more details, the Hi can be decomposed into a part Fi, i = 1, 2,

independent of the input, and one dependent on the input, Gi, i = 1, 2 both of

which may be bounded, see (2.22).

Lemma 2.2 Consider the NCS (2.12) and M(k) > 0 matrix, and denote ‖ x ‖M=

xT Mx, then for all xk ∈ S ⊂ IRn,∀k = 0, . . . , N

||zk||M ≥ λmin{M}Bz(x̂) (2.29)

Also assume the system belongs to class CB−NCS then for all xk ∈ S ⊂ IRn and

Euclidian norm ||.||

||xk|| ≥ Bf + Bg(x̂k) = Bx(x̂) (2.30)

||ek|| ≥ Bef1 + Beg1(x̂k) + Bef2(x̂k) + Beg2(x̂k) = Be(x̂) (2.31)

||zk|| ≥ Bx(x̂) + Be(x̂) = Bz(x̂) (2.32)

Proof.

15
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For the first part of the lemma observe that

||zk||M ≥ λmin{M}||zk|| = λmin{M}(||xk|| + ||ek||) ≥

λmin{M}(Bx(x̂) + Be(x̂)) = λmin{M}Bz(x̂) (2.33)

The second part trivially follows from the system definition.

¥

2.4 Conclusion

Nonlinear networked control systems have been introduced by extending the model

based approach proposed in [1] to a nonlinear setting, and focusing on the packets

dropping aspect.

The model for packet dropping remains for the time being unspecified, but will

be defined in the next chapter by including the network dynamics.

Also a class of such NCS, namely B-MB-NCS with bounded errors between the

model and the plant has been introduced and its properties have been explored.
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Chapter 3

Network Control and Models for

Packets Dropout

3.1 Introduction

Communication networks and their complex dynamics have been studied by several

researchers, see, for example, [34, 35, 36]. Due to the Internet growth in size and

complexity, and with the advent of industrial networks, an understanding of the

organization and efficiency of communication networks has become necessary.

As communication between two systems takes place across a network, several

problems arise such as delays and loss of information due to limited bandwidth and

congestion. Considering the bandwidth as a fixed resource, in order to avoid the loss

of information and delays, an efficient use of such resources is required. Congestion

control represents an important aspect of the problem. As an example, in [34] the

network is modelled as a dynamical system and the congestion control problem is

reformulated as an optimization problem. Two main aspects of congestion control

are highlighted; first the characterization of the equilibrium conditions from the
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point of view of fairness, efficiency in resource usage, the dependence on network

parameters, etc. Second the stability of the postulated equilibria is studied in terms

of performance metrics such as speed of convergence, capacity tracking, etc. In the

present chapter we define and model a simplified network. In chapter 2 we described

a model for the NCS with the dropping sequence θk considered generic. Here, using

the network model we aim to model the dropping sequence using either random or

deterministic packet dropouts.

The chapter is organized as follows: in Section 3.2, we describe a simplified version

of a communication network and model its dynamics. Then in Section 3.3 we present

two stochastic models for the packet dropout. In the first model the packet dropout

is modelled as an homogeneous Markov chain, while in the second an independent

Markov chain, i.e. a process of i.i.d. random variables, is used. Then in Section

3.4 a deterministic model for packet dropout is proposed. Finally in Section 3.5, we

present our conclusions.

3.2 A Simple Model for Communication Networks

The problem studied in NCS is a stability problem, with the added complication that

the plant is being controlled across a network. On the other hand, congestion control

studies the problem of multiple users sharing a common resource on the network.

Congestion control can also be interpreted as a stability problem, see [34].

In NCS, delays and packet drops are viewed as network effects affecting the

capability to control and therefore the stability of the plant. Those effects are studied

without paying any attention to their causes. In a congestion control framework,

delays and packet drops need to be reduced or eventually eliminated by acting on

their causes such as congestion, sources rates, and so on. In both arenas we note

an interplay between networks and control. Our goal is to merge those two areas of
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study, i.e. to define a simplified network model and, focusing on packets dropping, to

model the loss of packets directly in terms of their cause, i.e. the network dynamics

such as sources rates and channel capacity. In order to explore the causes of packet

so1/si1

so5/si5

so4/si4

so2/si2

so3/si3

so6/si6

Network section or path

Figure 3.1: Undirected or bidirectional Network, nodes are sources and sinks.

dropping we start by defining the network setting in which the packet drops take

place and exploring some of their properties.

Among several models and descriptions of communication networks provided in

the literature, we choose to redefine the network in a simpler framework.

Definition 3.1 Network

A network is a couple (L, S), where L is a set of nL links, and S is a set of

nS nodes that can potentially perform as sources or sinks of traffic. Each link is

a transmission medium whose capacity, also referred to as bandwidth or data rate,

is measured in packets per second, where a packet is the information carrier. Each

source soi has an associated rate ri(k) that is a function of time, and denotes the
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number of packets per second sent to the sink sii.

N

In Figure 3.1 a communication network is depicted: in particular the network

may be bidirectional or undirected, and the nodes can be either sources or sinks, i.e.

they can send or receive packets.

Definition 3.2 Network’s Section

Consider a network (L, S), a couple (Ls, Ss), in which Ls ⊂ L, Ss ⊂ S is called

a network section of the network (L, S). Moreover Ls is called a path and is a set of

nl links, and Ss is a set of ns nodes that access the path.

N

Consider a network (L, S) composed of nL links lj, j = 1, . . . , nL in which nS

sources access sending information to nL sinks. Each source soi, i = 1, . . . , ns sends

information to the sink sii encoded in packets trough the network with time rate

ri(k), k = 0, 1, 2, . . . ,. Also each link li has an associated a fixed bandwidth capacity

Ci and at each time k we have a corresponding left over capacity ci(k), 0 ≤ ci(k) ≤ Ci

that represents the amount of packets per second it can support. Let each link li

be used by ns sources, each sending at a rate rj(k) and therefore the global rate

at the i − th link is Gi(k) =
∑ns

j rj(k). We are interested in the section network

(Lsi, Ssi) that is being used by the system. Where Lsi is the path, or set of nl,i links,

associated with each source-sink (soi, sii). We define the following possible state for

the network.

Definition 3.3 Congested Link
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A link li is congested at time k if the amount of packets sent through it exceed its

leftover capacity, i.e.

Gi(k) > ci(k), fork ∈ N (3.1)

N

Definition 3.4 Congested Network Section

A network section (Ls, Ss) is congested at time k if at least one link is congested

N

If a link is congested then it starts dropping packets. After a certain period of

time, the congestion disappears as a consequence of the sources reducing their rate

so that ci(k) ≥ Gi(k). A sink does not receive packets as a consequence of congestion

in one of the links in the path associated with it.

3.3 Stochastic Model for Packet Dropout

The packet dropout is caused by network congestion, so it is mainly related to the

network dynamics. We assume the network model is not exactly known, but only

its target values of performance,(such as stochastic limits on the packet drops) are

known.

In order to explore possible stochastic models for packet dropping, we briefly

recall some Markov chains concepts.
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3.3.1 Markov Chains

Since we are interested in modelling random packet dropouts, we observe first that

a packet dropout is a stochastic process. Among random processes, Markov chains

are relatively simple because the random variable is discrete and so is time. More

importantly, Markov chains (and for that matter Markov processes in general) have

the basic property that their future evolution is determine by their current state

and does not depend on their past. We would like to use this property, with some

additional restrictions, to represent the fact that dropping a packet at each time k

does not depend on whether or not there was a prior packet drop. We next proceed

with some standard definitions [30]-[33].

Definition 3.5 (Markov Chain)

Consider the probability space (Ω, F, P ), in which Ω is the sample space, F is a

σ-algebra of subsets of Ω, and P the probability measure defined on F . Let {θk}k∈N

be a sequence of random variables that take values on S then, the sequence is a

homogeneous Markov chain with state space S, transition probability matrix P =

(p(i, j)) , if for every k ∈ N

P{θk+1 = j|θk = i, θk−1 = ik−1, . . . , θ0 = i0} = P{θk+1 = j|θk = i} = p(i, j) (3.2)

for all (j, i, ik−1, . . . , i0) ∈ Sk+2 and ∀k, where p(i, j) is the transition probability from

state i to state j.

N

In other words, the state of the Markov chain depends only on the previous state,

and not on the whole history of the chain.

The first identity in equation (3.2), which is also called “Markov property”, defines

the “memory” or “order” of the chain. In the case of equation (3.2), the order equals
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one since the transition probabilities are entirely determined by the preceding state.

The second identity in (3.2) is called the homogeneity condition. It assures that the

transition probabilities do not vary with the time k, i.e. they are stationary.

Let P = [p(i, j)]i,j∈S denote the transition probability matrix of a Markov chain

{θn}. To complete the construction of a Markov chain we need to specify an initial

distribution. Let us denote by DS the set of discrete distributions on S,

DS = {P = (Pi)i∈S : Pi ≥ 0,
∑

i∈S

Pi = 1} (3.3)

We call P0 = (P0i)i∈S ∈ DS the initial distribution of the chain {θk} if P{θ0 = i} =

P0i for all states i ∈ S.

Definition 3.6 (Independent chain)

Let P = (P1, . . . , Pm) ∈ DS and define an m-state Markov chain with transition

matrix P = (pi,j)i,j∈S given by pi,j = Pj, i ∈ S , and arbitrary initial distribution P0.

Then for all k ∈ N

P{θk+1 = j|θk = i, θk−1 = ik−1, . . . , θ0 = i0} = P{θk+1 = j} =: Pj (3.4)

We call this the “independent chain” with respect to P.

N

Corollary 1 In an independent chain the sequence of states is a sequence of inde-

pendent random variables.

Independent chains have no memory and they are also called zero-order Markov

chains.
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3.3.2 Packets Dropout Models

In this first part of packets dropout modelling, we recall the independent Markov

chain model proposed in [2] and extend it to the case of dependent Markov chains.

Both resulting models are stochastic and do not directly involve the network dynam-

ics.

In the first place we consider the case in which partial information is available

about the network, and therefore we can reduce the level of uncertainty. Assume

that the loss of packets is not completely unknown, but depends for example, on

congestion in the network that occur with a known frequency. Also assume the time

needed to eliminate the congestion is known. In this case if a packet is dropped at

time k as a consequence of network congestion, it is likely to be dropped at the next

time k + 1. Therefore packets dropping can be modelled as a dependent-elements

stochastic process and {ϕk} becomes a two-state Markov chain defined as follows:

{ϕk} ∈ S = {0, 1}, ϕk = 1 − θk

P (θk+1 = 0|θk = 0) = p00

P (θk+1 = 0|θk = 1) = p01

P (θk+1 = 1|θk = 0) = p10

P (θk+1 = 1|θk = 1) = p11

and the transition probability matrix is

P =





p00 p01

p10 p11



 (3.5)

Also assuming that the loss of packets depends on the network congestion and that

as soon as congestion takes place, the network starts dropping packets for a certain

time, we have that the probability of dropping a packet at time k is larger if a packet

has been dropped at the previous time k − 1, i.e. p00 > p01, p11 > p10.
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For the second model, we assume that the event of congestion is completely

random and happens with a certain probability q. Also assume the time for a link

to eliminate congestion is not known, therefore the event of dropping a packet is

random with probability q. We can then model the packet dropping through the

independent Markov chain ϕk = (1 − θk) ( independent sequence of i.i.d. random

variable ) with a binary phase space S = {0, 1}, governed by the following transition

probabilities

P (θk+1 = 0) = P (θk+1 = 0|θk = 0) = P (θk+1 = 0|θk = 1) = p

P (θk+1 = 1) = P (θk+1 = 1|θk = 0) = P (θk+1 = 1|θk = 1) = 1 − p = q (3.6)

that is, at each time k the probability of getting or not getting a packet is independent

whether or not a packet was received before. Then the state transition probability

matrix is given by

P =





p p

1 − p 1 − p



 (3.7)

which is not block diagonal, and hence the chain is said to be irreducible(for a defi-

nition of irreducible Markov chain and associated properties see [32]), i.e. the proba-

bility of either state occurring at time k is never zero. Now consider the complement

of the process θk, ϕk = (1 − θk), which is also a sequence of two-state i.i.d. random

variable, representing the packets received. We then have the following statistics of

ϕk

µϕ = E [ϕ] =
1

∑

j=0

jpj = q (3.8)

µϕ2 = E
[

ϕ2
]

=
1

∑

j=0

j2p2
j = q (3.9)

In our study we only consider the stochastic packets dropping as a random process

of i.i.d. random variables, i.e. as an independent two-state Markov chain.
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3.4 Deterministic Model for Packet Dropout

Next we move to the second part of this work, in which we model the packet dropout

by considering the network dynamics. In particular we are interested in the network

section that includes the path that a packet is going to follow. This path is composed

of a number of nl links, and with each link is associated an actual traffic, depending

on the number and rate of sources that are accessing the path, and on the link

physical capacity see figure (5.4). We want to study how the loss of packets affects

so1

so5

so4

si4

si1

si5

Highly used link

Figure 3.2: Sources and their paths trough the network links.

the stability of the overall system by including the network dynamics in the model.

In particular this will allow us to explicitly relate the stability of the system to the

capacity of the links involved in the path used by the system, and to the rate of

the sources that are accessing such a path. This relation gives us the possibility

of eventually designing for the stability of the system by controlling the rate of the

sources accessing the path.

26



Chapter 3. Network Control and Models for Packets Dropout

3.4.1 Congestion Control Model

Let (L, S) be a network in which each source si has an associated rate ri(k) that is a

function of time at which it sends packets trough a set Li ⊂ L of links. So through

every link lj a total rate that is the sum of all the rates of ns sources is given by:

Rj(k) =
ns

∑

i=1

ri(k) (3.10)

Moreover, each link will have a capacity function proportional to the total rate that

will indicate the level of occupation of the link

Gj(k) = KlRj(k), j = 1, . . . , nl (3.11)

A link has a limiting capacity beyond which it will drop packets. In particular there is

a critical level of leftover capacity ci(k) above which the link will accomodate packets,

and below which it will start dropping them. The packet drop will be modelled by

the binary value variable θk, as discussed earlier. Consider the indicator function

defined as follows

Icj(k)≥Gj(k)(Gj(k)) =

{

1 , Gj(k) ≤ cj(k)

0 , Gj(k) > cj(k)
(3.12)

then we have at every instant of time k

θk =
lr

∏

j=1

Ici≥Gj(k)(Gj(k)) (3.13)

which may also be described as:

θk =

nl
∏

j=1

[

sign(ci − Gj(k)) + 1

2

]

(3.14)
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where the function sign : IR → {−1, 1} is defined as follows

sign(a) =

{

1 a ≥ 0

−1 a < 0
(3.15)

The complementary variable ϕk = 1 − θk can then be obtained as follows

ϕk =

[

1 −
nl
∏

j=1

[

sign(cj(k) − Gj(k)) + 1

2

]

]

(3.16)

With the provided framework we are now able to study the stability of the following

K

xk+1 = f(xk) + g(xk)uk

x̂k+1 = f̂(x̂k) + g(x̂k)uk

Sensor

Figure 3.3: Model-Based NCS

dynamical nonlinear time varying system (Figure 3.3):
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zk+1 = (F1(zk) + G1(zk)uk) + (F2(zk) + G2(zk)uk)ϕk (3.17)

= (F1(zk) + G1(zk)uk) + (F2(zk) + G2(zk)uk)
[

1 −
nl
∏

j=1

[

sign(cj(k) − Gj(k)) + 1

2

]

]

= (F1(zk) + G1(zk)uk) + (F2(zk) + G2(zk)uk)
[

1 −
nl
∏

j=1

[

sign(ci(k) − K
∑ns

j=1 ri(k)) + 1

2

]]

where Gj(k) is given by (3.11), and where ri(k) are the known sequence of rates for

sources accessing the path.

This model of NCS is a discrete-time, time-varying dynamical system that incor-

porates the system state zk, and the network dynamics ci(k), rj(k). The network is

therefore an integral part of the overall system, therefore achieving our chapter goal

as depicted in Figure (3.3).

3.5 Conclusion

In this chapter we discussed the interplay between networks and control that occurs

in the areas of NCS and congestion control. Recalling some stochastic models for

packet dropout based on independent Markov chains, we extended such models to

dependent Markov chains. We also described a model for the network involved in our

study. Based on the network’s model we also proposed stochastic and deterministic

mechanisms for packets dropping.
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Finite-Time Stability

4.1 Introduction

In this chapter we extend some of the existing results in finite-time stability to

the design of discrete-time stochastic systems. In many practical problems it is of

interest to investigate the stability of a system over a finite interval of time, since

it might be crucial to stay within given bounds over a finite time. Classical control

theory does not directly address this requirement because it focuses mainly on the

asymptotic behavior of the system (over an infinite time interval), and does not

usually specify bounds on the trajectories. On the other hand, finite-time stability

(or short-time stability [39]) plays an important role in the study of the transient

behaviors of systems and in some way answers the question proposed in [50], on how

is “asymptotic” defined.

It is important to underline how the two stability concepts are disconnected, i.e.

neither one of them implies nor excludes the other. In fact a system can be finite-

time stable, i.e. a state starting within a “specified” bound α does not exceed a

“specified” bound β in a specified time interval [0, N ], but may become unstable
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after the specified interval of time. On the other hand, the state trajectory might

exceed the given bound over a certain time interval, but asymptotically go to zero.

Asymptotic stability is specified with respect to arbitrary bounds, i.e. a trajectory

starting within a bound δ(ǫ) stays in an “arbitrary” ǫ and eventually converges to

the origin, while finite-time stability is always defined with respect to pre-specified

bounds α and β. In Figure 6.2 the two stability concepts are contrasted.

At first the concept of finite-time stability emerged under the name of “practical

stability” [49], in which specific bounds on the state were given. For finite-time

stability the interval of operation is assumed finite. The finite-time stability analysis

problem has been discussed for linear systems [39, 41], and nonlinear systems [44].

A stochastic version of finite-time stability has been developed in [42] for analysis

and in [47, 48] for optimal control design. Deterministic finite-time stability theory

has been recently applied to several control problems in linear systems [40].

After discussing the deterministic case in Section 4.2, we move to stochastic

finite-time stability in Section 4.3. In particular, we introduce in Section 4.3.1 useful

bounds, then in Section 4.3.2 we use those bounds to state sufficient conditions for

a stochastic system to be finite-time stable. Section 4.3.3 compares and discusses

the results in the previous sections. We then proceed in Section 4.3.4 to extend the

analysis techniques to designing controllers. Finally in Section 4.3.5, we propose an

optimal feedback law for finite-time stability of a dynamical stochastic system.

4.2 Deterministic Finite-Time Stability

We focus on discrete-time dynamical systems described by

xk+1 = f(xk), x ∈ IRn, x(0) = x0 (4.1)
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β

α

δ

ǫ

b)

a)

k

k

N

‖ xk ‖

‖ xk ‖

0

0

Figure 4.1: Asymptotic stability a) versus finite-time stability b).

Where x ∈ IRn is the system state, and f : IRn → IRn is a sufficiently smooth vector

function. We are interested in studying the state trajectory of the system in a finite

time interval, in other words we want to guarantee that specific bounds on the state

are maintained in this finite time interval.

Definition 4.1 Finite-Time Stability

The system (4.1) is finite-time stable (FTS) with respect to (α, β,N, ||.||) with

α < β if every trajectory xk starting in ||x0|| ≤ α satisfies the bound ‖ xk ‖< β for

all k = 1, . . . , N .

N
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We consider three classes of systems described in Figure (4.2): a) systems for

which the state trajectories always increase in magnitude, b) systems for which states

always decrease in magnitude, and c) systems whose state trajectories behavior’s is

mixed. The first step consists of exploring the state trajectories using a discrete

β

β

β

a)

b)

c)

k

k

k

N

N

N

||x0||

||x0||

||x0||

||xk||

||xk||

||xk||

Figure 4.2: a) Increasing dynamics. b) Decreasing dynamics. c) Mixed dynamics.

version of the Bellman-Gronwall inequality [46]. If the state trajectory is always

increasing (in the norm) during the time interval of interest, then it is enough to

verify that the state at the last time of the interval does not exceed the bound. In

the case where the trajectory is always decreasing and it starts inside the bound,

then FTS is guaranteed since α < β. In the case of a mixed behavior, it is necessary

to explore if the trajectory is suitably bounded at each time step.
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In the next theorem we formulate conditions for finite-time stability of system

(4.1).

Theorem 4.1 The system (4.1) is finite-time stable with respect to (α, β,N, ||.||),
α ≤ β, if for a continuous function V (xk, k) = Vk ≥ 0 such that for some δ1 > 0

δ1||xk||2 ≤ Vk ≤ δ2||xk||2, γ = δ1β, γ0 = δ2α, and Sβ = {xk : ||xk|| ≤ β} one of the

following three conditions occur:

• Case 1: ρk ≥ 0

∆Vk ≤ ρkVk, ∀k = 0, . . . , N, ∀xk ∈ Sβ (4.2)

γ

γ0

≥
N−1
∏

i=0

(1 + ρi) (4.3)

• Case 2: 0 ≥ ρk ≥ −1

∆Vk ≤ ρkVk, ∀k = 0, . . . , N, ∀xk ∈ Sβ (4.4)

• Case 3: ρk ≥ −1

∆Vk ≤ ρkVk, ∀k = 0, . . . , N, xk ∈ Sbeta (4.5)

γ

γ0

≥ sup
k

k−1
∏

i=0

(1 + ρi) (4.6)

Proof.

The proof of each of the three cases is provided separately:

34



Chapter 4. Finite-Time Stability

• Case 1: Consider condition (4.2) with ρk ≥ 0

∆Vk = Vk+1 − Vk ≤ ρkVk, (4.7)

from which it follows that

Vk+1 − (1 + ρk)Vk ≤ 0 , ∀k = 0, . . . , N (4.8)

Since ρk ≥ 0, iterating the difference inequality and considering the upper

bound on V0 ≤ γ0, we obtain

VN ≤ V0

N−1
∏

i=0

(1 + ρi) ≤ γ0

N−1
∏

i=0

(1 + ρi). (4.9)

Finally, using the condition in (4.3), it follows that VN ≤ γ, and since the

function is at most always increasing with a rate ρi ≥ 0 it follows that the

bound is never exceeded ∀k = 0, . . . , N .

• Case 2: Now let us evaluate (4.2) for 0 ≥ ρk ≥ −1

∆Vk = Vk+1 − Vk ≤ ρkVk, ∀k = 0, . . . , N (4.10)

from which it follows that

Vk+1 − (1 + ρk)Vk ≤ 0, ∀k = 0, . . . , N (4.11)

From the condition 0 ≥ ρk ≥ −1, it follows that the function Vk is decreasing,

so the finite-time stability condition is trivially satisfied since the upper bound

of the initial state α is below the required state bound β.

• Case 3: Finally for ρk ≥ −1 we have

∆Vk = Vk+1 − Vk ≤ ρkVk, ∀k = 0, . . . , N. (4.12)
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from which it follows

Vk+1 − (1 + ρk)Vk ≤ 0, ∀k = 0, . . . , N (4.13)

Because now ρk ≥ −1, it is no longer possible to simply iterate the difference

inequality for the time interval k = 0, . . . , N . It is thus necessary that all

intermediate terms satisfy the inequality, then iterating the partial difference

inequalities and considering the upper bound on V0 ≤ γ0 we get

Vk ≤ V0

k−1
∏

i=0

(1 + ρi)

≤ γ0

k−1
∏

i=0

(1 + ρi), ∀k = 0, . . . , N (4.14)

finally, using the condition in (4.6) it follows that Vk ≤ γ, ∀k = 0, . . . , N , which

then guarantees the system is finite-time stable with respect to the specified

parameters.

¥

4.2.1 Extended Finite-Time Stability

We introduce next to introduce a novel concept, which has not been discussed in

earlier works. In particular we consider the case in which the state norm may exceed

the bound β, but only for a finite number of consecutive steps, after which it needs

to contract again below the bound β. The rationale for this is to consider for the

deterministic case an equivalent concept to the stochastic one, where the possibility

of exceeding the bound for some time is allowed. The proposed extension fits many

real situations such as the example of driving a car in a tunnel, where we do not

want to hit the tunnel walls, but in case the car is robust enough, we may hit the
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walls for short periods of time. Another example, may be to consider hot object we

need to grab, which even if the temperature is high we can touch it for short time.

Therefore we allow a tolerance time within which we can support the object, but

after which we need to release it and eventually grab it again. We formalize such a

concept with the following definition.

Definition 4.2 Extended Finite-Time Stable The nonlinear discrete-time sys-

tem (4.1) is EFTS with respect to (α, β; N,No), if one of the following holds

(I.) for some k ∈ [0, N ] either

{||xk|| < β : k ∈ [0, N ]| ||x0|| ≤ α} (4.15)

or

(II.)

{∀j ∈ [0, N ] : ||xj|| > β,⇒ min
j+1≤i≤j+No+1

||xi|| ≤ β}, No < N (4.16)

where No is the number of consecutive steps the system state is allowed to exceed

the FT bound.

N

Definition 4.3 Attracted System

A discrete-time system of the form (4.1) is an attracted system with respect to

(α1, β, α2, N,Nr), α1 ≤ βz ≤ α2 if it is FTS with respect to (α1, β,N) and contracting

with respect to (α2, β,Nr), i.e.

||x0|| ≤ α1 ⇒ ||xk|| ≤ β, k = [0, N ]
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α2 ≥ ||x0|| ≥ β ⇒ ||xk|| ≤ β, k = [Nr, N ]

N

Theorem 4.2 Consider a system (4.1) and assume it is attracted with respect to

(α1, β, α2, N,Nr) where the region [−β, β] is a global region of attraction for the

state. Also assume Nr is the number of steps needed for the state to contract into

the ball of radius β from a distance α2. Then the system is EFTS with respect to

(α1, β,N,Nr + 1)

Proof. In the case of ||x0|| ≤ α1 the assumption that the system is contractive

implies that ||xk|| ≤ β, k = [0, N ] from which FTS follows and therefore EFTS.

In the case of α2 ≥ ||x0|| ≥ β we have ||xk|| ≤ β, k = [Nr, N ] which implies

||xNr
|| ≤ β and therefore min0≤j≤Nr+1||xj|| ≤ β which means EFTS with respect to

(α1, β,N,Nr + 1).

¥

4.3 Stochastic Finite-Time Stability

Next, we want to describe how finite-time stability, which was originally defined for

deterministic systems may be extended to stochastic systems. Consider a discrete

time, stochastic dynamical system in which the state is a Markov process in IRn

xk+1 = f(xk, θk), x ∈ IRn, x(0) = x0 (4.17)

where x ∈ IRn is the system state, f : IRn → IRn is a vector function, and θk

a stationary independent random sequence. In stochastic dynamical systems it is
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meaningful to consider the probability for the trajectory not to exceed a given bound

over a finite time interval. Such a probability is called “Inclusion Probability”, as

described in [47].

Definition 4.4 Inclusion Probability

Consider the dynamical stochastic system (4.17), the associated inclusion proba-

bility with respect to (α, β,N, ||.||) is defined as follows:

Pin(xk; α, β,N) =

P{||x(k)|| < β : k ∈ [0, N ]; ||x(0)|| ≤ α}

N

We also define the “Exit Probability” as the probability for the supremum over

all states norms in the given time interval to exceed a given bound.

Definition 4.5 Exit Probability

Consider the dynamical stochastic system (4.17), the associated exit probability

with respect to (α, β,N, ||.||) is defined as follows:

Pex(xk; α, β,N) =

P{ sup
N≥k≥0

||x(k)|| > β; ||x(0)|| ≤ α}

N

Note that Pex(xk; α, β,N) = 1 − Pin(xk; α, β,N). Therefore in this context we

define stochastic finite-time stability for the stochastic system (4.36) according to

the following:
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Definition 4.6 Finite Time Stochastic Stability (FTSS)

The dynamical system (4.36) is finite-time stochastically stable (FTSS) with re-

spect to (α, β,N, λ, ||.||)

Pin(xk; α, β,N) ≥ (1 − λ) (4.18)

or equivalently

Pex(xk; α, β,N) < λ (4.19)

N

We can also relate FTSS to inclusion and exit probabilities of a continuous smooth

function Vk ≥ 0 associated with the dynamical system such that δ1 ‖ xk ‖2≤ Vk ≤
δ1 ‖ xk ‖2, ∀k = 0, . . . , N and γ = δ1β, γ0 = δ2α. In particular the inclusion

probability associated with V (xk, k) is defined as

Pin(Vk; γ0, γ,N) =

P{V (xk, k) < γ : k ∈ [0, N ]; V (x0, 0) ≤ γ0}

and consequently the associated exit probability will be defined as follows:

Pex(Vk; γ0, γ,N) =

P{ sup
N≥k≥0

V (xk, k) > γ; V (x0, 0) ≤ γ0}

We will show how the study of finite-time stochastic stability (FTSS) can be indi-

rectly approached by studying the exit and inclusion probabilities associated with a

function V (xk, k).
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4.3.1 Bounds on Exit Probability

In order to analyze, and to eventually design, for the finite-time stability of a process,

we provide in this section upper bounds on the exit probability of the process (4.17)

and on the associated function Vk. These upper bounds will allow us to indirectly

study the FTSS of the system.

Our first theorem is based on the following principle in the deterministic case

described in [42]: consider the upper bound on the increments of Vk, ∆Vk = Vk+1 −
Vk ≤ φk in Sm = {xk : V (xk, k) < m(k), m(k) > 0}, where φk is a non-negative

constant. Then, a state trajectory stays in the set Sm for at least a time N =

(m−X(x0))
φk

. This can be seen by considering the condition ∆Vk ≤ φk, taking the

summation on both sides and choosing φ = maxkφk

N−1
∑

k=0

V (xk+1, k + 1) − V (xk, k) ≤
N−1
∑

k=0

φ (4.20)

which implies

V (xN , N) ≤ V (x0, 0) + Nφ (4.21)

then the smallest value of the interval length N that will guarantee that the trajectory

stays in Qm is N = (m−X(x0))
φ

. Following the above principle we present next a

stochastic finite-time stability theorem that is a slight extension of the one in [43].

Theorem 4.3 Consider a discrete-time Markov process xk, k = 0, 1, . . . , and the

continuous function V (xk, k) ≥ 0, and define the open set Sγ = {xk : V (xk, k) ≤ γ}.
Let the first exit time for V (xk, k) = Vk. If the following conditions are satisfied

Exk
[V (xk+1, k + 1)] ≤ ∞ ∀xk ∈ Sγ,

Exk
[V (xk+1, k + 1) − V (xk, k)] ≤ φk+1 ∀xk ∈ Sγ, φk ≥ 0 (4.22)
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Then for the initial condition x(0) = x0 we have

Pex(V (xk, k); γ0, γ,N) ≤ [V (x0, 0) + ΦN ]

γ
(4.23)

where ΦN =
∑N

i=1 φi

Proof. The proof of the above theorem can be found in [43].

¥

The last theorem gives an upper bound for the exit probability of Vk. This upper

bound depends on the initial conditions through V0, on the desired bound through

γ, and on the time interval and state dynamics indirectly through ΦN . Next, we aim

to directly bound the exit probability of the state dynamics of (4.17).

Theorem 4.4 Consider the dynamical Markov process (4.17) and its exit probability

with respect to (α, β,N, ||.||)

Pex(xk; α, β,N) = P{ sup
N≥k≥0

||xk|| > β; ||x0|| ≤ α}

we have the following upper bound on Pex(xk; α, β,N)

Pex(xk; α, β,N) ≤ E

[

supN≥k≥0 ||xk||
β

; ||x0|| < α

]

≤ E

[

supN≥k≥0 V (xk)

γ
; ||V (x0)|| < γ0

]

Proof. The proof easily follows from Chebychev inequality [31] P{|X − µX | > ǫ} ≤
E[|X−µX |]

ǫ
. In the following, I is the indicator function such that I = I{supN≥j≥0 ||xj ||>β}.
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Then

Pex(xk; α, β,N) = P{ sup
N≥k≥0

||xk|| > β; ||x0|| ≤ α}

= E

[

I( sup
N≥j≥0

||xj||); ||x0|| ≤ α

]

≤ E

[

I( sup
N≥j≥0

||xj||)
supN≥k≥0 ||xk||

β
; ||x0|| ≤ α

]

≤ E

[

supN≥k≥0 ||xk||
β

; ||x0|| < α

]

¥

Again the bound on Pex(xk; α, β,N) is directly related to the bounds on the state

α, β, the state dynamics, and the time interval N .

4.3.2 Stochastic Finite-Time Stability Analysis

In the previous section we showed how the exit probability relative to the state

dynamics xk and to the associated function V (xk, k) may be bounded and how the

bound depends on the parameters describing the finite-time stability objective. In

this section we use the described bounds to provide sufficient conditions for the

system (4.17) to be finite-time stochastically stable.

Theorem 4.5 Consider the dynamical system (4.17) and a function V (xk, k) such

that for a given δ1 we have δ1||xk||2 ≤ V (xk, k) ≤ δ2||xk||2, and γ = βδ1. Then the

system is finite-time stochastically stable with respect to (α, β,N, ||.||, λ), if any of

the following three conditions is satisfied

(i)

Exk
[V (xk+1, k + 1) − V (xk, k)] ≤ φk+1, ∀xk ∈ Sγ (4.24)
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[αδ2 + ΦN ]

βδ1

≤ λ (4.25)

ΦN =
N

∑

k=1

φk, φk ≥ 0

(ii)

E

[

supN≥k≥0 ||xk||
β

; ||x0|| ≤ α

]

≤ λ (4.26)

(iii)

P{∆Vk ≤ ρkVk} ≥ (1 − λ) (4.27)

β

α
≥ sup

k

k−1
∏

i=0

(1 + ρi) (4.28)

∀xk ∈ Sβ, ρk ≥ −1, ∀k = 0, . . . , N

Proof.

In order to prove the above statements we will explore (i)− (iii) and verify that

each of these conditions imply finite-time stability for the system. Finite-time stabil-

ity easily follows from (i) considering that for δ1||xk||2 ≤ V (xk, k) ≤ δ2||xk||2, ∀k =

0, . . . , N and γ0 = δ2α, γ = δ1β we have

Pex(xk; α, β,N) ≤ Pex(Vk; γ0, γ,N) (4.29)

and therefore from theorem 4.3 and (i)

Pex(xk; α, β,N) ≤ λ (4.30)
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Now recalling that Pex(xk; α, β,N) + Pin(xk; α, β,N) = 1 we deduce the finite-time

stability for the system (4.17) with respect to (α, β,N, ||.||, λ) i.e.

Pin(xk; α, β,N) ≥ (1 − λ) (4.31)

For point (ii), since from theorem 4.4 the first term in (4.25) is an upper bound on

Pex(xk; α, β,N) with the same principle as before, we obtain immediately

Pex(xk; α, β,N) ≤ λ (4.32)

and therefore

Pin(xk; α, β,N) ≥ (1 − λ) (4.33)

Finally to prove (iii) let us consider the following for ρk ≥ −1

P{∆Vk ≤ ρkVk} = P{Vk+1 − (1 + ρk)Vk ≤ 0}

∀k = 0, . . . , N

then iterating the partial difference inequalities and considering the upper bound on

V0 ≤ γ0 we obtain

P{∆Vk ≤ ρkVk} ≤ P{Vk ≤ γ0

k−1
∏

i=0

(1 + ρi)}

∀k = 0, . . . , N

then using the condition (4.29) from (iii) it follows that

P{∆Vk ≤ ρkVk} ≤ P{Vk ≤ γ}

∀k = 0, . . . , N
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and moreover

(1 − λ) ≤ P{∆Vk ≤ ρkVk} ≤ P{Vk ≤ γ}

∀k = 0, . . . , N

that implies finite time stability with respect to (α, β,N, ||.||, λ).

¥

4.3.3 Relations of FTS Conditions

In this section we compare the above results for FTS analysis and study how they

may be related. First we study how the two upper bounds presented in section 4.3.1

are related. In particular let us consider (recall theorem 4.3) the following

Pex(Vk; γ0, γ,N) ≤ [V0 + ΦN ]

γ
(4.34)

where ΦN =
∑N

i=1 φi and from theorem 4.1

Pex(xk; α, β,N) ≤ E

[

supN≥k≥0 ||xk||
β

; ||x0|| < α

]

≤ E

[

supN≥k≥0 V (xk, k)

γ
; ||V (x0, 0)|| < γ0

]

then using the fact that δ1||xk||2 ≤ V (xk) ≤ δ2||xk||2 and γ = δ1β we have

Pex(xk; α, β,N) ≤ Pex(Vk; γ0, γ,N) (4.35)

and moreover, by Chebychev inequality

Pex(Vk; γ0, γ,N) ≤ E

[

supN≥k≥0 Vk

γ
; ||V0|| < γ0

]
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from the last two inequalities we can conclude that Pex(Vk; γ0, γ,N) is a less conser-

vative bound on Pex(xk; α, β,N) than the one in (4.36). Finally, we compare the two

bounds in (4.34) and (4.36). In particular we observe that in (4.34),the bound on

Pe depends on the initial condition V (0), the bound on V , γ, and on bounds on its

increments φk. In (4.36) we are actually considering the expected value of supremum

over all Vk in the studied interval. In principle the second bound on exit probability

is less conservative and does not require the evaluation of the increment at each step,

but on the other hand it is not easy to directly calculate the value of the supremum

of Vk.

Now let us consider part (iii) of theorem 4.5 from which we have for k = 0, . . . , N

P{∆Vk ≤ ρkVk} ≤ P{Vk ≤ γ0

k−1
∏

i=0

(1 + ρi)}

= 1 − P{ sup
N≥k≥0

Vk ≥ γ0

k−1
∏

i=0

(1 + ρi)}

≤ 1 − P{ sup
N≥k≥0

Vk > γ}, k = 0, . . . , N

We observe how the last term, the inclusion probability, is the complement of the

exit probability for Vk, and therefore by theorem 4.5 Pin ≥ (1 − λ).

Since the three parts of the theorem 4.5 are comparable, from now on we will

just focus on the first part (i), since it is more general and does not directly require

the knowledge of the states of the system.

4.3.4 Finite-Time Stochastic Stability Design

The previous theorems focused on analysis but may be extended to designing con-

trollers that stochastically stabilize a system over a finite time. Consider the system

xk+1 = f(xk, θk) + g(xk)uk (4.36)
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Where x ∈ IRn is the system state, uk is a one-dimensional control input, f and g

are vector functions defined over IRn and θk is an independent stationary random

sequence with mean µθ and variance σθ. In particular, we consider systems in which

the random sequence θk appears linearly in the system i.e. f(xk, θk) = f(xk)θk.

In order to simplify notation, we will use the following notation g(xk) = gxk
and

f(xk) = fxk
.

We aim to design a state-feedback control law uk = u(xk), such that the closed-

loop system is FTSS with respect to the parameters (α, β,N, ||.||, λ). The proposed

design technique is based on part (i) of theorem 4.5. From now on, we also restrict

our study to the choice of Vk = xT
k xk.

Theorem 4.6 Let us consider the system given in (4.36). Consider the FTSS con-

dition (4.24), and let us choose ΦN = γλ−γ0 and φk = γλ−γ0

N
, ∀k = 1, . . . , N . Then,

the system is stabilizable over a finite time with respect to (α, β,N, ||.||, λ) if for the

function V (xk) = xT
k xk there exists an input law u(xk) such that

gT
xk

gxk
= (fT

xk
gxk

+ gT
xk

fxk
) = 0

⇒ (fT
xk

fxk
− xT

k xk) < φk, (4.37)

∀k = 1, . . . , N,∀xk ∈ Sγ

and

E [∆V (xk)] = ((σθf
T
xk

fxk
− xT

k xk) + gT
xk

gxk
u2

k

+ µθ(f
T
xk

gxk
+ gT

xk
fxk

)uk)

≤ φk; ∀k = 1, . . . , N (4.38)

µ2
θ(f

T
xk

gxk
+ gT

xk
fxk

)2 ≥ 4gT
xk

gxk
(σθf

T
xk

fxk
− xT

k xk − φk)
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The set of possible control laws is given by

uk : u1 ≤ uk ≤ u2, for gT
xk

gxk
6= 0, and (fT

xk
gxk

+ gT
xk

fxk
) 6= 0;

uk = 0, for gT
xk

gxk
= (gT

xk
fxk

+ fT
xk

gxk
) = 0

Where

u1,2 =
−µθA1 ±

√

µ2
θ(A

2
1) − 4gT

xk
gxk

B1

2gT
xk

gxk

in which A1 = (fT
xk

gxk
+ gT

xk
fxk

), B1 = (σθf
T
xk

fxk
− xT

k xk − φk),

Proof.

Consider condition (4.38). Because of the choice of φk we have

Exk
[Vk+1 − Vk] ≤

γλ − γ0

N
, ∀k = 1, . . . , N (4.39)

and also

ΦN =
N

∑

k=0

γλ − γ0

N
= γλ − γ0, (4.40)

from theorem 4.3 the above conditions imply

Pex(Vk; γ0, γ,N) ≤ [V0 + ΦN ]

γ
(4.41)

substituting the value of ΦN and bounding V0, we obtain

Pex(Vk; γ0, γ,N) ≤ [γ0 + γλ − γ0]

γ
= λ (4.42)

and therefore finite-time stability follows.
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¥

The proposed design technique guarantees closed-loop finite-time stability under the

theorem’s assumptions. However, we actually designed to meet the specified bound

by fixing φk. This is a constraint that makes the above conditions on the existence

of the controller only sufficient.

4.3.5 Minimization of the Exit Bound

In the previous section we designed a controller in order to meet specific given bounds

on the inclusion probability Pin of the stochastic system (4.36). Here we proceed to

develop design techniques to maximize the inclusion probability of the system. In-

stead of directly designing for the objective Pin as was done in [47], where they

designed to maximize the inclusion probability, we base our design on the minimiza-

tion of some upper bound on the objective Pex.

Consider the following optimization problem

max
u

Pin(xk; α, β,N) = max
u

P{||x(k)|| < β : k ∈ [0, N ]|||x(0)|| ≤ α}

given the system (4.36). This objective can be also achieved by considering the

equivalent problem

min
u

Pex(xk; α, β,N) = min
uk

P{ sup
0≤k≤N

||xk|| > β; ||x0|| ≤ α} (4.43)

We can indirectly solve this problem by minimizing an upper bound on the exit

probability i.e.

min
uk

L(uk) (4.44)
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where L(uk) is a cost function such that

Pex(xk; α, β,N) ≤ L(uk) ∀k = 0, . . . , N, xk ∈ Sβ (4.45)

In section 4.3.1 we provided some bounds on Pex(Vk; γ0, γ,N) and consequently

on Pex(xk; α, β,N). Here we use those bounds in order to design for finite-time

stability for the system (4.3.1) with respect to (α, β,N, ||.||, λ), with λ as small as

possible.

Theorem 4.7 Consider the system (4.3.1), and a function V (xk) = xT
k xk. Then

there exists a control law uopt(xk) that minimizes Pex(Vk; γ0, γ,N), i.e. stabilizes the

system over a finite time with respect to (α, β,N, ||.||), if for gT
xk

gxk
6= 0, uk minimizes

the cost function L1(uk), i.e.

L1(uk,opt) ≤ L1(uk), ∀u, ∀k = 1, . . . , N (4.46)

where

L1(xk, uk) =

(σθf
T
xk

fxk
− xT

k xk + gT
xk

gxk
u2

k + µθ(A1)uk)

∀k = 0, . . . , N,∀xk ∈ Sβ (4.47)

Finally, the optimal control law is given by

uk =

{

0 gT
xk

gxk
= 0

−µθ(gT
xk

fxk
+fT

xk
gxk

)

(2gT
xk

gxk
)

gT
xk

gxk
6= 0

(4.48)

for all k = 1, . . . , N .
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Moreover choosing φk = L1(uk) = γλ−γ0

N
the minimum value λ is given by

λopt =
[γ0 + Nbf ]

γ
(4.49)

where

(σθf
T
xk

fxk
− xT

k xk) ≤ bf (4.50)

Proof.

The control law that minimizes λ can be found by considering once again the

upper bound on the exit probability presented in (4.3). The following sufficient

conditions are given for the existence of such upper bound

Pex(xk; γ0, γ,N) ≤ [V0 + ΦN ]

γ
≤ [V0 +

∑N

k=0 L1(uk)]

γ

Exk
[Vk+1 − Vk] ≤ φk+1, ∀xk ∈ Sγ, φk ≥ 0 (4.51)

where ΦN =
∑N

k=0 φk. Since our objective is to maximize the inclusion probability

or, equivalently, to minimize the exit probability, we can minimize the upper bound

on the exit probability since γ, γ0, N are independent of the input uk, we can act on

φk. We can then meet this requirement from inequality (4.51) by minimizing each of

the terms Exk
[Vk+1 − Vk] for xk ∈ Sγ or equivalently for Vk = xT

k xk

L1(xk, uk) = E[(θ2
kf

T
xk

fxk
− xT

k xk + gT
xk

gxk
u2

k

+θk(g
T
xk

fxk
+ fT

xk
gxk

)uk)]
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that is an upper bound on Exk
[∆(V (xk))]. Since γ, γ0 and E[θ2

k] = σθ, E[θk] = µθ

are fixed positive values we have

L1(xk, uk) = [(σθf
T
xk

fxk
− xT

k xk + gT
xk

gxk
u2

k

+µθ(g
T
xk

fxk
+ fT

xk
gxk

)uk)]

∀k = 0, . . . , N (4.52)

We then obtain uk that minimizes L1(xk, uk) as follows

∂

∂uk

L1(xk, uk) = 0 (4.53)

solving for u we obtain the control law (4.48).

¥

4.4 Finite-time stability Design: Example

In this section we present an example to show how our design techniques may be

applied to a given nonlinear system.

Example 1 Consider the system

xk+1 = .5e(xk)θk + sin(2π
xk

5
− 7)uk

where θk ∈ {0, 1}, µθ = 0.5. We want to choose the input uk in such a way that

the closed-loop system is finite-time stable with respect to (α = 0.5, β = 1, N =

10, ||.||, λ = .3). We also want to minimize a bound on the exit probability Pex, i.e.

we want to minimize the value of λ.
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By applying theorem 4.6 with δ1 = 1, δ2 = 1 and therefore φk = −0.02 and

choosing in the admissible range of controller uk = −1.3, for sin(2π xk

5
− 7) 6= 0, and

uk = 0, for sin(2π xk

5
− 7) = 0, we obtain the closed-loop system

xk+1 = 0.5e(xk)θk + sin(2π
xk

5
− 7)(−1.3sign(|sin(2π

xk

5
− 7)|).

The closed-loop system is FTSS as in Figure (4.3).

Also applying the input uopt that minimizes λ we obtain the closed-loop dynamics,

xk+1 = 0.5e(xk)θk + sin(2π
xk

5
− 7))uopt(k)

uopt(k) = sign(|(sin(2π
xk

5
− 7))|)−.5e(xk)sin(2π xk

5
− 7)

2(sin(2π xk

5
− 7))2

In Figure (4.3) we compare the closed-loop system with the first controller uk designed

for FTSS with respect to (α = 0.5, β = 1, N = 10, ||.||, λ = 0.3), with the open-loop

controller and finally the closed-loop system with the second controller uopt.

4.5 Conclusions

In this chapter we presented some new results on finite-time stability for stochastic

discrete-time nonlinear systems. Moreover, we explored how finite-time stability

analysis techniques can be extended to control design.

After discussing deterministic FTS, presenting existing work and a new approach

to analysis, we considered a stochastic system and explored how finite-time stability

can be studied. In particular, we described the concept of “inclusion probability”

and “exit probability” which are crucial for the study of stochastic FTS. Also we

showed how these quantities can be bounded by bounds that depend on the required

54



Chapter 4. Finite-Time Stability

0 5 10 15
−1

0

1

2

3

k 

| x
k|

Open−loop 

0 5 10 15
−1

0

1

2

3

k 

 | 
x k|

Closed−loop, λ=0.3

0 5 10 15
−0.5

0

0.5

1

k 

 | 
x k|

Closed−loop, λ
opt

=0.1

Figure 4.3: Open loop system versus closed loop systems with exit probability Pex =
0.3 and minimal exit probability.

finite-time stability parameters. Moreover those bounds are used to analyze FTSS,

and to design for closed-loop FTSS.

Also in the last section we described how an upper bound on the exit bound can

be minimized, that is design for minimizing the probability of exceeding a bound

over a finite time.

55



Chapter 5

Nonlinear Model Based NCS:

Finite-Time Stochastic Stability

5.1 Introduction

In this chapter we study the finite-time stability a system controlled through a net-

work, and therefore subject to the potential loss of information. To do so we use the

tools described in chapter 4 to study FTS for a nonlinear, discrete-time dynamical

system. In the current chapter, we use a stochastic model of the dropped packets,

and therefore apply stochastic results in FTS. The packets loss is modelled as a bi-

nary independent random process with a known mean. While investigating how the

loss of information affects the FTSS of a NCS, we observe first that the FTSS of the

system depends on three main factors:

I. The controller performance i.e. whether or not the controller stabilizes the

plant in the case of full information.

II. The accuracy of the model and its initial state with respect to the plant.
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III. The amount of information received, or conversely the amount of packets

dropped.

We address the first factor by assuming from now on the FTSS of the system when

full information is available, and focus mainly on FTSS performance with respect to

factors II and III. We first observe that they are complementary, i.e. that they

can compensate for each other, and in fact if one is missing the other factor becomes

more critical. It is well known that the state of a discrete-time system is uniquely

determined by the dynamical equations and the initial conditions. Therefore, the

accuracy of the model represents an important aspect, since the design is based

on the model’s state. In addition, the state of the model plays an important role

since it contributes to the estimation of the plant’s state when packets are dropped.

From now on, we assume the initial state of the model equal to the initial state

of the plant, i.e. that a packet is initially received. The amount of information

needed becomes more crucial when the model is inaccurate. Let us consider the two

extreme cases: assume first that we have a non-perfect model i.e., one that does

not reproduce the plant’s behavior correctly. After few time steps, the controller

will not perform satisfactorily on the plant if packets are dropped. In this case,

even with the correct model initial conditions, the system may eventually become

unstable. It is necessary in this case to have frequent updates of the plant state.

Moreover, by updating the state of the model, the divergence between the model

and the plant’s state will be limited. Eventually, in this extreme case, if there are

no dropped packets, and therefore the plant’s state is always available for feedback,

the model becomes unnecessary and even when completely incorrect, will not affect

the stability of the closed-loop system. On the other hand, if some of the packets are

dropped, the accuracy of the model and its state become important, since the model

will have to compensate for this lack of information. In the extreme case where the

model represents the plant perfectly, then the plant’s state becomes unnecessary and
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the system can be stabilized even when all packets are dropped.

Using the stochastic model of the NCS described in chapters 2 and 3 we first

investigate conditions to guarantee FTSS of the system. We then proceed to design

controllers in order to achieve FTSS. Moreover, we characterize the FTSS of the

system in terms of the probability of dropping packets p, which relates to minimum

attention control [53].

5.2 Some Preliminaries and Notation

Consider from chapter 2 a model-based NCS subject to the random loss of packets

as described in chapter 3

zk+1 = H1(zk) + H2(zk)ϕk, zk ∈ IR2n, k = 0, 1, . . . (5.1)

in which the dropping sequence ϕk = (1 − θk) is a stationary independent random

sequence, with mean µϕ = (1 − p) = q and µϕ2 = q, where q is the probability of

dropping a packet.

In chapter (4) we defined finite time stochastic stability for a generic discrete-time

dynamical system with respect to (α, β,N, λ, ||.||). Here we reformulate the FTSS

definition for NCS (6.1). In the following we let ||zk|| =
√

zT
k zk be the Euclidian

norm.

Definition 5.1 FTSS-NCS

The NCS (5.1) is FTSS with respect to (α, β,N, λ, ||.||) if

Pin(zk; α, β,N) = P{zT
k zk < β : k ∈ [0, N ] | zT

0 z0 ≤ α} ≥ (1 − λ) (5.2)
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N

Let V (zk, k) = zT
k M(k)zk be a quadratic function where M(k), is a given 2n×2n

time-varying real-valued matrix, with

M(k) =





m1(k) m2(k)

m3(k) m4(k)



 ,mi(k) ∈ IRn×n, (5.3)

m2(k)T = m3(k), M(k) > 0

then consider the following definition

Definition 5.2 Quadratically FTSS-NCS

The NCS (6.1) is quadratically FTSS with respect to (α, β,N, λ,M) if for the

quadratic function V (zk, k) = zT
k M(k)zk the following holds

Pin(Vk; γ0, γ,N) =

P{zT
k M(k)zk < γ : k ∈ [0, N ] | zT

0 M(k)z0 ≤ γ0} ≥ (1 − λ) (5.4)

where δ1||zk||2 ≤ V (zk, k) ≤ δ2||zk||2, δ1(k) = λmin{M(k)}, δ2(k) = λmax{M(k)} are

the minimum and maximum eigenvalue of M(k) respectively. In addition we have

δ2(k)α ≥ γ0 and δ1(k)β ≥ γ.

N

We denote the sets of states with bounded V as follows

Sγ = {zk : Vz(zk, k) ≤ γ} (5.5)

Sβ = {xk : Vx(xk, k) ≤ β} (5.6)
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5.3 Finite-Time Stochastic Stability Analysis

We aim to study the behavior of the system over a finite time in the presence of

packet dropping. In particular, assuming that with full information available, the

system’s state is constrained within a bound β over a finite time N , we want to find

conditions for which the state remains within the given bound over the time interval

when packets are being dropped. Moreover, we want these conditions to depend on

the model’s state and on the amount of packets dropped.

We are now ready to state the following theorem that considering a class CB−NCS

NCS, gives sufficient conditions on the bounds defined on the NCS for which FTSS

holds.

Theorem 5.1 Consider the NCS (6.1), and assume it belongs to class CB−NCS, also

consider the function Vz(zk, k) = zT
k M(k)zk, in which M(k), is a real-valued 2n× 2n

matrix, where m1(k) > 0, m4(k) > 0. Assume that ∀zk ∈ Sγ and k ∈ [0, N ]

BH1(x̂k) + 2BH1,2(x̂k)q + BH2(x̂k)q − λmin{M}Bz(x̂) ≤ φk+1 (5.7)

αδ2 + ΦN

βδ1

≤ λ (5.8)

where ΦN =
∑N

k=1 φk. Then the system is FTSS with respect to (α, β,N,M(k), λ).

Proof. The proof follows from theorem 4.3 in chapter 4, and using lemma 2.1 in

chapter 2. The conditions in the theorem

Ezk
[∆Vz(zk, k)] = Ezk

[(H1(zk) + H2(zk)ϕk)
T M(k + 1)(H1(zk) + H2(zk)ϕk) −

λmin{M}Bz(x̂)] ≤ φk, ∀k = 0, . . . , N, zk ∈ Sγ (5.9)
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and

αδ2 + ΦN

βδ1

≤ λ (5.10)

from which FTSS follows.

¥

Roughly speaking, the theorem restates the conditions for FTSS described in

theorem 4.5, in a NCS context. Moreover, in order to make the analysis dependent

only on the model’s state that is assumed to be always available, it uses the fact that

the NCS belongs to class CB−NCS. Finally those bounds are used to specify FTSS

conditions.

5.4 Finite-Time Stochastic Stability Design

In the previous chapter we presented sufficient conditions for FTSS of the NCS in

the presence of packet dropping. We now investigate the possibility of designing a

controller to guarantee the FTSS of the system. We therefore consider a network

model in which the input function uk = K(x̂k) is not fixed i.e.

zk+1 = (F1(zk) + F2(zk)ϕk) + (G1(zk) + G2(zk)ϕk)uk, k ≥ 0 (5.11)

Where the functions F1, F2, G1, G2 were defined in chapter 2 and uk : IRn → IR is

a scalar input. Although we will only focus on the case of scalar inputs, the results

may be easily extended to multidimensional inputs.

Theorem 5.2 The class CB−NCS NCS (5.11), is quadratically finite-time stochasti-

cally stabilizable with respect to (α, β,M,N, λ) and φk = φ = γλ−γ0

N
if for the function
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V (zk, k) = zT
k M(k)zk, where M(k) satisfies the conditions, (5.3), there exists an in-

put law uk = K(x̂k) such that

1. The system is FTSS with respect to (α, β,M,N, λ) for the time in which the

input cannot affect it, i.e. if

Ezk
[(G1(zk) + G2(zk)q)

TM(k + 1)(G1(zk) + G2(zk)q)] = 0, (5.12)

Ezk
[(F1(zk) + F2(zk)q)

TM(k + 1)(G1(zk) + G2(zk)q)] = 0

⇒ Ezk
[(F1(zk) + F2(zk)q)

T M(k + 1)(F1(zk) + F2(zk)q) − zT
k M(k)zk] ≤ φk

2. We have for all x̂k ∈ Sβ

Ezk
[∆Vzk

(zk, k)] = (BG1(x̂k) + BG2(x̂k)q)u
2
k (5.13)

2((BF1G2(x̂k) + BF2G1(x̂k) + BF1G2(x̂k))q + BF1G1(x̂k))uk

+(BF2(x̂k))q + 2(BF1F2(x̂k)q) + BF1(x̂k) − λmin{M}Bz(x̂) ≤ γλ − γ0

N

The set of controllers is given by:

u1(x̂k) ≤ u(x̂k) ≤ u2(x̂k), for (BG1(x̂k) + BG2(x̂k)) 6= 0 (5.14)

u = 0, for (BG1(x̂k) + BG2(x̂k)) = 0 (5.15)

BFG = ((BF1G2(x̂k) + BF2G1(x̂k) + BF1G2(x̂k))q + BF1G1(x̂k))

BF = BF2(x̂k))q + 2(BF1F2(x̂k)q) + BF1(x̂k) (5.16)

u1,2 =
−|BFG|

(BG1(x̂k) + BG2(x̂k)q)

±
√

(BFG)2 − (BG1(x̂k) + BG2(x̂k)q)(BF − λmin{M}Bz(x̂) − γλ−γ0

N
))

(BG1(x̂k) + BG2(x̂k)q)
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with

(BFG)2 − (BG1(x̂k) + BG2(x̂k)q)(BF − x̂T
k m4(k)x̂k −

γλ − γ0

N
)) ≥ 0

(BG1(x̂k) + BG2(x̂k)q) 6= 0 (5.17)

Proof.

The proof follows from theorem 4.4 in chapter 4. In particular the control law

with the conditions above imply

Ezk
[∆V (zk, k)] ≤ φk

αδ2 + ΦN

βδ1

≤ λ, (5.18)

∀k = 0, . . . , N, zk ∈ Sγ

and therefore FTSS follows.

¥

The theorem uses the FTSS conditions for the NCS in theorem 5.3, to generate

a control law that will satisfy those conditions, and therefore will stochastically

stabilize the NCS in a finite time with respect to the specified conditions.

5.5 FT Stability and Rate-Limit of Packet Drop-

ping

In [53] the idea of relating the stability of a linear system controlled by a network

to the rate of information (measured in packet per seconds) necessary to achieve

stability is proposed. In particular the concept of “minimum attention control” was
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introduced, where the objective is to minimize the amount of bandwidth used, i.e.

the amount of information transmitted through the channel in order to stabilize the

system. The concept of minimum attention control is based on the following idea:

if the system is stable (either in the classical or FT sense), then no controller nor

feedback information are needed. Conversely if the system is unstable, then the

need for feedback information increases. A relation between the rate of information

and the eigenvalues associated with the unstable modes of a linear system is then

obtained. We can then conclude that qualitatively, the amount of information needed

is inversely related to the degree of stability of the system.

In the theory developed so far, we showed how the stability of the NCS is de-

pendent on three main factors: the accuracy of the model and initial conditions,

the amount of information available,(the number of packets dropped), and finally to

the efficiency of the controller in stabilizing the plant when complete information is

available.

This section focuses on the robust stability of the system with respect of the loss

of packets, i.e. how the controller performs when the plant state is not received. We

want to directly relate the stability of the system to the probability of packet drops.

Let us consider once more the model of the networked control system in the form

zk+1 = H1(zk) + H2(zk)ϕk, k ≥ 0 (5.19)

in which H1(zk) and H2(zk) are dependent on the model, the system, and the error

between the model and the system as described previously. We investigate the rate of

lost packets that the system can support while remaining FTSS. To do so, we consider

the sufficient conditions for FTSS of the system (5.19), by applying theorem 5.3, and

investigate the level of probability of packet lost P{ϕk = 1} = q for which stability

is guaranteed. This results in the following.
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Theorem 5.3 A class CB−NCS NCS (5.19) is FTSS through the network with respect

to (α, β,M,N, λ) and φk = γλ−γ0

N
if the rate of packets lost, i.e. probability µϕ = q

of dropping a packet, is such that

0 ≤ q ≤ (2BH1,2(x̂k) + BH2(x̂k))
−1(λmin{M}Bz(x̂) + φk − BH1(x̂k))

∀x̂k ∈ Sβ, x̂k ∈ Sβ, k = [0, N ] (5.20)

¥

Note that the amount of packets the system can afford to lose while remaining FTSS,

is inversely dependent on the bounds of the NCS, i.e. the errors introduced by the

model and the initial conditions. Therefore as the errors become larger, in order to

maintain FTSS, the probability q of dropping a packet needs to be smaller. Moreover

the bound on q directly depends on φ, therefore small values of γ and λ will lead to a

small bound on the dropping probability q. Note that because of the sufficiency of the

conditions, the bound on q may be conservative. While in the linear case the required

rate depends on the unstable eigenvalues of the system, in the nonlinear finite-time

stability setting, the relation is given by the Lyapunov-like function and depends on

the accuracy of the model and the finite-time stability parameters through φk.

The above result shows how it is possible to “design” for FTSS of the NCS not

only through the feedback controller, but also by modifying the networks dynamics

when they are accessible. Moreover, in case more information is available about

the network, the packet dropping may eventually be modelled deterministically, and

therefore, controlling the network’s traffic will help in controlling the NCS. This will

become important in the next chapter where we will be dealing with deterministic

dropout in NCS and where we link the network’s dynamics to the control dynamics.
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5.6 Examples

This section provides a set of examples of NCS, for which we study FTSS for different

amounts of dropped packets. Though we only analyzed the case of scalar inputs, the

results presented can be easily extended to the vector input case. In this section we

present vector inputs examples. In particular, we consider

x1(k + 1) = x1(k) + u1(k)

x2(k + 1) = x2(k) + u2(k)

x3(k + 1) = x3(k) + (x1(k)u2(k) − x2(k)u1(k)) (5.21)

which is the discrete-time version of the non-holonomic integrator proposed by Brock-

ett in [54].

5.6.1 Family of Controllers for FTS of Discrete-Time Brock-

ett Integrator

The continuous-time non-holonomic integrator represents a challenging system stud-

ied by many authors. It was proven by Brockett that the non-holonomic integrator

is not smoothly stabilizable with time-invariant controller. In discrete-time, the

system is less challenging but remains interesting, especially in the new context of

FTSS through the network. We aim to achieve FTSS with respect to (α = .09, β =

1.52, N = 10,M = I3×3, λ = .3), by using the function V (xk, k) = xT
k xk. In particular

we propose two families of controller ua and ub for the case λγ−γ0

N
> 0.

Theorem 5.4 Consider the discrete-time non-holonomic integrator (5.21), then the

following classes of controllers finite-time stabilize the system with respect to the

parameters (α, β,N,M), and therefore finite-time stochastically stabilize the system

with respect to the parameters (α, β,N,M, λ = 1), with λγ−γ0

N
> 0.
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Class a

ua(k) = −





a1(k) 0

0 a2(k)









x1(k)

x2(k)



 (5.22)

where a1(k), a2(k) are positive functions defined on N
+, and a1(k) < a2(k) for

1 < a1(k), 1 < a2(k).

Class b

ub(k) = −





0 b1(k)x2
1(k)

b2(k)x2
2(k) 0









x1(k)

x2(k)



 (5.23)

In which , b1(k), b2(k) are positive functions defined on N
+, and b1(k) < b2(k)

and 1 < a1(k), 1 < a2(k) such that

(x1(k) − b1(k)x2
1(k)x2(k))2 ≤ x2

1(k)∀k = 0, . . . , N, x1, x2 ∈ Sγ

(x2(k) − b2(k)x2
2(k)x1(k))2 ≤ x2

2(k) (5.24)

Proof.

Consider the FTS condition

∆V (xk, k) =

(x1(k) + u1(k))2 + (x2(k) + u2(k))2 + (x3(k) + x1(k)u2(k)

−x2(k)u1(k))2 − x2
1(k) − x2

2(k) − x2
3(k) ≤ λγ − γ0

N
(5.25)
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class a class b
constant a1(k) = a2(k) = c b1(k) = b2(k) = c

linear a1(k) = a2(k) = k b1(k) = b2(k) = k
exponential a1(k) = a2(k) = e−k b1(k) = b2(k) = e−k

Table 5.1: Classes of controller for the discrete-time Brocket integrator.

using the controller of class (a) we have

∆V (xk, k) =

(x1(k) − a1(k)x1(k))2 + (x2(k) − a2(k)x2(k))2 +

(x3(k) + x1(k)(−a2(k)x2(k)) − x2(k)(−a1(k)x1(k)))2

−x2
1(k) − x2

2(k) − x2
3(k) ≤ 0 ≤ λγ − γ0

N
,

∀(γ, γ0, N, I3×3, λ),
λγ − γ0

N
> 0, and a1 > 1, a2 > 0 (5.26)

and with class (b)

∆V (xk, k) =

(x1(k) − b1(k)x2
1(k)x2(k))2 + (x2(k) − b2(k)x2

2(k)x1(k))2 +

(x3(k) + x1(k)(−b2(k)x2
2x1(k)) − x2(k)(−b1(k)x2

1(k)x2(k)))2

−x2
1(k) − x2

2(k) − x2
3(k) ≤ λγ − γ0

N
(5.27)

¥

In Table 5.1 we propose different controllers with the defined structures, and study

their performance. Theorem 5.4 provides control laws that stochastically finite-time

stabilize the discrete-time Brockett integrator, in case of available state feedback,

that is in case the state is sent across a network, with no packet dropping. In order

to analyze how the controller performs as some packets are dropped, we consider,
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in the next section, the NCS composed by the Brockett integrator (5.21) and its

approximate model.

Control of Brockett Integrator trough a Network by Class (a) Constant

Controller

Consider again the discrete version of the Brockett integrator (non-holonomic inte-

grator) (5.21) and its approximate model

x̂1(k + 1) = 10x̂1(k) + 3u1(k)

x̂2(k + 1) = 50x̂2(k) + 7u2(k) (5.28)

x̂3(k + 1) = 50x̂3(k) − 8(x̂1(k)u2(k) + 7x̂2(k)u1(k))

We want to use the class (a) linear controller to FT control the Brockett integrator

trough the network.

u(k) = −





a 0

0 b









x̂1(k)

x̂2(k)



 (5.29)

where a1 = 1.7, a2 = 2.3. At first we check using the multi-input version of theorem

5.3 that the proposed controller FT stabilizes the system trough the network. We

obtain with M = I3×3

Ezk
∆V (zk, k) ≤ λγ − γ0

N
= 0.0585 (5.30)

where zk is given as in (2.3) with θk being an independent random sequence. In Fig-

ures 5.1, 5.2 and 5.3 we show simulations of the system controlled across a network,

using a linear class (a) controller in which a1 = 1.7, a2 = 2.3, and with packets loss

of 0%, 20%, 50% respectively. Note how in the case of a class (a) controller with full
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Figure 5.1: Brockett integrator controlled through the network with linear class (a)
controller with a1 = 1.7, a2 = 2.3 and packet lost rate of 0%.

information available, finite-time stability is guaranteed for every set of parameters

(α, β,N,M, λ) since the system is contracting. This property is however lost when

the network starts dropping packets. Next we repeat the experiment using the

same family of linear controllers (a) with different parameters a1 = .7, a2 = .9. Now

due to the fact that a1 < 1, a2 < 1 the FTSS of the system is not absolute but

depends on the parameters. In particular we are interested in FTSS with respect

to (α = 0.09, β = 1.52, N = 10,M = I3×3, λ = 0.3). In Figures 5.4, 5.5 and 5.6 we

observe how the second mode goes unstable when the network starts losing packets.

5.7 Conclusions

Finite-time stochastic stability of model based NCS has been studied. In particular

sufficient conditions for FTSS of the NCS were given. We showed how the FTSS of
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Figure 5.2: Brockett integrator controlled through the network with linear class (a)
controller with a1 = 1.7, a2 = 2.3 and packet lost rate of 20%.
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Figure 5.3: Brockett integrator controlled through the network with linear class (a)
controller with a1 = 1.7, a2 = 2.3 and packet lost rate of 50%.

the system depends on three main factors: the stability of the closed-loop system in

the case of available full information, the received information (packets transmitted),
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Figure 5.4: Brockett integrator controlled through the network with linear class (a)
controller with a1 = .7, a2 = .9 and packet lost rate of 0%.
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Figure 5.5: Brockett integrator controlled through the network with linear class (a)
controller with a1 = .7, a2 = .9 and packet lost rate of 20%.

and the accuracy of the model and the initial conditions.
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Figure 5.6: Brockett integrator controlled through the network with linear class (a)
controller with a1 = 0.7, a2 = 0.9 and packet lost rate of 50%.

We also investigated the possibility of designing for FTSS, and a set of admissible

controllers were proposed for a specific system. In particular we presented a class

of controllers that only depends on the model state. Since the conditions used for

design are only sufficient, the set of controllers might be conservative. Finally we

characterized the FTSS of the system in terms of the amount of dropped packets.
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Chapter 6

Nonlinear Model Based NCS:

Deterministic Finite-Time

Stability

6.1 Introduction

In chapter 5, we studied the effect of random packet dropping, on the FT stability of

a nonlinear discrete-time system. The resulting NCS was a stochastic system, which

allowed us to study its finite-time stochastic stability (FTSS).

In the present chapter, we consider packet dropping as a deterministic event, and

make use of the possibility of knowing when a packet drop may occur. To accomplish

this, the network dynamics must be incorporated in the control loop as was done in

chapter 3, providing a more accurate model of packet dropping. The model asserts

that the dropping of packets containing sensor measurements, is due to network

congestion.
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As mentioned earlier, congestion is caused by sources that transmit at an ag-

gregate rate exceeding the channel capacity. It may therefore be possible to control

packet dropping by appropriately managing the sources’ rates in specific paths. Since,

the stability of NCS depends on the controller performance, model accuracy, and the

amount of packets dropped, we can design for FTS, not only through direct state

feedback, but also by implementing a network controller to reduce packets dropping

by controlling path capacities and sources’ rates.

Therefore, the model studied in this chapter is extended to include network dy-

namics, such as link’s capacities and sources rates. In this new deterministic setting

we redefine FTDS for NCS and moreover, supply a sufficient condition for NCS to

be FTDS.

In Section 6.2 we present a brief discussion of two different fields, namely, Conges-

tion control, as well as NCS. Section 6.3 presents some notations about the system

under investigation, and redefines FTS in this new context of deterministic packets

dropping in NCS. Analytic results that provide sufficient conditions for EFTDS of

NCS are developed in Section 6.4, while Section 6.5 explores some characteristics

of the dropping sequence in relation to EFTS. Finally, Section 6.6 demonstrates ex-

amples of EFTS for a discrete-time Brockett integrator controlled across a network

experiencing packet loss.

6.2 Networked Control Systems and Networks

As discussed in chapters 2 and 3, several studies have been conducted in modelling

and controlling Networked-Control Systems (NCS),[1],[2],[12], mostly to study the

stability of a system whose control loop has been closed across a network.

The introduction of a network in a control loop brings about problems such
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as packet drops, delays, and so on. These issues have been analyzed individually

although some studies have combined the effects of sampling and delay [1]. However,

to the best of our knowledge, the network model itself has not yet been directly

incorporated into the NCS model, but only through the effects that arise as a result

of the network’s conditions.

This is the missing link between Networked-Control System and Network-Control.

Models of networks have been developed in Network-Control to study delays and

packet drops caused by congestion. Therefore, there is a gap between the network

dynamics, covered in Network-Control, and the effects that these dynamics have

on a control system, which Networked-Control Systems focuses on. Until now, we

have emphasized the effects of packet dropping on stability, particularly finite-time

stability, and developed a stochastic model for packet dropping. In this chapter,

we merge the two aspects of research, in order to combine into a single model the

NCS and the network model. In chapter 3 we developed such a combined model,

particularly taking into consideration packet dropping within the model-based NCS.

Here, we will study the finite-time stability of the system based on this combined

model. Due to the deterministic nature of the model, we will not employ FTSS, but

rather finite-time deterministic stability.

6.3 Preliminary Notation

We consider the deterministic MB-NCS, described in Chapters 2 and 3

zk+1 = H1(zk) + H2(zk)ϕk, zk ∈ IR2n, k = 0, 1, . . . (6.1)

More details about the model were given in Chapter 2. Recall from chapter 3 the

dropping sequence ϕk = (1 − θk) ∈ {0, 1} is defined as follows: assume the state of

the system is sent across a network path T of nl links, each of which has a maximum
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allowed packet rate (or capacity ci(k)), and a global capacity Gi(k) determined by

the sources’ rates at time k, then the dropping sequence is given by

ϕk = 1 −
nl
∏

j=1

sign(cj(k) − Gj(k)) + 1

2
(6.2)

where the sequence of variables {ϕk} identifies whether a packet has been dropped

due to congestion (ϕk = 1), or not (ϕk = 0).

The NCS described in equation (6.1) is a deterministic system, and we are inter-

ested in investigating its stability over a finite time in the event of packet dropping.

In the stochastic case, bounds may be exceeded with low probability. A deterministic

definition of EFTS is given next, which also allows bounds to be exceeded, but over

limited intervals.

Definition 6.1 Extended Finite-Time Stable NCS (EFTS-NCS)

The NCS (6.1) is EFTDS with respect to (αx, βx; αz, βz; N,No), if the following

conditions hold

(I.) the system is FTS with respect to (αx, βx, N), if no packet dropping occurs

{zT
k zk < βz : k ∈ [0, N ]|zT

0 z0 ≤ αz} (6.3)

(II.) for ϕk = 1, and some k ∈ [0, N ] either

{zT
k zk < βz : k ∈ [0, N ]|zT

0 z0 ≤ αz} (6.4)

or

{∀j ∈ [0, N ] : zT
j zj > βz,⇒ min

j+1≤i≤j+No+1
xT

i xi ≤ βx}, No < N (6.5)

where No is the number of consecutive steps the system state is allowed to exceed

the FT bound due to packet dropping.
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N

In particular, FTS for NCS is redefined so that if packet dropping occurs, the

system state may exceed the bound βx for a fixed finite number of consecutive steps

No. Note that the above definition requires the knowledge of future states to ensure

FTS at each step. We will also redefine quadratic FTDS in case it is desired to bound

βz

βx

αz

αx

kNj + Noj

‖ xk ‖

‖ zk ‖

0

Figure 6.1: Extended definition of FTDS for NCS: the global state norm ||zk|| may
exceed the bound βz and ||xk|| the bound βx as long as the plant state norm ||xk||
contracts in a finite number of steps No, back to βx.

a given quadratic function of the state.

Definition 6.2 Quadratically EFTS-NCS

The NCS (6.1) is quadratically EFTS with respect to (γx, γx0; γz, γz0; N,No,M),

if for the choice of quadratic Lyapunov functions Vz(zk, k) = zT
k M(k)zk, Vx(xk, k) =
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xT
k m1(k)xk and Vx̂(x̂k, k) = x̂T

k m4(k)x̂k, in which M(k) = MT (k) is a 2n× 2n time-

varying matrix, with m1(k) > 0, m4(k) > 0, we have

(I.) for ϕk = 0

{Vz(zk, k) < γz : k ∈ [0, N ]|Vz(z0, 0) ≤ γz0} (6.6)

(II.) for ϕk = 1 either

{Vz(zk, k) < γz : k ∈ [0, N ]|Vz(z0, 0) ≤ γz0} (6.7)

or

{∀j ∈ [0, N ] : Vz(zj, j) > γz,⇒ min
j+1≤i≤j+No+1

Vx(xi, i) ≤ γx}

N

Theorem 6.1 Every NCS that is quadratically EFTS with respect to the parameters

(γx, γx0; γz, γz0; N,No,M), is also EFTS with respect to (αx, βx; αz, βz; N,No).

Proof.

The proof easily follows by considering the fact that δ1||zk||2 ≤ Vz(zk, k) ≤
δ2||zk||2, δ1(k) = λmin{M(k)}, δ2(k) = λmax{M(k)} are the minimum and maxi-

mum eigenvalues of M(k), respectively.

¥
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6.4 Extended Finite-Time Deterministic Stability

Analysis

In this section, we consider sufficient conditions that will guarantee FTDS for the

NCS. In the new setting, if the NCS state exceeds the bound specified at time j,

then, in order to predict the future values of the state, it is required to have an

estimate of the plant state for the successive No + 1 steps. This is presented in the

following theorem by using the model to predict future states.

Recalling from Chapter 5, the sets of bounded states are denoted as follows

Sγz
= {zk : Vz(zk, k) ≤ γz} (6.8)

Sγx
= {xk : Vx(xk, k) ≤ γx} (6.9)

Sγx̂
= {x̂k : Vx̂(x̂k, k) ≤ γx̂} (6.10)

Theorem 6.2 Consider the class CB−NCS NCS (6.1), and the state prediction using

the model

x̂k+(j+1) = f̂(x̂k+j) + ĝ(x̂k+j)uk+j, k + 1 ≤ j ≤ k + 1 + No (6.11)

and assume for all xk ∈ Sγx
and k = 1, . . . , N

∆Vz ≤ ∆VBz
= BH2(x̂k)ϕ

2
k + 2(BH1,2(x̂k))ϕk + BH1(x̂k) − x̂T

k M(k)x̂k (6.12)

∆Vx ≤ ∆VBx
= BH1(x̂k) − λmin{M}Bz(x̂) (6.13)

then if
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[ρkVz(zk, k) − ∆VBz
(zk, k))] ≥ 0 (6.14)

γz

γz0

≥ sup
0≤k≤N

k−1
∏

j=0

(1 + ρj) (6.15)

[ρkVz(zk, k) − ∆VBz
(zk, k))] ≤ 0 (6.16)

min
k+1≤i≤k+No+1

[ρ
′

iVx(x̂i, i) − ∆VBx
(x̂i, i)] (6.17)

βx̂

αx̂

≥ sup
0≤k≤N

k−1
∏

j=0

(1 + ρ
′

j) (6.18)

and finally

Be(x̂k) + βx̂ ≤ βx, ∀x̂k ∈ Sγx̂
, (6.19)

then the NCS (6.1) is FTDS with respect to (αx, βx; αz, βz; N,No)

Proof.

From condition (6.15) we have that if

[ρkVz(zk, k) − ∆VBz
(zk, k)] ≥ 0 (6.20)

then using the fact that the NCS belongs to class CB−NCS together with condition

6.15 and theorem 4.1, chapter 4 we can show the FTDS for the NCS. Let us study

the case in which [ρkVz(zk, k) − ∆VBz
(zk, k)] ≤ 0, then inequality (6.18) reduces to

min
j+1≤i≤j+No+1

[ρkVx(x̂i), i) − ∆VBx
(x̂i, i))] ≥ 0,
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from which it follows that there exists a j + 1 ≤ i ≤ No + 1 for which

[ρiV (x̂i, i) − ∆V (x̂i, i)] ≥ 0 (6.21)

that combined with condition (6.18) with theorem 4.1, chapter 4, implies FTS for

the model state x̂ with respect to (αx̂, βx̂, 1). Also consider the following

||xk|| = ||xk − x̂k + x̂k|| ≤ ||ek|| + ||x̂k|| ≤ Be(xk) + ||xk|| (6.22)

then considering the condition (6.19), and the FTS of x̂k, from which it follows

||xk|| ≤ βx for at least one k ∈ [j +1 ≤ i ≤ No +1] and moreover FTDS for the NCS.

¥

6.5 Rate Limit of Packet Dropping

Let us consider once more the model of the networked control system in the form

(6.1). In chapter 5 we investigate the rate of lost packets that system can support

while maintaining FTSS. To do so, we consider the sufficient conditions for FTS of

the system (6.1), given in theorem 6.2, and investigate the level of dropping rate

ϕk = 1 for which stability is guaranteed. This results in the following.

Definition 6.3 Attractive System A discrete-time system of the form

zk+1 = f(zk), zk ∈ IRn, z(0) = z0 (6.23)

is an attractive system with respect to (αz1, βz, αz2, N,Nr), αz1 ≤ βz ≤ αz2 if it is

FTS with respect to (αz1, βz, N, ) and contracting with respect to (αz2, βz, Nr), i.e.
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Nr

βx

αx1

αx2

kN

‖ xk ‖

0

Figure 6.2: Attractive system.

||z0|| ≤ αz1 ⇒ ||zk|| ≤ βz, k = [0, N ]

αz2 ≥ ||z0|| ≥ βz ⇒ ||zk|| ≤ βz, k = [Nr, N ]

N

Theorem 6.3 Consider a class CB−NCS NCS (5.19), also assume the controller

K(x̂) is such that in case of successful packet reception the system is attracted with

respect to (αz1, βz, αz2, N,Nr)

||z0|| ≤ αz,⇒ ||zk|| ≤ βz, k = [0, N ]

or

αz2 ≥ ||z0|| ≥ βz ⇒ ||zk|| ≤ βz, k = [Nr, N ]
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with αz1 ≤ βz i.e. the region [−βz, βz] is a global region of attraction for the state.

Let Nr be the number of steps needed by the controller to pull the state back into the

ball of radius βz from a distance αz2. Consider Nr number of time steps needed to

pull the state from [βz, αz2] to [0, βz]. Also we have that N0 is the number of FT

unstable steps the system can support, and δBz is the bound on maximum value that

the state norm ||zk|| exceed the bound βz for each dropped packet (ϕk = 1). Then we

have that the number of packets that need to be received ( ϕk = 1) in order to recover

δBz the loss of Ne packets is

Nc =
Bz(x̂)Ne

αz2Nr.
(6.24)

and the maximum number of admissible consecutive drops that needs to be followed

by Nc received packets in order to achieve EFTS through the network with respect to

(αx, βx; αz, βz; N,No) is

Nd =
N0

1 + Nr

. (6.25)

Proof. We have that the number of packets that need to be received ( ϕk = 1)

in order to recover δBz the loss of one packet is

Ng =
δBz

αz2

Nr (6.26)

then for the loss of Ne packets the number of packets that need to be received (

ϕk = 1) in order to recover δBz is

Nc =
Bz(x̂)Ne

αz2Nr.
(6.27)

From the above consideration we can then evaluate the maximum number of

admissible consecutive drops Nd = N0

1+Nr
the system can support while being EFTS
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through the network with respect to (αx, βx; αz, βz; N,No) assuming that are followed

by Nc received packets.

¥

The proof of the theorem follows from the assumption that the system is EFTDS

if no packets are dropped. Also note that since the system belongs to class CB−NCS

a bound Bz(x̂) on the state increments can be defined. Note that the condition is

once more, only sufficient.

6.6 Examples

Exponential Class-b Controller for Brockett Integrator trough a Network

Recalling from section 5.6 in chapter 5 the discrete-time Brockett integrator, we

investigate in a deterministic setting how packets losses, affect the closed-loop EFTS

of the system. Consider again the discrete version of the Brockett integrator (5.21)

and the model

x̂1(k + 1) = −23x̂1(k) − 17u1(k) (6.28)

x̂2(k + 1) = −19x̂2(k) + 3.33u2(k) (6.29)

x̂3(k + 1) = −5x̂3(k) − 8(x̂1(k)u2(k) − 7x̂2(k)u1(k)) (6.30)

We study EFTS with respect to (αz = 1, βz = 3, αx = 0.6, βx = 1.5, N = 10, No = 2).

Let us use the exponential class (a) controller

u(k) = −





e−ak 0

0 e−bk



 y(k) (6.31)
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with parameters a = 1.3, b = 0.7. Then the conditions of theorem 6.2 are satisfied

if full information is available, i.e. ϕk = 1, ∀k = 0, . . . 10. In order to simulate the

system, we consider the path used to the NCS composed of three links l1, l2, l3, each

with limit capacity ci(k). The links are used by five sources s1, . . . , s5 as follows

l1 → s1, s4

l2 → s1, s3 (6.32)

l3 → s2, s3, s5

meanwhile the sources send at the following respective rates

r1(k) = 1(sin(k) + 1) [packett/s]

r2(k) = 3(cos(k) + 1)

r3(k) = 1.7exp−k (6.33)

r4(k) = 8(cos(k) + 1)

r5(k) = 9exp−k

from which we can calculate the global rates at each link as follows

G1(k) = r1(k) + r4(k); (6.34)

G2(k) = r1(k) + r3(k); (6.35)

G3(k) = r5(k) + r2(k) + r3(k); (6.36)

We study the closed-loop behavior of the NCS as the limit rate of the link, and

therefore the amount of packets dropped vary. Starting from initial conditions

xi(0) = x̂i(0) = 0.3, i = 1, 2, 3, we first consider a fixe limit capacity ci = c = 17

packets/second that will lead to a dropping sequence {ϕk} of all zeros, that is all

the packets are received (and therefore a receiving sequence {θk} of all ones). Figure
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Figure 6.3: Brockett integrator controlled through the network with exponential class
(b) controller with a1 = 1.3, a2 = 0.7, capacity c = 17.

(6.3) shows the evolution of the system state over time. If we lower the limit capacity

to c = 13 packets/second, the receiving sequence becomes

θ = [0 1 1 1 1 0 0 1 1 1 1 0 0 1 1] (6.37)

for which FTDS conditions are still satisfied, as shown in Figure (6.4). For c = 1 we

obtain a dropping sequence of all ones and the state dynamics are depicted in Figure

6.5. Finally in Figure 6.6, we show the norms for the three values of capacities for

xi(0) = x̂i(0) = 0.3.

6.7 Conclusions

We studied MB − NCS with a deterministic model for the packet dropout. This

model was realized by including the network in the NCS. This allowed us to obtain a

deterministic model for the packet dropping and therefore for the complete NCS. The
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Figure 6.4: Brockett integrator controlled through the network with exponential class
(a) controller with a1 = 1.3, a2 = 0.7, static capacity c = 13
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Figure 6.5: Brockett integrator controlled through the network with exponential class
(a) controller with a1 = 1.3, a2 = 0.7, static capacity c = 1

EFTS for such systems was explored, and in particular redefined for the deterministic

NCS. This has allowed the system to possibly exceed the specified bounds for a
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Figure 6.6: Norm of the state x for values of capacities c = 17, c = 13 and c = 1

finite number of steps, which was otherwise unacceptable under the classical FTS

definition.
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Conclusions and Future Work

The aim of this thesis was to explore stochastic and deterministic finite-time stabil-

ity of nonlinear discrete-time systems, within a networked communication systems

framework. Moreover, we intended to provide a link between NCS and communica-

tion networks, by including the network model in the NCS closed-loop system.

Introducing a network in the control loop gives rise to several side issues that

we tried to address in this thesis. In particular we focused on the issue of packets

dropout, and assumed available a plant model on the controller’s side, that is a

model-based NCS approach. In this model the state measurements are sent through

a network, while the control signal is directly applied to the plant. With such a model

we showed how the stability, (specifically the finite-time stability) of the system

is affected by the loss of state information. Moreover, we extended the existing

model-based NCS approach to encompass nonlinear systems, and we characterized

a class of model-based NCS with bounded errors between plant and model. Next,

we completed the NCS model by providing stochastic and deterministic models for

the packet dropout. For the stochastic case we used some existing results, while

we studied the deterministic case by introducing the network dynamics in the NCS
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model.

A model for NCS was proposed for both stochastic and deterministic packet

dropout. The extension to a deterministic setting has been done through the in-

clusion of the network dynamics in the NCS model. In particular, by detailing the

network dynamics and including them in the NCS model we provided a deterministic

model for the packet dropping. For the stochastic counterpart we considered a ho-

mogenous Markov chain and independent Markov chain, i.e. independent sequence,

to address the issue of packet drops.

We then studied FTS in a stochastic and deterministic setting while extending

some of the existing results in analysis and design. Furthermore, we extended the

classical FTS concept to a more general one in which exceeding the bounds is allowed

for finite number of consecutive steps.

Then, using the NCS model and the FTS results we proceeded to study FTS and

FTSS of NCS. Finally, using the deterministic model for NCS, we studied FTDS for

such a system.

7.1 Future Work

We are considering three possible extensions of our research. The first addresses

the inclusion of delay in the control loop. A second extension involves the parallel

solution of the two problems of stabilizing the NCS and the network, which may be

realized, for example, by including priority schemes between sources and dynamically

changing the priority of the NCS depending on the level of stability of the plant. We

also plan on incorporating existing optimal solutions into the stability studies of

the network in the control of NCS. This leads to two possibilities for stabilizing the

two interconnected systems (network and NCS). The controller of the network may
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serve to stabilize the network and indirectly the plant, as will the controller of the

networked system. Finally, a third extension includes the analysis and design for

EFTS that was newly introduced in this thesis.
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