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Abstract

This dissertation studies the limitations of Networked Controlled Systems (NCS)

caused by the presence of a finite capacity channel in the feedback loop.

First, we analyze the stabilization issue for an NCS that uses a Delta-Modulator

scheme within the encoder/decoder structures. We also analyze the packet-loss issue,

and determine a maximum allowable number of consecutive bits lost while keeping

closed-loop stability. We then design a compensation scheme for regaining equimem-

ory between the encoder and decoder after a bit is lost in a network without acknowl-

edgment signals. We finally present a compensation scheme that ensures stability

after a pre-determined number of bits is lost.

Second, we extend results from packet-based control theory and present sufficient

conditions on the rate of a packet network to guarantee asymptotic stabilizability of

unstable discrete-time linear invariant (DLTI) systems with less inputs than states.
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We use a truncation-based encoder/decoder scheme and two types of NCS are consid-

ered in the absence of communication delays, then for one of the two NCS types, the

case of a constant time delay is discussed. We also propose a new encoder/decoder

scheme that is more complex than the truncation-based one, but that requires a

lower stabilization rate.

Third, we obtain information theoretical conditions for tracking in DLTI control

systems. The mutual information rate between the feedback signal and the reference

input signal is used to quantify information about the reference signal that is available

for feedback. This mutual information rate must be maximized in order to improve

the tracking performance; however, the associated rate is shown to be upper bounded

by a quantity that depends on the unstable eigenvalues of the plant and on the

channel capacity. We also find a lower bound on the expected squared tracking error

in terms of the entropy of a random reference signal.

Finally, we analyze the counterintuitive case where non-minimum zeros increase

the mutual information rate between the feedback and reference signals. This anal-

ysis indicates that mutual information rate is an imperfect metric for specifying the

performance for a DLTI tracking system. We also obtain a frequency interpretation

of the tradeoffs that exist when tracking and disturbance rejection are required si-

multaneously and we obtain guidelines to satisfy the requirements on the controller

in order to achieve good tracking and disturbance rejection.
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Chapter 1

Introduction

1.1 Motivation

Feedback control systems, where the control loops are closed through a real-time

network, are called Networked Controlled Systems (NCS) [60], [56]. An architecture

of a typical NCS is shown in Figure 1.1. The primary advantage of a NCS is that

a reduced number of system components and connections are achieved, resulting in

easier maintenance and diagnosis of the system. On the other hand, when controlling

across networks, the assumptions of classical control theory may need to be revisited.

For example, the delay from the sensor to the controller may be time-varying or

random, and similarly for the path from the controller to the actuators. This issue

has been analyzed in [13], [14], [29], and [34]. New problems thus arise because

the sensed data and the control signals are no longer connected directly through

a “dedicated wire”, but rather through a data network that has finite bandwidth

(finite data rate) and which may also be shared by many other systems. In recent

years, much research and development has been focused in this area and, because

of the attractive benefits of remote industrial control, several reliable protocols have

1



Chapter 1. Introduction

been developed for robust real-time control. Meanwhile, the technologies based on

general computer networks have also progressed. With the decrease in price and with

the steady investment in infrastructure, the Internet is in fact becoming a suitable

network for control applications. Without dedicated protocols, however, a new theory

Actuator

Channel
Decoder

Channel
Encoder

Controller

Channel
Decoder

Channel
Encoder

SensorPlant

Transmission Channel

Figure 1.1: Architecture of a Typical Closed-Loop Networked Controlled System.

is needed for control design across the Internet. In particular, the communication

channel between the plant and the controller may no longer be ignored, since the

link can only carry a finite number of bits/s and the assumption of infinite capacity

channels no longer holds. In addition to introducing both delay and quantization, the

finite data rate channel brings forth the issue of how to best determine the usefulness

of the sensed and control bits [32].

Back in 1999, Wong and Brockett [57] considered a digital channel with a finite

capacity and found that unstable systems can never be asymptotically stabilized with

a static quantizer across such a channel, and thus the concept of containability was

2



Chapter 1. Introduction

introduced. Since then, Mitter [28] and some of his collaborators have contributed

to the development of a new theory that matches classical control theory with tradi-

tional information theory [7], [39], [40], [52], [53]. Some of the first results within the

information theoretic-control theoretic realm, were pointed out in [12]. The underly-

ing concept is that the control loop can no longer be thought of as signal processors

that interchange signals in a feedback configuration. A more accurate description is

that several signals are transformed into packets of information. This information is

transmitted through a rate constrained channel thus highlighting the quantization

issue. These topics have also appeared in works [3], [8], [9], [15], [16], [27], [33], [59].

An extension of these ideas to nonlinear systems was presented in [31] and [37].

Since in a realistic setup, the feedback channel uses a packet network instead of

a simple digital channel, the design of an NCS should also account for the packet-

network limitations [30]. A complete understanding of the interaction between a

control loop and a packet-based communication system requires the use of tools

of information theory for real-time systems. The packet-based network control ap-

proach has been treated by Shi and Murray in [47] and [48].

Research efforts are also expanding in the development of a global theory linking

control theory and communication theory. Examples of this effort may be found in

[17] and [55].

All such studies aim at developing tools to deal with the issues introduced by

the presence of an imperfect communication channel in the feedback loop. This

dissertation is an effort in the same direction. It focuses on theoretical and practical

issues such as the development of new encoding-decoding schemes and the analysis

of the limitations of networked controlled tracking systems in terms of information

theory.

Specifically, one of the main goals is to focus in the development of encoding

3



Chapter 1. Introduction

schemes that are simple to implement while using a low data rate. Since simplicity

is a main goal, then the rates may not reach the minimum possible. This goal finds

an application when the rate is not the main issue, but the computational power is

the problem.

The other important motivation is to find new interpretations of tracking systems

in terms of information theory. In the past, control theory has been interpreted in

terms of signal processing concepts or in terms of systems that interchange energy.

With the new applications where the control systems interact with communication

systems, a new interpretation in terms of information flow may be interesting for

future applications. This dissertation is also focused in finding these new interpre-

tations for the particular case of tracking systems. Although we do not pretend to

come with ideas for immediate application, we are interested in finding fundamen-

tal limitations that are imposed by a limited communication medium and that any

control system designer must be aware of when a constraint channel is present in the

feedback loop of a tracking system.

1.2 Dissertation Outline

The research has several threads and this document is organized by focusing on

a different topic in each chapter. We present in Chapter 2 an overview of recent

results in control under limited communication and review the most important re-

sults that guided our research. Then, in Chapter 3, we present a Delta-Modulation

encoding/decoding scheme that extends earlier results to the case where bits are

dropped and plants may be highly unstable. After analyzing the limitations of the

Delta-Modulation scheme we propose in Chapter 4 a different encoding/decoding

scheme for higher-order plants that, although suboptimal in terms of the Data Rate

Inequality, is simple to implement. Finally, in Chapter 5 we explore the limitations

4



Chapter 1. Introduction

of networked controlled tracking systems. We analyze these systems in terms of in-

formation theoretical quantities. In particular, the mutual information rate is used

to explain the limitations, and a frequency domain interpretation is obtained for the

special case where asymptotic stationarity conditions hold.

1.3 Summary of Contributions

This dissertation introduces several contributions in Chapters 3, 4 and 5 as listed

below:

• Chapter 3:

– A Delta Modulation-like encoding scheme with a gain scheduling policy

for discrete-time linear time invariant (DLTI) scalar system.

– An algorithm to tolerate a specific number of lost bits in a NCS closed-loop

system.

• Chapter 4:

– A simple truncation-based encoding scheme for NCS stabilization consid-

ering a network between the sensors and the controller, and a network

between the controller and the actuators.

– Sufficient conditions in the network data rates considering a DTLI system

without restrictions on the number of inputs of the system.

– A dynamic quantizer that achieves a lower data stabilization rate than

the truncation-based encoding scheme.

5



Chapter 1. Introduction

• Chapter 5:

– Information theoretical conditions for DLTI tracking systems.

– Analysis of the counterintuitive case where non-minimum phase zeros in-

crease the mutual information rate between the feedback signal and the

reference signal.

– A frequency interpretation of the tradeoff that exists when we want to

simultaneously achieve a good tracking and disturbance rejection.

– Guidelines to satisfy the necessary requirements that the controller has to

meet in order to achieve good tracking and reject disturbances simultane-

ously.

6



Chapter 2

Overview of Control Theory under

Communication Constraints

2.1 Introduction

In this chapter we review fundamental results that form the background for the topics

discussed in this dissertation. The chapter is divided into two sections and the results

are presented in a chronological order. Section 2.2 presents the ideas that inspired

most recent results. The section includes criteria for the necessity and sufficiency of

stabilization. Section 2.3 presents the fundamental limitations of feedback control

systems caused by causality and finite-capacity communication links, and includes

the extensions of Bode-like integrals. These limitations provide some insight of what

is possible and what is not in NCS. The results and theory reported in this chapter

have been presented previously in our survey paper [18].

7
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2.2 Limitations for Stabilizability

2.2.1 Feedback Scheme with a Noiseless Channel

The problem of state estimation and stabilization of an LTI system was originally

introduced by Wong and Brockett [57], but it was Tatikonda and Mitter who gener-

alized some of these ideas [52], [53]. In [53], limits were established for the channel

data rate to achieve observability and stabilizability in a NCS. That work considered

both a noiseless communication channel as well as a noisy one. The system with a

noiseless digital communication channel is shown in Figure 2.1. The communication

channel can transmit at each time, 2R symbols, i.e., R bits of information per second

without error. We assume that the encoder and decoder are equimemory at all times.

By equimemory we mean that the decoder can invert the encoder map [51]. Consider

Plant

Controller

Encoder

Channel

Decoder

u(k)

y(k)

ȳ(k)

v(k)

w(k)

Figure 2.1: Closed-Loop System with Communication Channel.

then the DLTI system:

x(k + 1) = Ax(k) + Bu(k);

y(k) = x(k). (2.1)

8



Chapter 2. Overview of Control Theory under Communication Constraints

where x(k) ∈ Rd is the state of the system and u(k) ∈ Rm is the control input, and

y(k) ∈ R
l is the output of the system, all at time k. We assume that A and B have

proper dimensions, and the state is available for measurement. In what follows, ‖x‖

represents the Euclidean norm. We also introduce the following definition presented

in [53].

Definition 2.2.1 System 2.1 is asymptotically stabilizable if there exist an encoder,

decoder and controller such that the following holds:

1. Stability: ∀ε > 0, ∃ δ(ε) such that ‖x(0)‖ 6 δ(ε) implies ‖x(k)‖ 6 ε, ∀k > 0.

2. Uniform attractivity in x(0): ∀ε > 0, ∀δ > 0 ∃ T (ε, δ) such that ‖x(0)‖ 6 δ

implies ‖x(k)‖ 6 ε, ∀k > T .

The first part of the definition implies that the state vector cannot grow unbounded

for any bounded initial state, x(0), while the attractivity property implies that the

state decreases uniformly to zero. Considering this definition, the following result

holds:

Proposition 2.2.1 [53] Assuming (A, B) is a stabilizable pair; a necessary condition

for system (2.1) to be asymptotically stabilizable is that the channel data rate R

satisfies

R >
∑

λ(A)

max { 0, log
2
|λ(A)| } ; (2.2)

where λ(A) are the eigenvalues of matrix A.

Actually, equation (2.2) considers the sum over the log
2

of the unstable modes (since

the log
2

of the stable modes will be less than zero and will be discarded because of

the max function). The lack of dependence on the stable modes of the system is

9



Chapter 2. Overview of Control Theory under Communication Constraints

easily explained since such modes decay to zero on their own. This result indicates

that stabilizability can only be achieved if we have a minimum data rate which

is related to the dynamics of the plant. In other words, if the system has fast

unstable dynamics, the channel data rate must be faster to overcome the effects of

the unstable dynamics. It was also shown that equation (2.2) provides exactly the

same conditions for asymptotic observability. These ideas were extended by the same

authors for noisy communication channels [52].

2.2.2 Feedback Scheme with a Noisy Channel

When a noisy channel is present in the feedback loop given in Figure 2.1, there must

be a restatement of the concept of asymptotic stabilizability, since the deterministic

definition no longer holds. There have been three main concepts of stability in

the stochastic case, the first one involving a mean-squared convergence criterion,

the second using the almost-sure convergence criterion while the third considers

the m-th moment convergence criterion (to recall the differences in the convergence

criteria, see Appendix A). Depending on the particular application, one may use

one convergence criterion versus another. The mean-squared criterion is a good

candidate for situations where large deviations occur and must be penalized, whereas

the almost-sure convergence is more appropriate when almost all realizations are

typical [50]. The resulting conditions are not the same because one convergence

criterion does not necessarily imply any of the other two [49]. In what follows, we

will only provide the result for the almost-sure convergence criteria.

Almost-sure Convergence Criteria

In [52], almost-sure convergence is defined as follows:

10
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Definition 2.2.2 System (2.1) is asymptotically stabilizable if there exist an en-

coder, a decoder, and a controller such that ‖x(k)‖ → 0 almost surely.

For Definition 2.2.2, the bound for R given by equation (2.2) can no longer be

assumed valid. A new framework is needed to guarantee almost sure asymptotic

stabilizability. The approach used in [52] was the use of Shannon’s channel capacity,

Cs, interpreted in [5] as a measure of channel quality and defined as follows:

Definition 2.2.3 [5] The “information” channel capacity of a discrete memoryless

channel is

Cs = max
p(x)

I(x; y);

where the random process x is the channel input, the random process y is the channel

output and the maximum is taken over all possible input distributions p(x).

A result from [52] is given by the following proposition:

Proposition 2.2.2 For system (2.1) with (A, B) a stabilizable pair, a necessary

condition for almost sure asymptotic stabilizability is that

Cs >
∑

λ(A)

max { 0, log
2
|λ(A)| }

.

Although we do not include in this chapter the proofs of these results, the reader may

notice that these conditions make no assumptions on specific architectures for the

encoder, decoder, or controller. The results hold independently of these elements. A

fictitious difference between the noisy and the noiseless cases is that for the noiseless

channel, the results are given in terms of R, while in the noisy case, the conditions are

given in terms of Cs. Relations in terms of R may however be obtained, depending

on the type of noisy channel.

11
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2.2.3 Feedback Scheme including a Packet-Based Network

The previous results taken from [26], [52], [53] and [54], considered noisy and noiseless

discrete communication channels. However, work by Shi and Murray [47] took the

initial steps towards the development of a packet-based control theory. They consider

the problem of stabilizing an unstable, but controllable and observable, linear time-

invariant system when the feedback path includes a packet-based network. The LTI

system is given by

ẋ(t) = Ax(t) + Bu(t);

y(t) = x(t). (2.3)

The following assumptions for system (2.3) are made: the n×n matrix A has at least

one eigenvalue in the right half plane (unstable), and the pair (A, B) is controllable

while the pair (A, In×n) is obviously observable. It is also assumed that the packet

network has a finite data rate R bits/s and that no packets are lost, no reordering

of packets may occur, and a packet length of l bits is considered. The transmission

delay in the network from encoder to decoder is δ, and the total delay induced by

the network, in addition to the transmission delay, is constant and equal to D. The

signals are discretized (y(t) → y(k)) and the sampling rate is chosen as δ+D. Limits

are obtained for the minimum data rate needed to stabilize the closed-loop system

for three different bit allocation schemes.

Equal Bit Allocation

In the first case, bits were allocated equally to each discrete output y(k), i.e., the

allocation of bits in a packet was such that l/n bits were used for the ith component

of y(k). For this scheme, the following sufficient condition was obtained [47] in order

12
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to guarantee exponential stability of the closed-loop system:

R >
l log(‖eA‖)

l

n
− 1 − D log(‖eA‖)

;

where ‖eA‖ is the induced L2 norm or the largest singular value of eA.

Proportional Bit Allocation

Assuming that A = diag{λ1, λ2, . . . , λn}, where λ1 > λ2 > · · · > λn > 0. A

proportional bit allocation is intuitively a smarter scheme than equal bit allocation,

because instead of using the same number of bits for each component, λi

λ
l bits are

used for the ith component of y(k), where λ =
∑

n

i=1
λi. Therefore, the bit allocation

is proportional to the size of the eigenvalues so that more bits in a packet are allocated

to the more unstable modes. For this scheme, reference [47] showed that the limit

for the data rate to achieve exponential stability is given by:

R >
lλ log

2
e

l − λD log
2
e − λ

λn

.

However, this result is counter-intuitive since a proportional bit allocation scheme is

expected to give a dependence of R on the largest eigenvalue (the most unstable),

rather than the smallest eigenvalue. This contradictory condition led the authors of

[47] towards a third approach, where they considered optimal bit allocation.

Optimal Bit Allocation

The idea here is to give variable bit allocation portions for each individual subsys-

tem (ith component), and then perform an optimization algorithm on those variable

portions. The optimization problem is stated as follows:

13
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Encoder

Network

Decoder

Controller

x(k + 1) = Ax(k) + Bu(k)

Rate: R1 + n packets/time-step

y(k) = x(k)

Encoder

Network

Decoder

2 1

Rate: R2 + n packets/time-step

Figure 2.2: Packet-based NCS.

Let β = [β1, · · · , βn], then find:

min
β

{Rmin}

subject to
n∑

i=1

βi = 1, βi > 0, 1 ≤ i ≤ n;

βil > 1 + λiD log
2
e, 1 ≤ i ≤ n;

where λ1 > λ2 > · · · > λn > 0 are given. The disadvantage of this approach is

that there is no analytical solution to the bits allocation in terms of the size of the

eigenvalues since the answer is based on the solution of a Linear Matrix Inequality

(LMI). The scheme tries to give more weight to the most unstable eigenvalue and

less weight to the least unstable one. For this allocation scheme, reference [47] shows

that if l � n, the following approximation holds:

Rinfoptimal ≈

n∑

i=1

λi log
2
e.

The concepts discussed so far provide initial steps towards a deterministic theory of

packet-base control. However, there is also a robust result for a stochastic case where

14
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the system model is given by:

x(k + 1) = (A + ∆k)x(k) + γkBu(k);

y(k) = λkCx(k);

where λk and γk (used to model packet drops) are Bernoulli independent and iden-

tically distributed (i.i.d.) random variables with E{λk} = λ and E{γk} = γ for all

k, respectively. In addition, the uncertainty matrix ∆k satisfies ∆T

k
∆k 6 K2I for all

k, where K is a constant. The network on the right side of Figure 2.2 has a data

rate R1 + n while the network on the left side of figure has a data rate R2 + n. Note

that Ri bits are used to allocate the magnitude of the state and n bits are used for

the sign of the n state vector components. The problem was formulated in [45] to

guarantee almost-sure stability and the result is given by the following theorem:

Theorem 2.2.1 Assume B and C are invertible and the system dimension is n.

Then a sufficient condition for the closed-loop almost sure stability (if there are no

packet drops, i.e., λ = 1 and γ = 1, this notion changes to exponential stability) is

that the network and system parameters satisfy the inequality

(‖A‖K)1−λγ

(
‖A‖2−

R1
n + ‖B‖‖B−1A‖2−

R2
n + K

)λγ

< 1. (2.4)

The importance of this result is that it is equivalent to the one by Tatikonda, equation

(2.2), when considering a single packet-based network (by letting R2 = ∞, λ = 1,

γ = 1 and K = 0 in equation (2.4)).
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2.3 Fundamental Limitations on a Causal and Fi-

nite Capacity Feedback Scheme

Recently, Martins and Dahleh [25] proposed exciting ideas on fundamental limita-

tions on the performance of a finite capacity feedback channel. The results in [25] are

a relevant achievement for NCS theory similar to the the Bode Integral results for

the classic control theory [43]. Before proceeding, we propose the following notation:

• We use the notation in [49] where bold letters represent stochastic processes.

• Let a(k) be a time sample of the stochastic process a.

• The expectation of a is given by E{a} and ak = {a(1), a(2), . . . , a(k)}.

• The covariance matrix of a stochastic process a is:

Ra(i, j) = E{(a(i) − E{a(i)})(a(j) − E{a(j)})T}, where i, j are integers.

• Let I(z;w) denote the mutual information rate between the random variables

z and w.

• Let I∞(z;w) denote the mutual information rate between the stochastic pro-

cesses z and w.

• Let |.| denote the absolute value.

• The eigenvalues of an n × n matrix A are denoted by λi(A), with 1 ≤ i ≤ n.

With this notation we introduce the feedback structure presented in [25]. The closed-

loop system is shown in Figure 2.3, where d is the disturbance sequence, e is the

plant input, y is the plant output, z is the channel output and the transfer func-

tion between d and e is the sensitivity function represented by Se,d(ω). Under this

feedback scheme, two limitations were found for the closed loop performance. These
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G

K
z

P
ed

x(0)

y

c (Noise independent of d and x(0))

Arbitrary Causal Channel

Figure 2.3: Feedback Scheme including Finite Capacity Channel.

limitations are due to causality and the finite capacity in the feedback channel K.

We define next the concept of feedback capacity of a channel.

Definition 2.3.1 [24] In the setup given by Figure 2.3, the feedback capacity, Cf , is

defined as the least upper bound Cf that satisfies

sup
k∈N+

I((dk,x(0)); zk)

k
≤ Cf .

A particular case of the closed-loop system in Figure 2.3 is the block diagram in

Figure 2.4, where z is relabeled as u and the block G is replaced by an adder.

2.3.1 Limitations Caused by Causality

Consider a single input DLTI plant with the following state-space realization:

x(k + 1) = Ax(k) + Be(k);

y(k) = Cx(k). (2.5)
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+

K
u

P
ed

x(0)

y

c (Noise independent of d and x(0))

Arbitrary Causal Channel

Figure 2.4: Equivalent Feedback Scheme including Finite Capacity Channel.

The maps G and K in Figure 2.3 are related to e(k) = G(k,dk, zk) and to the channel

output z(k) = K(k,yk, ck). A particular case of the system in Figure 2.3, is the

closed-loop system in Figure 2.4, where block G is an adder and z is relabeled as u.

With these definitions, an information flux inequality is derived from the assumption

of causality. Mathematically, the relationship is expressed in the following theorem:

Theorem 2.3.1 [25] Let x(k) be the solution of the state-space equation (2.5) of

system in Figure 2.3. If the system is stable, i.e., E{x(k)Tx(k)} < ∞, then

I∞(z;d) ≤ I∞(y; z) −
∑

i=1

max {0, log
2
(|λi(A)|)} .

This theorem implies that the mutual information rate (i.e., the information flow)

from the input d to the output z is upper-bounded and that the unstable eigenvalues

of the open-loop system decrease this upper bound.

2.3.2 Limitations Caused by Finite Feedback Capacity

We notice that the bound expressed by Theorem 2.3.1 does not depend on the feed-

back channel capacity. Using Definition 2.3.1 and Theorem 2.3.1 the following result
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is obtained:

Theorem 2.3.2 [25] If the closed-loop system in Figure 2.3 is stable, i.e.,

sup
k
E{x(k)Tx(k)} < ∞, then

I∞(z;d) ≤ Cf −
∑

i=1

max {0, log
2
(|λi(A)|)} .

Using the result in Theorem 2.3.2, we note that the feedback capacity can be used as

a universal upper-bound on I∞(z;d). As Cf approaches
∑

i
max {0, log

2
(|λi(A)|)},

the mutual information rate I∞(z;d) decreases to zero. Before proceeding, we recall

some definitions from random processes theory:

Definition 2.3.2 [24], [44] A given zero mean real stochastic process a is asymptot-

ically stationary if the following limit exists for every γ ∈ N:

Ra(γ) = lim
k→∞

E{a(k + γ)a(k)}. (2.6)

Using equation (2.6) we have a second definition.

Definition 2.3.3 [24] The asymptotic power spectral density, Φ̂a(ω), is defined as:

Φ̂a(ω) =

∞∑

k=−∞

Ra(k)e−jωk.

Finally, the last definition that we will use later is:
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Definition 2.3.4 [24] Let a and b be asymptotically stationary processes. Then a

and b are jointly asymptotically stationary if the following limit exists for every γ ∈

N:

Ra,b(γ) = lim
k→∞

E{a(k + γ)b(k)}.

In some particular cases, Theorem 2.3.2 may be extended in some important direc-

tions. Assuming that e is asymptotic stationary, then the following results may be

obtained:

Theorem 2.3.3 [25] Consider the scheme of Figure 2.3, where e and d are jointly

asymptotically stationary, with d also Gaussian auto-regressive then, the following

holds:

1

2π

π∫

−π

min{0, log
2
(Se,d(ω))}dω ≥ −I∞(d;u); (2.7)

where Se,d(ω) is a sensitivity-like function, Se,d(ω) =

√
Φ̂e(ω)

Φ̂d(ω)
and Φ̂e(ω) and Φ̂d(ω)

are the asymptotic power spectral density (Definition 2.3.3) of e and d, respectively.

Theorem 2.3.4 [25] Consider the scheme in Figure 2.3, where e and d are assumed

asymptotically stationary, with d Gaussian auto-regressive. If the state of the plant

satisfies sup
k
E{xT (k)x(k)} < ∞ then the following holds:

1

2π

π∫

−π

min{0, log
2
(Se,d(ω))}dω ≥

∑

i

max {0, log
2
(|λi(A)|)} − Cf . (2.8)
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This sensitivity-like function Se,d(ω) is a measure of the disturbance amplification or

rejection property of the closed-loop system. Specifically,

1

2π

π∫

−π

min{0, log
2
(Se,d(ω))}dω

measures the rejection of disturbances and

1

2π

π∫

−π

max{0, log
2
(Se,d(ω))}dω

measures the amplification of disturbances. In other words, to achieve disturbance

rejection we would like to have

−
1

2π

π∫

−π

min{0, log
2
(Se,d(ω))}dω (2.9)

be as large as possible. Moreover, (2.8) shows that the disturbance rejection ability

is limited by:

Cf −
∑

i

max {0, log
2
(|λi(A)|)} .

Theorem 2.3.4 provides a universal bound on disturbance attenuation in the pres-

ence of communication constraints. If the channel does not have a minimum feedback

capacity it is impossible to reject disturbances. The limitation is a direct effect of

the finite feedback capacity consideration. This result that cannot be predicted by

existing results and it is completely independent of the Bode integral results [25]. We

note that Theorem 2.3.4 is valid for any channel as it depends only on the feedback

capacity and on the unstable eigenvalues of A.

2.4 Summary

In this chapter we have reviewed recent results pertaining to the analysis of NCS

from an information theoretic setting. Limitations on stabilization in the determin-
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istic sense and in several stochastic frameworks have been presented. The results

dealt with the case of a discrete channel as well as a packet-based network. Under

some assumptions, the results are equivalent for both approaches. The packet-based

theory remain, however, very preliminary. The most recent results on fundamental

limitations on the performance of a feedback scheme have also been presented as well

as the new Bode Integral Formula interpretation for these limitations. The incorpo-

ration of the Bode Integral results shows the equivalence of feedback control schemes

and feedback communications schemes, bringing new interpretations for areas such

as biology [6]. Future work is expected in order to extend these ideas to distributed

systems with multiple channel communication schemes.

In the next chapter we present our first results where a Delta-Modulation scheme

system is used to encode/decode the output signal of the system. It will be shown

that the Data Rate Theorem presented in this chapter has a direct consequence in

the systems that can be controlled with the proposed encoding scheme and in the

number of lost packets that can be tolerated before reaching unstability.
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Delta Modulation Scheme

3.1 Introduction

In this chapter we analyze stabilization issues for a NCS that uses a Delta-Modulator

Scheme within its encoder/decoder structures as shown in Figure 3.1. These results

were presented in [21]. In [4] a differential coding with a Delta-Modulation (∆−M)

scheme was used since such a scheme provides the simplest form of differential coding.

Basically, one bit is transmitted every time-step through the communication channel.

This translates into a low cost design, since the ∆−M algorithm is a simple two-level

dynamic quantizer. This is important for applications where the transmission is very

expensive and instead of sending a network packet (with several bits for data and

protocol) the communication channel only allows to transmit very small amounts of

information. Recalling the Data Rate Theorem (Proposition 2.2.1), the minimum

required rate for stabilization is given by

R >

n∑

i=1

log
2
(|λi(A)|); (3.1)
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where λi(A) are the eigenvalues of the open-loop discrete linear system:

x(k + 1) = Ax(k) + Bu(k).

We then note that in the case of scalar systems, a ∆ − M algorithm is limited to

stabilizing linear systems of the form

x(k + 1) = ax(k) + bu(k);

with |a| ≤ 2. Since more unstable systems may need to be stabilized, we analyze

modifications for the ∆ − M algorithm proposed in [4] in order to stabilize systems

with a > 2. This is motivated by the previously mentioned cost issues associated with

the simple ∆ − M scheme. We also consider the packet-dropping problem and the

issues of recovering equimemory and stabilizability. This analysis is innovative since

most previous work on the subject dealt with the limited-rate and the packet losses

separately. Recent works considered packet losses but assumed unlimited channel

rate, see [10] and [46], while research dealing with limited-rate channels have not

included packet losses (see for example [52] where the minimum channel capacity is

derived when an erasure channel is present). Our results show that the maximum

number of bits that can be sequentially lost depends on the region where a certain

estimation error lies. Using this fact, we redesign the ∆ − M scheme used in [4] so

that the system can handle at least a minimum number of bit losses.

3.2 Problem Setup

We consider the same system described in [4] and shown in Figure 3.1. To better

understand our proposed scheme, we first analyze the details and limitations of the

original scheme. In what follows, we assume:

• The transmitted bit at time k is bk ∈ {−1, 1}.
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Plant Differential
Encoder

Controller
Differential
Decoder

Communication
Channel

u

x

x̂

b = {−1, 1}

Figure 3.1: Closed-Loop System with Differential Encoding Scheme.

• The encoder has access to the control signal (this condition is only needed for

the case when bit losses may occur and not acknowledgment messages can be

sent from the decoder to the encoder).

• No packets are lost (this assumption will be relaxed later).

• All the elements in the loop, including the communication channel, are noise-

less.

The assumption that the encoder has access to the control signal is necessary to

guarantee equimemory and it is a strong assumption. If the system does not have

bit losses this condition can be relaxed for the purpose of stabilization. Similarly,

if the system has bit losses but acknowledgment messages between encoder and

decoder are allowed, the condition can also be relaxed. The plant is modeled as a

scalar discrete linear time invariant system

x(k + 1) = ax(k) + bu(k); (3.2)

with the linear feedback u(k) = −Kcx̂(k), where x̂(k) is the encoded state. For

simplicity sake, we consider systems with a ≥ 1. In system (3.2) we disregard
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z−1

1−acz−1

Sign Block

b1 = {−1, 1}x̃x

x̂

∆

ENCODER
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b1 = {−1, 1}

∆

z−1

1−acz−1

x̂

+
-

Figure 3.2: Original Encoder-Decoder Scheme.

eigenvalues 0 ≤ a < 1 since they imply an already stable plant. For a ≤ 0 a similar

approach may be used. In the original ∆−M scheme of [4], the encoder and decoder

shown in Figure 3.2 are described by

x̂(k + 1) = acx̂(k) + ∆sgn(x̃(k)); (3.3)

where ac = a − bKc, ∆ is a real number constant (Delta Gain), x̃(k) is the error

(x(k) − x̂(k)) and sgn() denotes the sign function defined as:

sign(x) =





1 if x ≥ 0;

−1 if x < 0.

Combining equations (3.2) and (3.3) we obtain the following dynamics for the system

and the error:

x(k + 1) = acx(k) + bKcx̃(k); (3.4)

x̃(k + 1) = ax̃(k) − ∆sgn(x̃(k)). (3.5)
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Figure 3.3: ∆V (k).

If V (k) = x̃T x̃ is chosen as a Lyapunov function candidate, reference [4] shows that

the change V (k + 1) − V (k) = ∆V (k) is given by

∆V (k) =





≥ 0 if |x̃(k)| ≤ r1;

< 0 if r1 < |x̃(k)| < r2 ;

≥ 0 if r2 ≤ |x̃(k)| ;

(3.6)

where r1 = ∆

(a+1)
and r2 = ∆

(a−1)
. The region where ∆V (k) < 0, i.e, r1 < |x̃(k)| < r2 is

denoted by R1. We already know from inequality (3.1) that the rate of the feedback

channel will limit the absolute value of a, but it is important to study what happens

if we try to stabilize systems with a > 2. This is important because in real scenarios

the plant may be very unstable. This analysis will provide ideas for redesigning the

Delta Modulator scheme.
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3.3 Stability Analysis for Systems with a > 2

In [4] it was shown that the expansion of ∆V (k) is given

∆V (k) =
(
a2 − 1

)
x̃2(k) − 2a∆ |x̃(k)| + ∆2. (3.7)

If we study the plot of this function in Figure 3.3 in the range 0 ≤ |x̃(k)| ≤ r2,

we notice that the maximum value of ∆V (k) occurs at |x̃(k)| = 0. If at some time

instant kf we have |x̃(kf)| = 0, then x̃(kf + 1) = −∆ and this may push x̃(kf + 1)

outside the region R1. Once there, the error state will not return to the region of

attraction since the Lyapunov function is increasing outside R1 (|x̃(kf + 1)| > r2).

Let us examine when such an event takes place. We know that r2 = ∆

(a−1)
, so that

if ∆ > ∆

(a−1)
, the error x̃(k) will be ejected from the region r1 < |x̃(k)| < r2 and

can never return to it. We note that a > 2 is exactly the condition that forces the

inequality ∆ > ∆

(a−1)
. Therefore, for a > 2 it is not possible to stabilize the system

using a rate of only one bit per time-step as predicted by the minimum rate given

by equation (3.1). Although this result was expected, this analysis motivates us to

think of ways to solve the problem for systems with a > 2 using more bits.

3.4 Gain Scheduling Scheme

To overcome the limitations imposed by the scheme of Section 3.3, we obviously need

to increase the bit-rate in the closed-loop system. This can be done either by sending

the same number of bits in less time (i.e. by increasing the sampling frequency) or

by increasing the number of bits in the same time period. Let us analyze each of

these two options separately.
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3.4.1 Increasing Sampling Frequency

Let us assume that the discrete-time linear system was obtained by discretizing a

continuous time system. The scalar continuous time, linear, time-invariant system

with eigenvalue α has the form ẋ(t) = αx(t) + gu(t). Then, the discretized system

is given by

x(k + 1) = eαT x(k) + g

∫
T

0

eαηdη u(k) = ax(k) + bu(k).

If we allow the sampling time, T , to be decreased (increasing the sampling frequency),

we can move the discrete pole to the desired position 1 ≤ a ≤ 2. This will be

accomplished if eαT < 2, or equivalently T < log
e
(2)/α.

3.4.2 2-Bit Delta-Modulation-like Scheme

On the other hand, if we cannot increase the sampling time, we may try sending more

information (bits per unit of time) across the channel. In [11], it was shown that

using a Differential Pulse Code Modulation (DPCM) communication scheme (that

is a generalization of the Delta Modulation Scheme) instead of a 1-bit quantizer may

solve the problem. Thus, a multilevel quantizer is used, where the number of levels

is determined by the relation rmin = log
2
(a). In this chapter, a different idea is

proposed to conserve the general simple structure of a Delta Modulator. Again, the

purpose is to achieve simplicity of the encoding algorithms rather than to achieve

the minimum possible rate. We propose to add an extra bit containing information

pertinent to the “size” of the prediction error. This information allows us to schedule

the value of the modulation gain ∆. The scheme is illustrated in Figures 3.4 and

3.5. The idea behind our proposed scheme is to use a comparator that determines

whether we are inside or outside the region |x̃(k)| < r2. If we are inside this region,

we use the ∆1 gain, and switch to the other gain, ∆2, once outside. The gain ∆2
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allows us to increase the region of attraction as will be explained later. The sgn()

function provides one bit, and the comparator an extra bit that allows us to handle

more instability in the system, i.e. to stabilize scalar systems whose eigenvalues are

greater than 2 in magnitude.

ENCODER

+
-

x̂

x̃ b2

b1

Sign block

x

SEL

Multiplexer

∆2

∆1

z−1

1−acz−1

Comparator

Figure 3.4: 2-Bit Encoder with Multiplexer.

SEL

z−1

1−acz−1
∆1

∆2

b1

b2

x̂

DECODER
Multiplexer

Figure 3.5: 2-Bit Decoder.
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3.5 Design of the Gain Scheduler Scheme with 2

Bits

Let us explain in greater detail the proposed 2-Bit-Delta-Modulator. First, we build

a Delta Modulator similar to [4]. This creates the region R1 where ∆V (k) < 0.

As shown before, the problem for systems with a > 2 arises when |x̃(k)| = 0 since

x̃(k +1) will move outside the region R1. That is exactly where the gain scheduler is

activated. The new value ∆2 > ∆1 creates a second region in which r3 < |x̃(k)| < r4

and where we can enforce r2 = r3 by a suitable selection of ∆2. We denote this

second region by R2 as shown in Figure 3.6.

R1

R2

r2 = ∆1

a−1
= ∆2

a+1
= r3

r1 = ∆1

a+1

r4 = ∆2

a−1

Figure 3.6: Different possible regions for x̃(k).

Remark 3.5.1 Although we are dealing with a scalar system, in Figure 3.6 we use

two-dimensional balls, to better illustrate the proposed concepts.

Reviewing our Lyapunov analysis, we know that if the initial condition is such that

|x̃(0)| < r2
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then ∆V (k) < 0. There will however be a moment when |x̃(k)| will be less than r1

and eventually, when it is near 0, it will be ejected to a value greater than r2 if a > 2.

The comparator in Figure 3.4 then provides the signal to switch the modulator gain,

which makes ∆V (k) < 0 in the region r3 ≤ |x̃(0)| ≤ r4. To force r2 = r3 we select

∆2 as follows:

∆2 =
a + 1

a − 1
∆1. (3.8)

With this relation we know that the region where ∆V (k) is negative is within

r1 < |x̃| < r4

where r2 = ∆1

(a−1)
, r3 = ∆2

(a+1)
, r3 = r2 and r4 = ∆2

(a−1)
= ∆1(a+1)

(a−1)2
. If we analyze

the case where ∆V (k) reaches its maximum, i.e., when |x̃(k)| = 0, we see that

|x̃(k + 1)| = ∆1. If we compare this jump with the boundary |x̃(k)| = r4 = ∆1(a+1)

(a−1)2

it is clear that for ∆1 >
∆1(a+1)

(a−1)2
, then a > 3. In other words, by modifying the

modulation scheme and using a second bit, we can now stabilize systems with an

unstable eigenvalue a ≤ 3. Note however that the 2-bit ∆ − M modulation scheme

is conservative, since with 2 bits we should be able to handle eigenvalues a ≤ 4

as established in equation (3.1). Following the approach in [4], we see that from

equation (3.4), X(z) = bKc

z−ac
X̃(z). Then, if we define H(z) = bKcz

z−ac
, we get h(k) =

bKca
k

c
, k ≥ 0 and we write X(z) = H(z)z−1X̃(z). In the time domain we get

x(k) =
∞∑

m=0

x̃(m − 1)h(k − m) =
∞∑

m=0

x̃(m)h(k − m − 1) and since |x̃(m)| ≤ r4,

∀m > 0, then we conclude that |x(k)| ≤ r4

∞∑
m=0

|h(k−m−1)| which is bounded since

h(k) is BIBO stable and
∞∑

m=0

|h(k−m−1)| equals bKc

(1−ac)
. These ideas are summarized

in the following lemma.

Lemma 3.5.1 Consider the scalar discrete-linear system given by equations (3.2)-

(3.4), with constant ∆1 and constant ∆2 given by equation (3.8), and let a ≤ 3. If

the initial condition of the coding error is such that x̃(0) < r2 then, the following

holds ∀k ≥ 0:
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• |x̃(k)| < r4;

• |x(k)| ≤ r4bKc

1−ac
;

where r2 = ∆1

(a−1)
and r4 = (a+1)∆1

(a−1)2
.

�

Remark 3.5.2 If we extend the approach to an M-bit-Modulator Scheme, it will

become clear that this scheme is far from optimal. It can be easily shown that if

we keep adding concentric rings, the gain ∆M to satisfies ∆M = (a+1)
M−1

∆1

(a−1)M and

the maximum eigenvalue that can be stabilized is the one that solves the inequality

(a − 1)M − (a + 1)M−1 > 0. In Table (3.1) we show the number of bits needed

and compare the maximum eigenvalue, a, that can be stabilized by the maximum

theoretical number of bits given by equation (3.1) and the one of our proposed scheme.

M bits aTheoretical a∆−MScheme

1 2 2
2 4 3
3 8 3.87
4 16 4.67
5 32 5.43
6 64 6.15
7 128 6.84

Table 3.1: Comparison of Maximum Eigenvalue (a∆−MScheme) vs Theoretical Maxi-
mum (aTheoretical).
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Figure 3.7: NCS response with 2-Bit-∆ − M Scheme and a = 2.15 ≤ 3.

3.5.1 Example 1

To test the modified scheme we present the following system that cannot be stabilized

with the original Delta-Modulation scheme of [4]:

x(k + 1) = 2.1x(k) + u(k);

with u(k) = −1.15x̂(k). Assume that ∆ = 0.2, x0 = 0.12; therefore, r1 = 0.0645,

r2 = 0.1818, r4 = 0.5124 and r1 < |x̃0| < r2. In the simulation shown in Figure 3.7

we see that the system has been stabilized.

3.5.2 Example 2

We see now that as predicted for a > 3 the system can no longer be stabilized by the

2-Bit-Delta-Modulation. The system that was simulated is x(k+1) = 3.05x(k)+u(k)

and u(k) = −2.1x̂(k). The result is shown in Figure 3.8.
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Figure 3.8: NCS response with 2-Bit-∆ − M Scheme and a = 3.05 > 3.

3.6 Issue of Packet Losses

The previous sections dealt with a communication channel that does not suffer any

packet losses. The loss of packets is however a common problem in packet-based

networks, and is dealt with using a variety of approaches (re-transmission, for ex-

ample). Note that in this particular case, by packet losses, we mean bit losses since

the information sent through the channel is a bit and not a set of bits with a header

(commonly known as packet). One question that naturally arises is how robust is

the Delta-Modulation scheme in the face of lost bits. We study the case where the

bits transmitted from the encoder through the channel do not reach the decoder.

For our analysis, we consider a User Datagram Protocol (UDP)-like channel, i.e.,

we do not allow any acknowledgement packet flowing from the decoder back to the

encoder. The reason for this choice is that UDP-like channels have been used in

several experiments to avoid long, and potentially destabilizing delays, see [22] and

[41]. Before continuing with the discussion and recalling that we are using a binary

35



Chapter 3. Delta Modulation Scheme

alphabet in the transmitted bit at time k (bk ∈ {−1, 1}), we assign a value of 0 to

the decoder inputs in the case where the transmitted bit, bk, is lost and no bit is

present at the decoder site when the sampling occurs. The first effect of dropping

a bit, even before considering its impact on stability and performance, is the loss of

equimemory between the encoder and decoder. Recall (see equation (3.3)) that both

encoder and decoder use a predictor that updates with the bit transmitted. There-

fore, a dropped bit causes the encoder and decoder to lose equimemory, since there

is no acknowledgment signal to inform the encoder that a bit has not reached its

intended destination. We note that the plant and encoder are physically collocated

and as such, the encoder has access to the control input u(k) for all k. This fact

has been shown in [53] to be enough for conserving the equimemory property of the

encoder and decoder, i.e, it can guarantee their equimemory, even in the absence

of an acknowledgement signal. To use this advantage we modify the structure of

the encoder and decoder. We then introduce a new notation: let x̂e be the encoder

estimate and x̂d be the decoder estimate of x. If no packets are lost, their dynamics

will be given by

x̂e(k + 1) = acx̂e(k) + ∆sgn(x̃e(k)); (3.9)

for the encoder, and

x̂d(k + 1) = acx̂d(k) + ∆sgn(x̃e(k)); (3.10)

for the decoder, where the sgn() function in both equations is actually the transmit-

ted bit b. Let us suppose that at some instant, k, the transmitted bit is lost. The

encoder prediction will continue to evolve according to equation (3.9). However, since

the bit with the information of sgn(x̃e(k)) never reaches the decoder, the decoder

estimator will no longer follow equation (3.10) but will instead evolve according to

equation

x̂d(k + 1) = acx̂d(k). (3.11)
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Therefore, the control law that is applied in the next sampling instant is given by

u(k + 1) = −Kcx̂d(k + 1). With this event, the equimemory between encoder and

decoder is lost and has to be recovered. According to the approach given in [52], we

propose to modify the encoder as follows. At instant k+1, the encoder compares the

control signal u that was received from the controller, with the expected control signal

ue = −Kcx̂e. If no bits were lost, u will be equal to ue, since the estimates x̂e and

x̂d will be equal. However, if a bit is lost, then u(k) will be different from ue(k) and

that will trigger a reset action for the encoder estimator. The reset action consists

of the following steps: before the encoder generates its next estimate, x̂e(k + 1),

it replaces the current value of x̂e(k) (which was previously calculated using the

information that did not arrive to the decoder) by the value given by acx̂e(k − 1).

This expression has the same value that the decoder calculated previously because of

the lost bit. The approach works because just before the first bit is lost the estimates

x̂e and x̂d are equal. Then, after doing the replacement, the encoder calculates the

next prediction x̂e(k + 1).

In summary, both encoder and decoder will be once more in equimemory and

proceed thereafter considering the fact that x̂e = x̂d = x̂. We note that we are

assuming noiseless elements between the controller and the actuator so we can use

the equality between u and ue without major concerns. We may, however, robustify

the scheme in the presence of some noise between the controller and actuator by

considering the following compensation. When a bit is lost, we note from equations

(3.10) and (3.11), that the difference between the expected signal ue and the received

u is given by |Kc∆|. Therefore, we place a threshold in the comparison of ue and u:

if |u − ue| <
∣∣Kc∆

2

∣∣ we consider them equal, i.e., the bit arrived to the decoder. If

|u − ue| >
∣∣Kc∆

2

∣∣ then we assume that the bit was lost. Therefore, any additive noise

with magnitude strictly less than
∣∣Kc∆

2

∣∣ does not cause problems. While this solves

the equimemory problem when bits are lost, we have yet to analyze what happens

to the stability of the closed-loop system. When one bit is lost, we need to alter the
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prediction form of the encoder as explained above in order to regain equimemory.

This however implies that the error x̃(k) is not longer given by the recursive equation

x̃(k + 1) = ax̃(k) − ∆sgn(x̃(k)), but instead by:

x̃(k + 1) = x(k + 1) − x̂(k + 1);

= ax(k) − bKcx̂(k) − ax̂(k) − bKcx̂(k);

= ax̃(k). (3.12)

This last expression may be easily generalized to l consecutive lost bits as

x̃(k + 1) = alx̃(k). (3.13)

We know from Section 3.2 that the stability region is bounded on the outside by

r2 = ∆

a−1
. This limit allows us to determine the number of consecutive bits that may

be lost before losing stability. In fact, by setting |x̃(k)| ≤ r2, from equation (3.13)

and the expression for r2 we obtain

l ≤


log

2

(
∆

(a−1)|x̃(k)|

)

log
2
(a)

 ; (3.14)

where b.c is the floor function. We note that the allowable number of lost future bits

depends on the current error x̃(k). This implies that there is a region within R1 that

does not allow for any bits to be lost. This region is given by x̃(k) > ∆/(a(a−1)). In

summary, the Delta-Modulator system in the original design can no longer guarantee

stabilization for the whole of region R1 when bits are lost. We present next some

simulations that show the behavior of both the error, x̃(k), and the state, x(k), when

bits are lost.

3.6.1 Example 3

Consider the system given by x(k + 1) = 1.5x(k) + u(k) with u(k) = −0.8x̂(k).

Suppose x(0) = 0.24 and ∆ = 0.2, then r1 = 0.08, r2 = 0.4. Now let us suppose
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Figure 3.9: x(k) with 3 Packet Losses from k = 15 to k = 17.

that in the time interval 0 ≤ k ≤ 15 no bits are lost. The error at k = 15 is

x̃(k) = −0.1761, i.e, it is within the region R1 and suppose next that 3 consecutive

bits are lost. Equation (3.14) gives us a maximum of 2 consecutive bit losses before

we leave the stability region. In fact, we see in Figure 3.10 that if 3 bits are lost, x̃(k)

goes outside −r2 and, therefore, outside region R1. We show the state evolution in

Figure 3.9.

3.6.2 Example 4

We want to clarify that equation (3.14) is actually valid for all the region |x̃(k)| < r2

and not just for the stability region. In this example we consider the same system as

before but we assume that no bits are lost in the time interval 0 ≤ k ≤ 23. Therefore,

at k = 23 we have x̃(k) = 0.05059 < r1, i.e, we are in the interior ball where the

change in the Lyapunov function is positive. However, equation (3.14) predicts that

more than 5 consecutive bit losses will cause the error to reach the instability region.
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Figure 3.10: x̃(k) with 3 Packet Losses from k = 15 to k = 17.

Figures 3.11 and 3.12 illustrate this.
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Figure 3.11: x(k) with 6 Packet Losses from k = 24 to k = 29.
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Figure 3.12: x̃(k) with 6 Packet Losses from k = 24 to k = 29.

3.7 Compensation for Packet-Losses

We know from the results in [52] that in the case of noisy channels (for example,

an erasure channel), the rate (or more accurately the capacity) of the channel is no

longer limited by R = log
2
(a) but instead by R = log2(a)

γ
, where γ is the probability

that a packet was received. In other words, we have to increase the data rate in

order to guarantee stabilization of the system. For the purpose of our design, we

assume that 1 ≤ a ≤ 2 and study whether the 2-Bit-Delta-Modulator scheme can

help with the lost packets issue. The reason behind this assumption is that we want

to use the extra rate provided by the second bit to compensate for lost bits instead

of accommodating more unstable systems. We want to clarify that our “packet” is

now composed by the concatenation of the two bits, b1 and b2, that are sent through

the channel. Let us consider the same 2-Bit-Delta-Modulator Scheme of Figures 3.4

and 3.5. If x̃(k) ∈ R1, the multiplexer selection input, b1, is multiplied by ∆1. If

we are outside the region R1, b1 is multiplied by ∆2. Recall from Section 3.5 that
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∆2 > ∆1. Obviously, this scheme provides guarantees only if we assume that no

packets are dropped when x̃(k) is outside R1 (actually, the scheme tolerates some

packet drops outside R1 that will be dependent of x̃ as we will see later). Let us then

establish the following condition for our design: the maximum consecutive number

of packets that can be lost when we are in any subregion within R1 is β, where

β ∈ N. With this condition, we can guarantee that in any subregion R1, β packets

lost may be tolerated, but for some of these subregions even more packets may be

handled. As we see in the examples, for any error in the region R1, the worst case

scenario in terms of packet losses is when x̃(k) is “near” r2. Let us therefore quantify

how “close” must x̃(k) be to r2 in order to go outside the region after β lost packets.

From equation (3.13), this is given by

aβ|x̃(k)| < ∆1/(a − 1);

|x̃(k)| < ∆1/(aβ(a − 1)). (3.15)

Then, the region

Rβ =

{
x̃ :

∆1

aβ(a − 1)
< |x̃(k)| <

∆1

(a − 1)

}
(3.16)

is the one where β lost packets force the system into instability. Moreover, the

extreme cases occur when x̃(k) = ∆1/(a − 1) and x̃(k) = ∆1/(aβ(a − 1)) and we

name these quantities as x̃sup and x̃inf , respectively. If either of these two extreme

cases occur, then after β packet losses we obtain:

x̃(k + β) =





aβ
∆1

a−1
for x̃sup;

∆1

a−1
for x̃inf .

But this implies that the 2-Bit Delta Modulator will change the value of b1 and use

the product with ∆2. Since we assume that β is the maximum number of packets

that may be consecutively lost, then we know that b1(k + β + 1) and b2(k + β + 1)

will arrive to the decoder and this will also switch to ∆2. Recalling from Section
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3.5, the value of ∆2 that can match the regions of the two modulators is given by

equation (3.8). If the state is located in the worst part of the region, x̃(k) = r2, and

we want to allow β consecutive packet losses without encountering instability, we

must guarantee that aβr2 ≤ r4. That is equivalent to

aβ
∆1

a − 1
≤

(a + 1)∆1

(a − 1)2
.

From this last inequality, the maximum number of packets loss is given by

β =

⌊
log

2
(a+1

a−1
)

log
2
(a)

⌋
. (3.17)

Equation (3.17) provides the maximum number of consecutive packets that may

be lost when we are in the worst case (subregion of Rβ) without losing stability.

Obviously, this is an inverse relation in the eigenvalue of the system: the number β

of packets that we can afford to lose, is small for a approaching 2 (faster dynamics)

and is large for a approaching 1 (slower dynamics). This may be seen in Figure 3.13.

It is important to note that because a ≤ 2, the only way that the state moves out

of region R1 is due to packet losses. Moreover, if we are within R1, the system may

lose up to β packets without going unstable. We know that after β packet losses, the

system may end up in region R2. In R2 however, we can no longer guarantee that

more lost packets are tolerated. The number of lost packets that may be accomodated

will obviously vary, according to x̃(k) and may be determined by an equation similar

to (3.14) as follows

l2 ≤


log

2

(
∆2

(a−1)|x̃(k)|

)

log
2
(a)

 =


log

2

(
(a+1)∆1

(a−1)2 |x̃(k)|

)

log
2
(a)

 . (3.18)

This will force the system to return to region R1 in order to guarantee that β packets

may be lost again without losing stability. We illustrate these ideas with the following

example.
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Figure 3.13: β versus Eigenvalue a.

3.7.1 Example 5

Consider the system given by x(k + 1) = 1.2x(k) + u(k) with u(k) = −0.8x̂(k).

Suppose that x(0) = 0.547, ∆1 = 0.2 and ∆2 = 2.2 then r1 = 0.0909, r2 = 1,

r3 = r2 = 1, r4 = 11. Then, R1 : r1 ≤ x̃(0) = 0.547 ≤ r2 and Rβ : 0.093 ≤ |x̃| ≤ 1.

According to equation (3.17), the β number of packets that may be lost is 13 in

any subregion of R1. We assume that starting at k = 0 the system loses its first

packet and consecutively loses one packet per sampling time until k = 12 (13 lost

packets in total). The system then loses no more packets until k = 20, where

x̃(k) ≈ 0.02 < 0.093 < 1 (less than r2 and out of subregion Rβ) where it starts losing

a packet per sampling time until k = 42, i.e, 22 packets in total, then it continues its

operation without suffering any more lost packets. The behavior of the state, x(k)

and the estimation error, x̃(k), are illustrated in Figures 3.14 and 3.15. The circles

indicate the instants when the packet losses start, and the rectangles indicate when

the packet losses have ended. In Figure 3.15 the limits for region R1, ±r1 and ±r2,
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are shown as well as the regions added by the second packet, ±r3 = ±r2 and ±r4.

We see that β = 13 is not the maximum for subregions that are different from Rβ.

0 5 10 15 20 25 30 35 40 45 50 54
−15

−10

−5

0

5

10

Time−Step

x(k)

Figure 3.14: x(k) with 13 Packets Losses from k = 0 to k = 12 and 22 Packets Losses
from k = 20 to k = 42.

3.8 Summary

This chapter has provided extensions to previous results that make it possible to

stabilize scalar systems with eigenvalues greater than 2 in magnitude. We then

presented a new design of a 2-Bit Delta-Modulator-Like encoder/decoder scheme

that keeps the simplicity and desirable characteristics of the 1-Bit scheme. We have

also included the effects of lost packets in the channel and showed how to regain

equimemory of the encoder and decoder. We determined the number of consecutive

packets that may be lost before going into unstability and finally, we presented a 2-

Bit Delta-Modulator-Like encoder/decoder scheme that allows us to handle a specific

and predetermined number of lost packets.
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Figure 3.15: Evolution of x̃(k) with 13 Packet Losses from k = 0 to k = 12 and 22
Packets Losses from k = 20 to k = 42.

In the next chapter we present more general encoding schemes that take into

account the presence of a network in the controller-actuator path and consider time

delays. These schemes will be suitable when the plant is an n-dimensional linear

time invariant system instead of a scalar (or diagonizable) one. Moreover, these

new schemes achieve asymptotic stabilization and not only boundedness like in the

Delta-Modulation scheme proposed in this chapter.
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Chapter 4

Rate-Limited Stabilization for

Network Control Systems

4.1 Introduction

In Chapter 3 we present a low-complex encoding scheme that is limited by the

degree of instability of the plant. In other words, we noted the tradeoff between

encoding complexity (measured in terms of the number of bits) and the difficulty

of stabilizing an unstable system. In this chapter, we show this tradeoff also exists

between the complexity of the algorithm to encode a the transmitted signals versus

the number of bits that are transmitted in the channel. The main purpose is to find

simple encoding schemes for multidimensional systems that achieve a low data rate.

While these schemes may not guarantee the minimum data rate for stabilization,

this sacrifice will be compensated by the simplicity of the algorithms.

In [53], an efficient encoder/decoder scheme is proposed to guarantee stabiliza-

tion of a class of DLTI system using the minimum rate imposed by the Data Rate

Theorem. Reference [16] described an encoder/decoder scheme that also achieved
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the minimum data rate while also considering packet losses. Similarly, reference [29]

presents an encoder/decoder scheme that deals with uncertainty in the plant model.

It is clear in all of these schemes that the cost of reducing the data rate is the in-

crease in the complexity of the stabilization algorithm and the computational power

required for the encoding/decoding operations. There may however be situations

where simpler algorithms are preferred, at the expense of requiring a higher data

rate. The purpose of this chapter is to provide such simple encoder/decoder schemes

that may require higher data rates in order to guarantee asymptotic stability.

The first scheme presented in this chapter is based on ideas proposed in [45], [47]

and [48]. The authors of those papers considered a general DLTI system and found

a sufficient rate for exponential stabilization of an unstable plant of order n, under

the rather limiting assumption that the system has n inputs (where n is the number

of states) and an invertible input matrix B. The work addressed finite rate issues,

packet dropping, as well as uncertainties in the plant model. Moreover, the authors

assumed the existence of a truncation-based encoder/decoder without providing its

specific structure.

We extend the results of [45] to the case of DLTI systems with m inputs such

that m ≤ n, where n is the order of the system. We also relax the condition of

the invertibility of the B matrix, and extend the stabilizability results to systems

with a constant time-delay induced by the sensor-to-controller network. Moreover,

we present an easily implementable encoder/decoder structure. As was considered in

[45], we discuss two types of NCS: one that includes a network between the sensors

and the controller, and another that models two networks in the loop, one between

the sensors and controller, and another between the controller and the actuator.

Sections 4.2-4.8 of this work are an extension to the preliminary results we presented

in [19] and [20].

Finally, we also propose a zoom-in-type dynamic quantizer scheme with lower
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data rate but a more complex encoding scheme than the truncation-based one. The

new dynamic quantizer requires a lower data rate to achieve stabilization, and while

it does not achieve the minimum data rate given by the Data Rate Theorem, it uses

an encoding algorithm that is simpler than others reported in [16], [29] and [53].

Examples and simulations are provided in Section 4.8 to illustrate the results.

4.2 Problem Setup

We consider the two configurations for the packet-based NCS presented in [45]. They

are general systems that can modeled several real scenarios such as the Internet.

The first system is referred to as Network Control System Type I has a rate of Rp1

packets/time-step. This packet-based network accomodates a packet size of DMax bits

used for data (although the protocol information requires extra bits in the packet,

it is not needed for this analysis). Let us consider the discrete LTI system shown in

Figure 4.1 and described by

x(k + 1) = Ax(k) + Bu(k); (4.1)

where A is n × n, B is n × m and u(k) is m × 1. The second type of packet-based

network, referred to as Network Control System Type II, consists of the same discrete

LTI system given by equation (4.1), but with the addition of a second network

between the controller and the actuator with rate Rp2 as shown in Figure 4.2. From

here on, the following notations are adopted. The norm symbol (‖.‖) denotes the

Euclidean norm and d.e is the ceiling function. In addition, we use the variable µ to

denote the controllability index which for multivariable linear systems [1] is defined

as the least integer k such that

rank
[
B| AB| . . . | Ak−1B

]
= n. (4.2)

49



Chapter 4. Rate-Limited Stabilization for Network Control Systems

Encoder

Network

Decoder

Controller

x(k + 1) = Ax(k) + Bu(k)

Rate: Rp1 packets/time-step

y(k) = x(k)

Figure 4.1: Closed-Loop NCS: Type I.

We assume that the controller does not saturate, and that the packet-network does

not drop packets nor is it subjected to disturbances (noise). For both NCS types, we

assume that the states can be measured. We also assume the decoder knows exactly

the encoding scheme used by the encoder at all times (equimemory property), as

described in Section 4.3. The last assumption is that the encoder and decoder know

a value L0 > 0 such that ‖x(0)‖ < L0 and that both have access to the control signal

or can compute it as represented by a dotted line in Figures 4.1 and 4.2.

Encoder

Network

Decoder

Controller

x(k + 1) = Ax(k) + Bu(k)

Rate: Rp1
packets/time-step

y(k) = x(k)

Encoder

Network

Decoder

2 1

Rate: Rp2
packets/time-step

Figure 4.2: Closed-Loop NCS: Type II.
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to Binary
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Operator
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Binary
to Decimal
Converter
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xj x̄j

Bits that form a packet and are sent
through the channel {b1, b2, . . . , bn}xj

ENCODER

Figure 4.3: Encoder Scheme.

4.3 Encoder-Decoder Design

Several approaches for the design of an encoder/decoder scheme were presented in

previous works and in the previous chapter. Most of them are based on some type of

predictor that emulates the evolution of the plant state and the difference between

this prediction and the actual state of the plant, i.e., the error. The quantized error

is sent through the channel, then decoded at the receiver and used to obtain an

approximation of the state, which is used to generate the control signal. In our case

however, we send a truncated version of every state component rather than the error

using a modified version of the encoder/decoder scheme proposed in [42]. One of

the advantages of this approach is that it can be applied not only to the case of

a constraint transmission channel (or network) but to the quantization issue in the

data acquisition system attached to the sensors. Figures 4.3 and 4.4 illustrate our

scheme which is described next in detail. At the first instant, k = 0, the sensor

measures the state exactly. Since we assume that both the encoder and decoder know

L0, each component xj of the measured state is divided by L0 which gives a number

xj/L0 that is less than or equal to 1 in magnitude. We assume for now that xj/L0 is

strictly less than one and positive (in Section 4.4 we describe how to proceed if xj/L0

is exactly 1 or negative). The encoder converts this xj/L0 to its binary representation
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Bits in a packet that arrive
from the channel

DECODER

Binary
to Decimal
Converter

Lk

x̄j{b1, b2, . . . , bn}xj

Figure 4.4: Decoder Scheme.

and keeps only the rj most significant bits (MSB). This truncated version is labeled

as
(

xj(0)

L0

)
Trj

, where the symbol ()Trj
denotes the truncation operation that retains

the rj most significant bits. The quantity rj will be calculated in Section 4.4. The

decimal representation of these rj bits is multiplied by L0 resulting in an estimate

x̄j(0) =
(

xj(0)

L0

)
Trj

L0 which is stored in the encoder. By grouping into a vector the

j truncated state components, we obtain the state estimate x̄(0). The bits in each

truncated state component form a packet (or packets depending on DMax) that is

sent through the channel. On the receiver side, the decoder receives a packet (or

packets) and separates the bits that correspond to each state component. Assuming

perfect transmission, the decoder then converts the binary representation of the bits

received into a decimal representation and multiplies by L0 which gives the value

x̄j(0). This should result in the same value stored in the encoder and, therefore, the

equimemory property between encoder and decoder is preserved. Since the control

signal at time k = 1 only depends on x̄(0), we can show that at time k = 1, xj(1),

is bounded as follows. Using the triangle inequality and matrix norm properties we

have:

‖x(1)‖ ≤ ‖Ax(0) + Bu(x̄(0))‖;

≤ ‖A‖‖x(0)‖ + ‖Bu(x̄(0))‖;

≤ ‖A‖L0 + ‖Bu(x̄(0))‖;

= L1.
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Since the control algorithm is predefined, the encoder and decoder can both calculate

this value L1 right after they have calculated the value x̄(0). The stored L1 will then

be used at instant k = 1 to keep the ratio |x(1)/L1| ≤ 1. By carefully examining the

above steps, we obtain the following scalar difference equation to bound the norm of

each state component:

Lk = ‖A‖Lk−1 + ‖Bu(x̄(k − 1))‖, ∀k = {1, . . . , µ}. (4.3)

Since equation (4.3) only depends on the terms Lk−1 and x̄(k− 1), all signals needed

to compute this equation are available at the encoder and the decoder. In Section 4.4

we will see that Lk only evolves for µ time-steps, before it is reset to a new starting

value for the next µ time-steps and this is the reason to limit k to a maximum of µ

in equation (4.3).

4.4 Results: Truncation-Based Encoding Scheme

4.4.1 Network Control System: Type I

In the case of NCS Type I, the state vector x(k) is given by

x(k) =




x1(k)

x2(k)
...

xn(k)




.

We assume below that xj(k) > 0, ∀j since the sign of each state component may

later be accounted for by adding n extra bits to the rate (one extra bit per each state

component sign). We then obtain the following binary representation of x(0)

L0
at the
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encoder side:

x(0)

L0

=




x1(0)

L0

x2(0)

L0

...

xn(0)

L0




=




∞∑
i=1

α1i2
−i

∞∑
i=1

α2i2
−i

...
∞∑
i=1

αni2
−i




; (4.4)

where αij ∈ {0, 1}. This binary representation is truncated keeping only the rj most

significant bits for state component xj. The truncated representation is given by:

(x(0)

L0

)
Trj

=




(
x1(0)

L0

)
Trj(

x2(0)

L0

)
Trj

...
(

xn(0)

L0

)
Trj




=




r1∑
i=1

α1i2
−i

r2∑
i=1

α2i2
−i

...
rn∑
i=1

αni2
−i




; (4.5)

where αij ∈ {0, 1}. The rj bits per state component j are sent through the channel

and, at the receiver site, the decoder transforms the bits back into decimal numbers,

and multiplies them by L0 in order to obtain x̄(0). With this encoding/decoding pro-

cess, we guarantee that the error between the actual state component and its encoded

version, εj(0) = xj(0) − x̄j(0), is limited by ‖εj(0)‖ < 2−rjL0, ∀ j ∈ {0, 1, . . . , n}.

Using the triangle inequality, the norm of the total error is bounded by

‖ε(0)‖ 6

√√√√
n∑

j=1

2−2rjL0. (4.6)
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Let us then consider the evolution of the system starting at time k = 0:

x(1) = Ax(0) + Bu(0);

x(2) = Ax(1) + Bu(1);

= A2x(0) + ABu(0) + Bu(1);

...

x(l) = Alx(0) +

l∑

i=1

Al−iBu(i − 1); ∀l ≥ 3.

Recalling that µ represents the controllability index, after µ steps we have

x(µ) = Aµx(0) + Aµ−1Bu(0) + Aµ−2Bu(1) + . . . + Bu(µ − 1).

This equation may be re-arranged as x(µ) = Aµx(0) + ζµU, where

ζµ =
[
B| AB| . . . | Aµ−1B

]
;

=
[
δ1| δ2| . . . δj| . . . | δµ

]
;

and

U =




u(µ − 1)
...

u(0)


 =




u1

...

uj

...

uµ;




;

noting that δj is the jth column in ζµ and uj is the jth element in the vector U.

Let us select the first n independent columns of ζµ and build a new matrix, called

ζn. Let us also select the elements of U corresponding to the columns chosen from

ζµ and form a new vector, called Un. Recalling that x(0) = x̄(0) + ε(0) we have

x(µ) = Aµx̄(0) + Aµε(0) + ζµU. If we choose the control law

Un = −ζ−1

n
Aµx̄(0); (4.7)
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we may reconstruct U by replacing uj with the corresponding values of Un in the

proper order and letting uj = 0 for the remaining elements. After µ steps, and by

applying the control sequence U we obtain

x(µ) = Aµε(0). (4.8)

Then, from equations (4.6), (4.8), and the properties of matrix norms, we obtain

‖x(µ)‖ = ‖Aµε(0)‖;

6 ‖Aµ‖‖ε(0)‖;

6 ‖Aµ‖

√√√√
n∑

j=1

2−2rjL0.

In order to force the state to decrease in the norm (after µ steps), we shrink the

upper bound of the state x(µ) by forcing it to be less than a fraction of the upper

bound of the state x(0), i.e., ‖Aµ‖
√∑

n

j=1
2−2rjL0 < L0

δ
, for some δ > 1. At this

point, we have to decide on the value of each rj. This may be formulated as an

optimization problem whose objective is to minimize the total rate given by
∑

n

j=1
rj.

In other words, let us consider the optimization problem:

min
rj

n∑

j=1

rj (4.9)

subject to √√√√
n∑

j=1

2−2rj <
1

δ‖Aµ‖
= C∗. (4.10)

This problem may be solved by applying the Karush-Kuhn-Tucker (KKT) conditions

[35] to the Lagrangian function L(r1, r2, . . . , rn, l) with Lagrange multiplier l as given

by

L = r1 + r2 + . . . + rn − l(C∗ −
√

2−2r1 + 2−2r2 + . . . + 2−2rn ).
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The KKT conditions are then:

∂L

∂r1

= 1 − l
2−2r1 ln(2)

√
2−2r1 + 2−2r2 + . . . + 2−2rn

= 0;

∂L

∂r2

= 1 − l
2−2r2 ln(2)

√
2−2r1 + 2−2r2 + . . . + 2−2rn

= 0;

...

∂L

∂rn

= 1 − l
2−2rn ln(2)

√
2−2r1 + 2−2r2 + . . . + 2−2rn

= 0.

Solving this system of n equations, we obtain:

r1 = r2 = . . . = rj = . . . = rn.

Therefore, an equal allocation of bits per each state component actually guarantees

the minimum total rate. Using the constraint (4.10) we obtain the optimal rate

allocation rn >
⌈
log

2
(‖Aµ‖) + 1

2
log

2
(n) + log

2
(δ)
⌉
. We notice that δ is a param-

eter that determines the fraction by which the upper bound of ‖x(0)‖ is shrink-

ing. Therefore, it is sufficient to consider the infimum of this quantity to obtain

rn >
⌈
log

2
(‖Aµ‖) + 1

2
log

2
(n)
⌉
. Note that the d.e function was introduced since rn

must be an integer denoting the number of bits for each state component. We can

therefore define the total R bits in a packet (or packets) as R = nrn + n where the

second n term may be used to code the sign of each state component.

For the next µ steps, we repeat the same steps above but using x(µ) as the initial

condition. To stop the growth of Lk, and noting that ‖x(µ)‖ < n‖Aµ‖2−rnL0, we

assign Lµ = n‖Aµ‖2−rnL0 as the new L0 for the next µ time steps in equation (4.3).

We repeat this procedure every µ steps. Using the same algorithm to generate the

control sequence and the same rate R, the state x(2µ) will be a shrunken version of

x(µ). Proceeding in the same fashion, x(tµ) will tend to zero as t ∈ N grows and,

therefore, the state x will tend to zero and asymptotic stabilizability will be achieved.

Note that R is the sufficient number of effective bits that we need to transmit for
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the whole state to guarantee stabilization, but since a packet has a maximum length

DMax, if R ≤ DMax, we need a packet rate of Rp1 = 1 packet/sample-time. If on the

other hand, R > DMax then, a minimum of
⌈

R

DMax

⌉
packets/time-step are needed.

Note that the last expression actually covers both cases, since R

DMax
< 1 gives a 1

packet/sample-time when the ceil function is applied.

�

This analysis may be summarized in the following theorem.

Theorem 4.4.1 Assuming an equal allocation of bits per state component, a net-

work rate Rp1 packets/time-step, and assuming that (A, B) is a controllable pair with

controllability index µ, a sufficient condition for system (4.1) to be asymptotically

stabilizable is

Rp1 =

⌈
R

DMax

⌉
,

where R > n
⌈
log

2
(‖Aµ‖) + 1

2
log

2
(n)
⌉
+n and every state allocates R

n
bits/time-step.

An immediate consequence of Theorem 4.4.1 in the specific case of a single input

system is given in the following corollary.

Corollary 4.4.1 Assuming an equal allocation of bits per state component, a net-

work rate Rp1 packets/time-step, (A, B) is a controllable pair, and B is n × 1, a

sufficient condition for system (4.1) to be asymptotically stabilizable is

Rp1 =

⌈
R

DMax

⌉
;

where R > n
⌈
log

2
(‖An‖) + 1

2
log

2
(n)
⌉

+ n and every state allocates R

n
bits/sample.
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Encoder

Network

Decoder

Controller

x(k + 1) = Ax(k) + Bu(k)

Rate: Rp1
packets/time-step

y(k) = x(k)

z−p

Figure 4.5: Closed-loop NCS Type I with time-delay.

Proof : The proof is the same as that of Theorem 4.4.1. If B is n × 1 and u(k) is

1× 1, then µ = n. Substituting µ in R in the proof of Theorem 4.4.1, we obtain the

rate given by the corollary.

�

4.4.2 Network Control System Type I with Time Delay

One of our motivations for extending the results of [45], is to account for the effects

of time delays that may be present in the network. As mentioned earlier, even for

the scalar case, the invertibility requirement of B would not allow the traditional

augmentation of the state by its delayed versions. Let us consider the modified NCS

type I shown in Figure 4.5 and the DLTI system given by the following equation:

x(k + 1) = Ax(k) + Bu(k − p); (4.11)

where A is n×n, B is n×1 and u(k) is 1×1. We assume here that the control signal

to actuator delay is a constant equal to p ∈ N time-steps. Under such conditions, we

obtain the following theorem:
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Theorem 4.4.2 Assuming an equal allocation of bits per state component, a network

rate of Rp1 =
⌈

R

DMax

⌉
packets/time-step, and

A =




A B 0 . . . 0

0 0 1 . . . 0

0 0 0 . . . 0

1

0 0
... . . . 0




, B =




0

0

0
...

1




;

such that (A, B) is a controllable pair. A sufficient condition for system (4.11) to be

asymptotically stabilizable is

Rp1 =

⌈
R

DMax

⌉
;

where R > (n+p)
⌈
log

2
(‖A

n+p‖) + 1

2
log

2
(n + p)

⌉
+(n+p), and each state component

of the augmented system allocates R

n+p
bits/time-step.

Proof : Similarly to [58] and [63], we start out by augmenting the state vector,

considering as new states the last p previous inputs. We then obtain

X(k + 1) =




x(k + 1)

xn+1(k + 1)

xn+2(k + 1)
...

xn+p(k + 1)




;

=




A B 0 . . . 0

0 0 1 . . . 0

0 0 0 . . . 0

1

0 0
... . . . 0







x(k)

xn+1(k)

xn+2(k)
...

xn+p(k)




+




0

0

0
...

1




u(k).
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This may be written as

X(k + 1) = AX(k) + Bu(k).

We now have a system similar to the one treated in Corollary 4.4.1 with a state

dimension n + p instead of n. Therefore, in order to shrink the upper bound of the

state X(k + n + p) we need a rate R given by

R

n + p
>

⌈
log

2
(‖A

n+p‖) +
1

2
log

2
(n + p)

⌉
+ 1.

Similarly to previous proofs, we find a minimum rate of Rp1 =
⌈

R

DMax

⌉
packets/time-

step.

�

4.4.3 Network Control System: Type II

We now consider an NCS Type II and present the following result.

Theorem 4.4.3 Assume an equal allocation of bits per state component, network

rates of Rp1 =
⌈

R1+n

DMax

⌉
packets/time-step and Rp2 =

⌈
R2+1

DMax

⌉
packets/time-step for

network 1 and 2, respectively. Assuming also that (A, B) is a controllable pair, where

B is n × 1, the controllability matrix is given by ζ =
[
B| AB| . . . | An−1B

]
, a

sufficient condition for system (4.1) to be asymptotically stabilizable is

n ‖An‖ 2−(
R1
n

+n) + ‖ζ‖
∥∥ζ−1A

∥∥ 2−(R2+1) < 1.
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Proof : Since there is now a rate constraint from the controller to the plant actuators,

we can no longer apply the calculated control signal u(k) directly to the plant.

Instead, only the bits encoding u(k) according to the available rate R2 may be used.

This encoded control signal ũ(k) is the one that is received by the plant. We then

have

x(k + 1) = Ax(k) + Bũ(k).

Let us assume that we have exactly the same encoding and decoding schemes used

in Theorem 4.4.1. The evolution of the system in the first n time steps is given by

x(n) = Anx(0) + ζŨ, where Ũ =
[
ũ(n − 1) . . . ũ(0)

]′
. If we choose the control

signal U = −ζ−1Anx̄(0), then ‖U‖ 6 ‖ζ−1AnL0‖ ≤ ‖ζ−1An‖L0 = L20. For other

time k, the normalization value that is kept in the memory of the encoder/decoder

of network II, i.e. L2k, is given by L2k = ‖ζ−1An‖Lk. Since ũ(k) represents the R2

most significant bits of u(k) we know that

∥∥∥U − Ũ

∥∥∥ 6
∥∥ζ−1An

∥∥L02
−R2. (4.12)

From equation (4.12) and recalling that x(0) = x̄(0)+ ε(0) and ‖ε(0)‖ <
√

nL02
−

R1
n ,

we have

‖x(n)‖ =
∥∥∥Anx̄(0) + Anε(0) + ζŨ

∥∥∥ ;

=
∥∥∥ζ
(
ζ−1Anx̄(0) + Ũ

)
+ Anε(0)

∥∥∥ ;

6 ‖ζ‖
∥∥∥U − Ũ

∥∥∥+ ‖Anε(0)‖ ;

6 ‖ζ‖
∥∥ζ−1A

∥∥L02
−R2 +

√
n ‖An‖L02

−
R1
n ;

<
L0

δ
.

To guarantee the decrease of x(n), we force

‖ζ‖
∥∥ζ−1A

∥∥L02
−R2 +

√
nL0 ‖A

n‖ 2−
R1
n < L0,
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i.e.,
√

n ‖An‖ 2−
R1
n +‖ζ‖ ‖ζ−1A‖ 2−R2 < 1. As in previous proofs, we now select x(n)

as the new initial condition and using the same control law and rates, R1 and R2, the

state x(2n) will be a shrunken version of x(n). Continuing in the same fashion, x(tn)

will tend to zero as t ∈ N grows and, therefore x(k) will tend to zero and asymptotic

stability is achieved. To take into account the sign of the state we add n bits to

R1, one per state component. We will we will need a minimum of Rp1 =
⌈

R1

DMax

⌉

packets/time-step for the sensor-controller network and a minimum of Rp2 =
⌈

R2

DMax

⌉

packets/time-step in the controller-actuator network.

�

4.5 Removing the Rate Dependency on ‖A‖

The result of Theorem 4.4.1 (as well as Corollary 4.4.1 and Theorem 4.4.2) established

a sufficient rate in terms of the norm of A. For different matrices A with the same

eigenvalues however, this may lead to very different rates, some of which may also

be very large compared to the minimum rates specified by the Data Rate Theorem.

For example, the following two matrices A have the same eigenvalues (therefore, the

same minimum stabilization rate according to the Data Rate Theorem) but different

norms (therefore, different sufficient rates according to Theorem 4.4.1):

A1 =


2 100000

0 2




and

A2 =


2 0

0 2




Then ‖A1‖ = 1 × 105. and ‖A2‖ = 2 but A1 and A2 have the same eigenvalues

λ = {2, 2}. One way to remove this disadvantage is to modify the control law used
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in the proof of Theorem 4.4.1. Instead of trying to asymptotically stabilize the state

x, we attempt to stabilize the state z = Φ−1x, where Φ is a linear transformation

such that Φ−1AΦ is the diagonal matrix equivalent to A (or more generally the

Jordan-block matrix). The error εz(0) in the z space is given by Φ−1(xj(0)− x̄j(0)).

For stabilization analysis purposes, designing a control law to stabilize the state z

is equivalent to stabilizing x since z → 0 implies x → 0. There will however be a

difference in the transient response as we will see later. The change of variable implies

that the control law in equation (4.7) no longer depends on the controllability matrix

of the pair (A, B), i.e. ζµ. But will instead depend on the controllability matrix of

the pair (Φ−1AΦ, ΦB), denoted by ζΦµ
. Therefore, the new control law is given by

Un = −ζ−1

Φµ
(Φ−1AΦ)µΦ−1x̄(0); (4.13)

and in the z space, after µ time-steps, we will have

z(µ) = (Φ−1AΦ)µεz(0). (4.14)

Then, from equations (4.6) and (4.14), and using the properties of matrix norms, we

obtain

‖z(µ)‖ = ‖(Φ−1AΦ)µεz(0)‖;

6 ‖(Φ−1AΦ)µ‖‖εz(0)‖;

6
√

n2−rn‖(Φ−1AΦ)µ‖‖Φ−1‖L0.

Similarly, in order to force the state z to decrease in the norm (after µ steps),

we shrink the upper bound of the state z(µ) by forcing it to be less than the

lower bound of the state z(0), i.e., 2−Rn
√

n‖(Φ−1AΦ)µ‖‖Φ−1‖L0 < ‖Φ−1‖L0. How-

ever, if Φ−1AΦ is a diagonal matrix then ‖(Φ−1AΦ)µ‖ = |ρ(A)|µ where ρ(A) is

the spectral radius of A. We can then replace in Theorem 4.4.1 the expression

R > n
⌈
log

2
(‖Aµ‖) + 1

2
log

2
(n)
⌉

+ n with

R > n

⌈
log

2
(ρ(A)µ) +

1

2
log

2
(n)

⌉
+ n. (4.15)
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If matrix Φ−1AΦ is a Jordan-block matrix (for the case of repeated eigenvalues of

A), we also know that ‖(Φ−1AΦ)µ‖ ≈ |ρ(A)|µ. This quantity, in general, is less than

‖Aµ‖. We can consider as an approximation that the rate is no longer a function

of the norm of A but rather a function of ρ(A). Therefore, this leads to a lower

sufficient rate for stabilizability, but with the possible deterioration in the transient

response.

4.6 New Encoder/Decoder Design: A Zoom-In

Type Dynamic Quantizer

In Section 4.4 we obtained sufficient stabilization rates with an easily implementable

encoder/decoder scheme for Network Type I. Although such rates are larger than the

ones given by the Data Rate Theorem, the implementation of the truncation-based

scheme requires less computational power than other published schemes. Specifically,

the evolution of the quantizer in our scheme uses one scalar equation (equation (4.3)).

On the other hand, encoder-decoder schemes such as the ones proposed in [16] or [53]

achieve the minimum rate established by the Data Rate Theorem at the expense of a

higher computational cost since they require state-space predictors, the use similarity

transformation (to undo the rotations caused by the A matrix), and the calculation

of the centroid of the region that traps the state space variables. In some scenarios,

both the computational power and the rate may be constrained. Our purpose in this

section is to design an encoder/decoder scheme that achieves a rate close to that

provided by the Data Rate Theorem, while using less computational power. The

following builds upon ideas described in [29], [16], [53].

65



Chapter 4. Rate-Limited Stabilization for Network Control Systems

4.6.1 Encoder-Decoder Design

Let the initial state be bounded by some value L0, i.e. ‖x(0)‖ ≤ L0. This hypercube

will have 2n vertices. The set of 2n vertices is denoted by V0, and each vertex is de-

noted by, v0. We allocate ri bits for the state space component xi, ∀i ∈ {1, 2, . . . , n}.

We introduce a matrix QR:

QR =




1/2r1 0 . . . 0

0 1/2r2 . . . 0
...

...
...

...

0 0 . . . 1/2rn




. (4.16)

Moreover, we will assume that r1, r2, . . . , rn are such that the matrix AQ = AQR is

a stable matrix (we will show later how to accomplish this). In the following steps,

we focus on the analysis problem and assume that the plant is deterministic and

undriven, described by x(k + 1) = Ax(k). The controller design problem will be dis-

cussed in Subsection 4.6.2. The first step is to generate a n dimensional cube centered

at the origin with sides of length 2L0. The center of this first quantizer will be labeled

CQ(0). The uncertainty region is divided in 2r1 subregions in the x1 direction, 2r2

subregions in the x2 direction, and so on until we obtain 2rn subregions for the xn di-

rection. After one time step, the state will land in one of these smaller n dimensional

cubes and the total of small cubes will be 2r1+r2+...+rn. Therefore, the number of bits

needed to represent all the cube centroids is R = r1 +r2 + . . .+rn which is the actual

rate in bits/time-step. After determining in which cube the state has landed, we cal-

culate the centroid of this smaller cube. This centroid will be chosen by the encoder

as the estimate of the state, x̄(0). The binary symbol, s, that represents x̄(0) is trans-

mitted to the receiver. Note that the error between the state and the state estimate,

ε(0), lies in the region {[−L0/2r1 , L0/2r1], [−L0/2r2 , L0/2r2], . . . , [−L0/2rn, L0/2rn]}.

This is the key property of this quantizer. Figure (4.6) shows an example of a two

dimensional quantizer with r1 = 2 and r2 = 1. The encoder and decoder will evolve
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x̄(k)

x(k).

*

x(k) → x(k + 1)

+

*

CQ(k) x1

x2

x2

x1

x̄(k) → CQ(k + 1) +

Figure 4.6: Quantizer Evolution Sample: Centroid, State and State Estimator.

the center of the quantizer, CQ at time k + 1:

CQ(k + 1) = Ax̄(k). (4.17)

This new center is used to generate an uncertainty region that may be divided into

another 2r1+r2+...+rn subregions with the same 2ri subregions in the xi direction as

explained before. At time k + 1, the length of each of the sides parallel to xi is

determined by the quantity ∆xi
. These ∆xi

quantities are determined using the

matrix AQ and the vertices v0 of the original uncertain n-dimensional cube and

given by:

∆xi
= max

v0

|(AQ,i)
k+1v0|, ∀ v0 ∈ V0. (4.18)

where AQ,i is the “i-th” row of matrix AQ. Equation (4.18) evaluates the maximum

over absolute values, therefore, we can guarantee that the state x(k + 1) at time

k + 1 will land in an n-dimensional box (not necessarily a cube) that is centered on
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CQ(k + 1) and with sides of length 2∆xi
in the xi direction. In other words, the

hyper-planes that are perpendicular to the xi component direction will be located at

−∆xi
and ∆xi

units from CQ(k+1) in the xi direction. The new uncertainty box, will

again be divided into 2r1+r2+...+rn boxes with 2ri in the xi direction. We label these

small boxes with binary symbols (a total of 2r1+r2+...+rn binary symbols). We then

determine in which of these boxes the actual state, x(k+1), lies and use the centroid

of this specific box as the state estimate x̄(k + 1) at time k + 1. We again transmit

the binary symbol, s, that corresponds to the box where the state lies. Because of

the way we have constructed this quantizer and since AQ was assumed to be stable,

the uncertainty box keeps on shrinking as k tends to infinity, which guarantees that

our state estimate reaches the actual state and that ‖ε‖ tends to zero. Note that

both encoder and decoder must know the original size L0 of the uncertainty as well

as the exact dynamics of the plant. Also, both encoder and decoder must be able

to compute equations (4.17) and (4.18). This guarantees equimemory. The only

remaining issue is to guarantee that AQ is stable. This may be done by the following

procedure:

1. Set ri = dlog
2
(|λi|)e ∀i ∈ {1, 2, . . . , n} , where λi is any of the n eigenvalues of

A such that for all i 6= j the eigenvalue chosen is different. For the particular

case where A is diagonal or a Jordan block matrix, then ri is chosen to be

ri ≥ dlog
2
(|λi|)e, where λi is the eigenvalue associated with the state space

component xi.

2. Using rates ri, form the matrix QR and obtain the eigenvalues of AQ = AQR.

3. Check that all such eigenvalues are inside the unit circle, i.e., |λAQ
| < 1.

4. If |λAQ
| < 1, stop and use the rates ri for transmission. If for any eigenvalue

of AQ we have |λAQ
| ≥ 1, then look for the largest ri in QR such that ri <

dlog
2
(ρ(A))e, and replace it by ri + 1 and return to step 2.
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We note that when A is not in Jordan form, there is a degree of freedom in the way we

allocate the bits for every xi; i.e., what eigenvalue is picked for every ri. Therefore,

the rate given by this algorithm is no unique and optimizing this allocation is part

of a future work.

We test this algorithm in the following example. Given the following matrix, find

r1 and r2 such that AQ is stable.

A =


2 0.5

3 4


 .

Since the eigenvalues of A are λA = {1.418, 4.581} we let r1 = 1 and r2 = 3. Then,

QR is given by

QR =


0.5 0

0 0.125


 . (4.19)

We then obtain the eigenvalues of AQ: λAQ
= {1.14, 0.35}. Since one of them is

outside the unit circle, we add 1 to r1 since r2 already equals dlog
2
(ρ(A))e and we

replace r1 = 2. The new eigenvalues of AQ with the updated QR are {0.761, 0.283}.

Now that AQ is stable, the values r1 = 2 and r2 = 3 may be used as the rates for

transmission.

4.6.2 Adding a Controller for Stabilization

We consider the system described by equation (4.1). Let us include this system in the

encoder/decoder computations and modify equations (4.17) and (4.18) accordingly.

The new equations are

CQ(k + 1) = Ax̄(k) + Bu(k) (4.20)

and

∆xi
= max

v0

|(AQ,i)
k+1v0|, ∀ v0 ∈ V0. (4.21)
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where AQ,i is the “i-th” row of matrix AQ. We assume that the encoder/decoder

have access to the control signal or that it may be computed locally. The derivations

of the previous subsection remain valid since the addition of the control law, only

represent a translation of the centroid of the quantizer. At this point the simplest

controller is the estimated state linear feedback controller, u(k) = −Kcx̄(k), which

is motivated by the following lemma found in [53].

Lemma 4.6.1 [53] Let As be a stable matrix. Let Bsm a set of matrices such that

‖Bsm‖ ≤ M , M ∈ R, ∀m, and limm→∞ Bsm → 0. Let Sk =
∑

k−1

m=0
Ak−1−m

s
Bsm then

limk→∞ Sk → 0.

We will use this Lemma 4.6.1 as follows. For Kc such that A−BKc is stable, then we

can solve iteratively x(k+1) = Ax(k)+B(−Kcx̄(k)) = Ax(k)+B(−Kc(x(k)−ε(k)))

with initial condition x̄(0):

x(k) = (A − BKc)
kx̄(0) +

k−1∑

m=0

(A − BKc)
k−1−mBKcε(m). (4.22)

Our encoder/decoder scheme guarantees that ‖ε(m)‖ ≤ supk ‖(AQ,i)
k+1v0‖. More-

over, it guarantees that ‖ε(m)‖ tends to zero when m grows. Since AQ is stable, we

know that supk ‖(AQ,i)
k+1v0‖ ≤ ∞. If we let As = A − BKc and Bsm = BKcε(m),

we then may apply Lemma 4.6.1. We see that any stabilizing Kc asymptotically

stabilize the system using the rates obtained earlier since the first additive term in

equation (4.22) tends to zero (since A−BKc is stable), and the second additive term

tends to zero by Lemma 4.6.1.

4.7 Comparison Between Encoding Schemes

The truncation-based scheme requires a larger data rate than the dynamic quan-

tizer. To prove this fact, we note that the worst data rate that is required in the
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dynamic quantizer is when ri = dlog
2
(ρ(A))e, ∀i. Let rρ = dlog

2
(ρ(A))e, then

QR = (1/2rρ)In×n. This is the worst case since AQ is guaranteed to be stable for

this particular QR. This is easily proven since AQ = AQR = (1/2rρ)A. From Linear

Algebra, we know that the eigenvalues of AQ are the eigenvalues of A multiplied by

1/2rρ. From the definition of rρ, the eigenvalues of AQ are inside the unit circle. We

note that for the worst case, the rate given by the dynamic quantizer is

R = nrρ = ndlog
2
(ρ(A))e.

The best case for the truncation-based encoding scheme is

R = n

⌈
log

2
(ρ(A)µ) +

1

2
log

2
(n)

⌉
+ n

according to equation (4.15). It is then obvious that the dynamic quantizer achieves

lower rate than the truncation-based one. In terms of the computational cost of

both schemes, we note that the truncation-based only needs to compute the scalar

equation (4.3) in order to decode correctly the transmitted signal. The dynamic

quantizer however has to compute two equations, (4.20) and (4.21). Moreover, once

the quantizer evolves from k to k+1 we need to compute in which of the 2r1+r2+...+rn

boxes the state is located, and this requires several comparison operations.

Previous schemes in literature, such as [29] and [53], achieve the minimum rate

possible according to the Data Rate Theorem. Those schemes however require an

extra step in their algorithms: the encoding scheme has to compute a matrix trans-

formation to undo the rotations and state coupling caused by the matrix A, which

in general is not a Jordan-block matrix. In this sense, our algorithm is simpler

to implement. The scheme in [16] also achieves the minimum rate but under the

strong assumption that the A matrix is a Jordan-block matrix. In terms of the

data rate, we note that in the worst case, our scheme requires a data rate equal

to R = ndlog
2
(ρ(A))e, while the minimum given by the Data Rate Theorem is

R =
∑

i
log

2
|λi(A)|. If A happens to be a Jordan-block matrix, then our scheme will

achieve the minimum data rate possible and will be comparable to the one in [16].
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4.8 Simulations

To verify some of the results derived in the previous sections, we present several

numerical examples using Matlabr. We consider a DTLI plant, so that, x(k) exists

only at the time instants k = {0, 1, 2, . . .}. We do not consider the discretization of

a continuous time system so the sampling time is not specified in the simulations.

However, in all the plots, x(k) was interpolated between sampling times for ease of

visualization. We intentionally omit the packet maximum length Dmax so we can

compare the rates in bit/time-step and not in packet/time-step, which is equivalent

to assuming that Dmax = 1 bit/packet. The value L0 that is known a priori by the

encoder/decoder scheme was selected in the simulations to be L0 = 2‖x(0)‖.

4.8.1 Example 1

We tested the results of Theorem 4.4.1 for the system

x(k + 1) =




1 0 0

0 3 0

0 0 4


 x(k) +




1 0

1 1

0 1


 u(k).

Let L0 = 71.68, x(0) =
[
−16.333 30.768 8.44

]T
, such that, ‖x(0)‖ ≤ L0. Since

for this example n = 3 and µ = 2, the rate obtained according to Theorem 4.4.1 is

R = 18 bit/time-step and the simulation is shown in Figure 4.7. Note that asymptotic

stability is indeed achieved. We note that for this system, the Data Rate Theorem

gives 3.58 bit/time-step (a more accurately 4) while the dynamic quantizer requires

a rate larger than 4 bit/time-step.
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Figure 4.7: Truncation-based scheme: NCS (Type I) using R = 18 bit/time-step.

4.8.2 Example 2

To test the conservativeness of Corollary 4.4.1 , we considered a single-input system

given by

x(k + 1) =




20 0 10

0 10 0

0 10 30


 x(k) +




1

1

1


 u(k).

Let L0 = 166.45 and we assume initial condition x(0) =
[
16.333 13.768 −80.44

]T
.

Since for this example n = µ = 3, the rate obtained using Corollary 4.4.1, is R = 51

bit/time-step. We then verify in Figure 4.8 the asymptotic stability claim of the

corollary. Since our results provide sufficient conditions only, we tried for smaller

values of R and found out that for this particular example, R = 42 bit/time-step

leads to instability, see Figure 4.9. We note that for this system, the Data Rate

Theorem gives 12.55 bit/time-step while the dynamic quantizer requires a rate of 15
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bit/time-step.
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Figure 4.8: Truncation-based scheme: NCS (Type I) using R = 51 bit/time-step.
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Figure 4.9: Truncation-based scheme: NCS (Type I) using R = 42 bit/time-step.
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4.8.3 Example 3

Consider a second order system (n = 2) with time-delay p = 2 evolving according to

the following dynamics

x(k + 1) =


2 0

0 1.5


 x(k) +


1

1


 u(k − 2);

with x(0) =
[
−16.333 30.768

]T
. Assuming L0 = 69.66, the rate obtained using

Theorem 4.4.2 is R = 28 bit/time-step. The corresponding simulation is shown in

Figure 4.10. For this particular example we do not compare with the Data Rate

Theorem or our dynamic quantizer since neither of those consider a delayed system.
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Figure 4.10: Closed-Loop NCS with Time-Delay
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4.8.4 Example 4

Consider a third order system (n = 3) evolving according to the following dynamics

x(k + 1) =




4 0 0

0 7 0

0 0 5


 x(k) +




1

1

1


 u(k);

with the initial condition state vector x(0) =
[
1.33 3.768 8.44

]T
. We assume that

this plant is part of a Network Type II and we also assume L0 = 18.67. The network

rates obtained using Theorem 4.4.3 are R1 = 30 bit/time-step and R2 = 10 bit/time-

step and the simulation is shown in Figure 4.11. For this particular example we do

not compare with the Data Rate Theorem since this last one considers a Network

Type I and not a Type II as in this example.
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Figure 4.11: Truncation-based scheme: NCS (Type II)
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4.8.5 Example 5

The following simulation shows the evolution of x when using the control law given

in equation (4.13) with the rate given by R = n
⌈
log

2
(|λmax|

µ) + 1

2
log

2
(n)
⌉

+ n. Let

us consider the following system:

x(k + 1) =




2 100 100

0 4 100

0 1 4


 x(k) +




1

1

1


 u(k).

Let the initial condition be x(0) =
[
16.333 13.768 −80.44

]T
and L0 = 166.45.

Using equation (4.15), we find that R = 42 bit/time-step is now sufficient for sta-

bilization. The simulation using this control law is shown in Figure 4.12. We also

show in Figure 4.13 the simulation using the results of Theorem 4.4.1 and the rate

was R = 57 bit/time-step. The tradeoff is evident when comparing the two simula-

tions: although a lower rate is needed in the simulation in Figure 4.12, the transient

response (overshoot, settling time) in Figure 4.13 is actually better.

4.8.6 Example 6

We present next an example considering the following system:

x(k + 1) = Ax(k) + Bu(k) =


2 0.5

3 4


 x(k) +


1

1


 u(k);

u(k) = −Kcx(k) = −
[
2.533 2.566

]
x(k).

With this Kc, the poles of (A−BKc) are located at 0.5 and 0.4. We assume that the

initial condition state vector x(0) =
[
2.1 2.8

]T
and L0 = 7. We calculate the rates

to stabilize AQ are r1 = 2 and r2 = 3. This gives a total rate of R = 5 bits/time-step.

Using the dynamic quantizer scheme we obtain the plots in Figure 4.14
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Figure 4.12: Closed-Loop NCS using R = 42 bit/time-step.
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Figure 4.13: Closed-Loop NCS using R = 57 bit/time-step.

4.9 Summary

This chapter has extended previous results for determining the sufficient rate for

stabilization of a packet-based NCS. While the rates obtained for Network Type I
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Figure 4.14: State evolution in NCS Type I using R = 5 bits/time-step

are higher that the limits set by the Data Rate Theorem, the computational cost

of our encoding/decoding scheme implementation is lower than schemes proposed

earlier. In this setup we were able to treat the case of a constant time delay in the

network. We also obtained sufficient rates for stabilizing a system using a Network

Type II.

In order to lower the required transmission rate and to include a general full-

state feedback controller, we proposed a more complex encoder/decoder scheme that

achieves rates close to those specified by the Data Rate Theorem. This scheme

combines a dynamic quantizer that achieves asymptotic stability in the closed-loop

without performing the linear transformation that previous works used.

In the next chapter we consider the tracking problem with a general finite-capacity

noisy channel in the feedback and we obtain some limitations that such channels

impose in tracking systems. It is a theoretical approach that will rely in information

theory principles and it is universal since it is independent of the encoding schemes
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or the control law. The flavor of the results is similar to the ones in Chapter 2 in the

sense that they are fundamental limitations for the general NCS.
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Chapter 5

Limitations in Tracking Systems

5.1 Introduction

The goal of this chapter is to find fundamental limitations on feedback tracking

systems in terms of information theoretical quantities. This is important since the

emerging control applications involve the presence of a constraint communication

channel in the feedback loop. Typically, control systems have been understood as

signal processing blocks or systems interchanging energy. However, these approaches

are not appropriate for the new scenarios. That is why we suggest that an inter-

pretation in terms of information flow may be more suitable for the future design of

control algorithms.

Previous related work in [23], [25], [26], [55], [60], [61] and [62] detailed some

aspects of performance and limitations of control systems in terms of information

theoretic quantities. Specifically, the work in [60] dealt with the tracking issues

without a channel in the feedback link, while [23] dealt with disturbance rejection.

A result in [60], shows that a necessary condition for efficient tracking is that the

information flow from the reference signal to the output should be greater than
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the information flow between the disturbance and the output. We know that in

the absence of noise, and without a communication channel in the feedback loop,

the mutual information rate (or information rate) between reference signal and the

output is infinite. From Chapter 2 we know, however, that if the feedback signal is

transmitted by means of a finite capacity channel, the mutual information rate is

upper bounded by Cf −
∑

i=1
max {0, log

2
(|λi(A)|)}.

Following the same approach of [24], we expect that the parameters of the plant

and feedback channel capacity Cf will be related, and that there will be a trade-off

between these parameters. If by some reason this upper bound happens to be zero,

then we reach a fundamental limitation where no information of the reference signal

is available for feedback. This means that the two signals are independent, therefore,

uncorrelated, and this is exactly the condition that implies that tracking is impossi-

ble. In other words, the feedback signal does not provide any useful information for

the reference to be tracked.

We note that the condition for a non-zero mutual information between the refer-

ence and the feedback signal is a necessary condition for tracking, but not a sufficient

one. A large mutual information between the reference signal and the feedback signal

does not necessarily imply that tracking is possible (it only implies that the signals

are highly correlated). This is expected because even in the case of a perfect infinite

capacity channel, the tracking issue requires additional conditions to be satisfied.

We remark again what we mentioned before in Chapter 1. The results here

do not have the intention to be applied in the design of a new control algorithm.

These results are fundamental limitations in terms of information quantities that

any control system designer must be aware of before trying to design a new control

system.
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5.2 Notation

We present next the notation used in the rest of this chapter.

• Let xk = {x(1),x(2), . . . ,x(k)} and yk = {y(1),y(2), . . . ,y(k)} be sets of

observations of stochastic processes x and y. We follow the notation in [49]

where bold letters represent stochastic processes.

• Let x(k) be a time sample of the stochastic process x.

• Let xj be the “j-th” state component. For example, if x has dimension n = 3,

then xj will denote any of the state components x1, x2 or x3.

• Let xJ denote the set of state components, xj, such that j ∈ J. For example, if

J = {1, 3}, then xJ is the set {x1,x3}.

• Let |.| denote the absolute value and det(.) denotes the absolute value of the

determinant of a matrix.

er u

x(0)

Channel ED

c

y

wŷ

+
-

v

C P

Figure 5.1: Closed-Loop System with Communication Channel in Feedback Link.

We also define the blocks in Figure 5.1:
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• C is the controller, which does not have any constraints (it could be time-

invariant, nonlinear, etc.).

• P is the plant to be controlled and is assumed to be discrete, linear, time-

invariant, with state-space realization

x(k + 1) = Ax(k) + Bu(k); (5.1)

y(k) = Cx(k). (5.2)

• E is the encoder assumed to be a causal operator well defined in the input

alphabet of the channel.

• D is the decoder assumed to be well defined and conserving equimemory with

the encoder.

• The Channel block is any type of communication channel with finite capacity.

• c is the channel noise.

5.3 Information Theory Preliminaries

Before proceeding, we enumerate some well-known information-theoretical properties

that will be very useful later on.

Properties 5.3.1 Assume that z, w, u ∈ R are random variables and f(z), g(z)

are real functions. All of the following may be found in several references as [5], [24]

and [38].

(a) h(z|w) ≤ h(z) with equality if z and w are independent.
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(b) Let z have mean µ and covariance Cov{zn}. Then

h(zn) ≤
1

2
log

2

(
(2πe)ndet(Cov{zn})

)

with equality if z has a multivariate normal distribution.

(c) h(az) = h(z) + log
2

(
|a|
)

for nonzero constant a.

(d) h(Az) = h(z) + log
2

(
det(A)

)
for nonsingular A matrix.

(e) h(z|w) = h(z − g(w)|w).

(f) I(z;w) = I(w; z) ≥ 0.

(g) I(z;w) ≥ I(g(z); f(w)).

(h) I(z;w|u) = I((u, z);w)− I(u;w) = h(z|u)− h(z|w,u) = h(w|u)− h(w|z,u).

(i) For any random variable z and estimate ẑ: E{(z − ẑ)2} ≥ 1

2πe
22h(z), with

equality if and only if z is Gaussian and ẑ is the mean of z.

(j) The variance of the error in the estimate ẑ of z given the infinite past is lower

bounded as σ2

∞(z) = limk→∞ E{(z − ẑ)2(k)|(z − ẑ)(k − 1)} ≥ 1

2πe
22h∞(z) with

equality if z is Gaussian.

(k) If z is an asymptotically stationary process, then

h∞(z) ≤
1

4π

π∫

π

log
2

(
2πeΦ̂z(ω)

)
dω

where Φ̂z is the asymptotic power spectral density of z and equality holds if, in

addition, z is Gaussian auto-regressive.
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5.4 Signal Analysis

From Property 5.3.1.(a) and Property 5.3.1.(j) the functional dependencies among

the signals involved in the closed-loop is shown in Figure 5.1 are the following:

y(k) = f1(r
k−1, ck−1,x(0));

e(k) = f2(r
k, ŷk) = r(k) − ŷ(k);

u(k) = f3(e
k);

ŷ(k) = f4(y
k, ck).

5.5 Assumptions

The matrix A in block P in Figure 5.1 is assumed to be diagonal with only unstable

eigenvalues (|λi(A)| > 1) and therefore, Ak is invertible ∀k. We assume that A has

unstable eigenvalues since it is the worst case. The general case in which A have

stable eigenvalues is discussed in Remark 5.6.1. Since we are considering the tracking

problem, the control law is a function of the error ek = rk − ŷk, u(k) = f3(e
k). We

note for now that the output is an n-dimensional vector, but this will be relaxed

later on. In our setup f3 is not limited to be a linear or time-invariant control

law. We note that the solution of the difference equation (5.1) may be written as

x(k) = Akx(0) +
k−1∑
i=0

Ak−i−1Bf3(e
i). If C = I, then from the tracking error, defined

by ε(k) = r(k) − y(k), we have

r(k) − ε(k) = y(k) = x(k) = Akx(0) +

k−1∑

i=0

Ak−i−1Bf3(e
i). (5.3)

We rearrange the terms as

x(0) + A−k

k−1∑

i=0

Ak−i−1Bf3(e
i) = −A−k(ε(k) − r(k)). (5.4)
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In a tracking problem, we do not necessarily assume that the state is bounded, since

for unbounded reference signals, the state may grow unbounded. Instead, we assume

that the closed-loop is such that the error is bounded, i.e.,

E{εT
ε} < ∞.

Since this implies that ε is a second-order process, the mean E{ε} and the covariance

Cov{ε} = E{(ε + E{ε})(ε +E{ε})T} must be finite. For bounded reference signals,

the condition E{εT
ε} < ∞ guarantees stability since by the triangle inequality [36]

we know that

√
E{x2(k)} ≤

√
E{r2(k)} +

√
E{ε2(k)}. (5.5)

Since the two terms on the right side of equation (5.5) are finite, then we also get

that
√

E{x2(k)} < ∞ and, therefore, the system remains stable.

5.6 Auxiliary Results

We first introduce some results that will later be used to obtain the limitations on

tracking systems. Specifically, the following result will be used to prove Lemma 5.6.3.

Let us consider the set Pj defined as Pj = {i ∈ N, j ≤ n : i ∈ {1, 2, . . . , n} − {j}}.

The following lemma holds for stabilization and is a slight modification of the result

presented in [24].

Lemma 5.6.1 Consider the closed-loop system in Figure 5.1, where the plant is a

DTLI system described by equations (5.1) and (5.2), with C = I, and A diagonal in

equation (5.2). If E{xPj
(k)xT

Pj
(k)} < ∞, then

lim
k→∞

I(xPj
(0); ek|rk,xj(0))

k
≥
∑

i6=j

log
2

(
|λi(A)|

)
.
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Proof : By the chain rule expressed in Property 5.3.1.(h) we expand the expression

given by I(xPj
(0); ek|rk,xj) as

I(xPj
(0); ek|rk,xj(0)) =

n∑

i6=j

I(xi(0); ek|rk,xj(0),x1(0), . . . ,xi−1(0)). (5.6)

Each state component may be expressed as

xi(k) = λk

i
xi(0) + gi(e

k); (5.7)

for some function gi. Therefore, each initial state component is given by

xi(0) = λ−k

i
(xi(k) − gi(e

k)).

From the definition of mutual information we expand the “i-th” additive term in

equation (5.6).

I(xi(0); ek|rk,xj(0),x1(0), . . . ,xi−1(0)) = h(xi(0)|rk,xj(0),x1(0), . . . ,xi−1(0))

− h(xi(0)|ek, rk,xj(0),x1(0), . . . ,xi−1(0)).

From the independence between x(0) and rk, ∀i ∈ Pj, the term rk may be eliminated

in the first entropy term

I(xi(0); ek|rk,xj(0),x1(0),x2(0), . . . ,xi−1(0))

= h(xi(0)|xj(0),x1(0),x2(0), . . . ,xi−1(0))

− h(xi(0)|ek, rk,xj(0),x1(0),x2(0), . . . ,xi−1(0)).

From equation (5.7), the term h(xi(0)|ek, rk,x1(0),x2(0), . . . ,xi−1(0)) may be rewrit-

ten as

h(xi(0)|ek, rk,x1(0),x2(0), . . . xi−1(0))

= h(λ−k

i
(xi(k) − gi(e

k))|ek, rk,x1(0),x2(0), . . . xi−1(0)).
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By Properties 5.3.1.(c), 5.3.1.?? and 5.3.1.(a) we have that

h(λ−k

i
xi(k)|ek, rk,x1(0),x2(0), . . . xi−1(0))

= h(λ−k

i
xi(k)|ek, rk,x1(0),x2(0), . . . xi−1(0));

= −k log
2
(|λi|) + h(xi(k)|ek, rk,x1(0),x2(0), . . . xi−1(0));

≤ −k log
2
(|λi|) + h(xi(k));

≤ −k log
2
(|λi|) +

1

2
log

2

(
(2πe)det(Cov{xi})

)
.

Then

I(xi(0); ek|rk,xj(0),x1(0),x2(0), . . . ,xi−1)

≥ h(xi(0)|xj(0),x1(0),x2(0), . . . ,xi−1(0)) + k log
2
(|λi|)

−
1

2
log

2

(
(2πe)det(Cov{xi})

)
.

Dividing by k and taking the limit to infinity we obtain

lim
k→∞

I(xi(0); ek|rk,xj(0),x1(0), . . . ,xi−1(0))

k
≥ log

2
(|λi|). (5.8)

From equations (5.6) and (5.8) we have

lim
k→∞

I(xPj
(0); ek|rk,xj(0))

k
≥
∑

i6=j

log
2

(
|λi(A)|

)
.

�

We next focus on the tracking problem which is different from the stabilization one

treated in previous works. We first consider the following two lemmas.

Lemma 5.6.2 Consider the closed-loop system in Figure 5.1, where the plant is a

DLTI system described by equations (5.1) and (5.2), C = I. If E{ε(k)εT (k)} < ∞,

then

lim
k→∞

I(x(0); ek|rk)

k
≥
∑

i

log
2

(
|λi(A)|

)
.
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Proof : The mutual information I(x(0); ek|rk) may be expanded as:

I(x(0); ek|rk) = h(x(0)|rk) − h(x(0)|ek, rk);

= h(x(0)) − h(x(0)|ek, rk);

where we have used the fact that x(0) and rk are independent. If we focus on the

quantity h(x(0)|ek, rk) and using the properties of entropy we obtain:

h(x(0)|ek, rk)

= h(x(0) + A−k

k∑

i=0

Ak−i−1Bf3(e
i)|ek, rk);

= h(−A−k(ε(k) − r(k))|ek, rk); (5.9)

= h(−A−k
ε(k)|ek, rk); (5.10)

≤ h(−A−k
ε(k)); (5.11)

≤
1

2
log

2

(
(2πe)ndet(Cov{−A−k

ε})
)
; (5.12)

=
n

2
log

2

(
2πe
)

+
1

2
log

2

(
det(−A−kCov{ε}(−A−k)T )

)
;

=
n

2
log

2

(
2πe
)

+
1

2
log

2

(
det(A−k(A−k)T )

)
+

1

2
log

2

(
det(Cov{ε})

)
;

=
n

2
log

2

(
2πe
)
− k

∑

i

log
2

(
|λi(A)|

)
+

1

2
log

2

(
det(Cov{ε})

)
.

Where equation (5.9) is due to equation (5.4), equation (5.10) is due to Property

5.3.1.(e), equation (5.11) is due to Property 5.3.1.(a), and equation (5.12) is due to

Property 5.3.1.??. From these simplifications we obtain

I(x(0); ek|rk)

≥ h(x(0)) −
n

2
log

2
(2πe) + k

∑

i

log
2

(
|λi(A)|

)
−

1

2
log

2

(
det(Cov{ ε })

)
.
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Finally, if we divide by k and take the limit as k → ∞, we obtain:

lim
k→∞

I(x(0); ek|rk)

k
≥
∑

i

log
2

(
|λi(A)|

)
.

since ε is a second order process.

�

We note that for Lemma 5.6.2, we have assumed that y(k) = x(k), i.e. the entire

state is available for measurement. However, the lemma still holds when the output

is only one component of the state vector (single output), e.g. y(k) = x1(k). In

that case, we need to guarantee that the components of the state that do not appear

in the output remain bounded. The only component that can grow unbounded is

the one that appears in the output (in the case of an unbounded reference signal).

For example, if the plant is a third order system (n = 3) and C =
[
1 0 0

]
, we

have to guarantee that the difference between the reference signal and the output

y = x1 must remain bounded; and that the state components that do not appear in

the output {x2,x3} remain bounded, i.e., E{xj(k)xj(k)T} < ∞,∀j ∈ {2, 4}. Before

generalizing Theorem 5.6.2 we introduce the following notation:

• y = xj

• Let xȲ be the vector of state components that do not appear in output y.

For example, if C =
[
1 0 0

]
, then xj = {x1} whereas xȲ = {x2,x3}. We then

prove the following.

Lemma 5.6.3 Consider closed-loop system given in Figure 5.1, where the plant is

a DLTI system described by equation (5.1) and y = qxj for some j ∈ {1, . . . , n}, q a

non-zero constant. If E{ε(k)εT (k)} < ∞ and E{xȲ (k)xT

Ȳ
(k)} < ∞, then

lim
k→∞

I(x(0); ek|rk)

k
≥
∑

i

log
2

(
|λi(A)|

)
.
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Proof : I(x(0); ek|rk) may be expanded as

I(x(0); ek|rk) = I(xj(0); ek|rk) + I(xȲ (0); ek|rk,xj(0)); (5.13)

where xj = y, and xȲ are the states that do not appear in y. We also know that

y(k) = r(k) − ε(k) = qxj(k), then y(k) may be expressed as

y(k) = qλk

xj
xj(0) + G(ek).

Where G(ek) is a function of the error ek and λk

xj
is the eigenvalue corresponding to

xj. We may also expand I(xj(0); ek|rk) using the definition of mutual information:

I(xj(0); ek|rk) = h(xj(0)|rk) − h(xj(0)|ek, rk);

= h(xj(0)) − h(xj(0)|ek, rk);

= h(xj(0)) − h
(
λ−k

xj
(ε(k) − r(k) − G(ek))|ek, rk

)
.

Consider the term h
(
q−1λ−k

xj
(r(k) − ε(k) − G(ek))|ek, rk

)
which may be simplified

to

h
(
q−1λ−k

xj
(r(k) − ε(k) − G(ek))|ek, rk

)

= −k log
2

(
|λxj

|
)
− log

2

(
|q|
)

+h
(
(r(k) − ε(k) − G(ek))|ek, rk

)
;

= −k log
2

(
|λxj

|
)
− log

2

(
|q|
)

+ h
(
ε(k)|ek, rk

)
; (5.14)

≤ −k log
2

(
|λxj

|
)
− log

2

(
|q|
)

+ h
(
ε(k)

)
; (5.15)

≤ −k log
2

(
|λxj

|
)
− log

2

(
|q|
)

+
1

2
log

2

(
(2πe)det(Cov{ε})

)
; (5.16)
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where equation (5.14) is due to Property 5.3.1.(e), equation (5.15) is due to Property

5.3.1.(a) and equation (5.16) is due to Property 5.3.1.??. We then have

I(xj(0); ek|rk) ≥ h(xj(0)) + k log
2

(
|λxj

|
)
−

1

2
log

2

(
|q−22πe|

)

−
1

2
log

2

(
det(Cov{ε})

)
.

Taking the limit when k tends to infinity we obtain

lim
k→∞

I(xj(0); ek|rk)

k

≥ lim
k→∞

1

k

(
h
(
xj(0)

)
+ k log

2

(
|λxj

|
)
− log

2

(
|q−22πe|

)
− log

2

(
det(Cov{ε})

))
.

Finally,

lim
k→∞

I(xj(0); ek|rk)

k
≥ log

2

(
|λxY

|
)
. (5.17)

We note that the right side of equation (5.13) contains the term I(xȲ (0); ek|rk,xj(0))

but this term is bounded from below (Lemma 5.6.1) since E{xȲ (k)xT

Ȳ
(k)} < ∞ is

required. Therefore

lim
k→∞

I(xȲ (0); ek|rk,xj(0))

k
≥
∑

i6=j

log
2

(
|λi(A)|

)
. (5.18)

From inequalities (5.17) and (5.18) we have

lim
k→∞

I(x(0); ek|rk)

k
≥
∑

i

log
2

(
|λi(A)|

)
.

�

Remark 5.6.1 The general case includes a matrix A with stable and unstable eigen-

values as follows

A =


As 0

0 Au


 ;
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where As corresponds to the matrix with stable eigenvalues and Au corresponds to

the matrix with unstable eigenvalues. As in [24], if A = As then we use the property

of mutual information to conclude that

lim
k→∞

I(x(0); ek|rk)

k
≥ 0.

If A includes both As and Au then for the proof of Lemmas 5.6.1, 5.6.2, and 5.6.3

we only need to consider the unstable state components (the ones associate with the

eigenvalues of Au) and conclude that

lim
k→∞

I(x(0); ek|rk)

k
≥
∑

i

max{0, log
2

(
|λi(A)|

)
}.

5.7 Results

Using the results in Section 5.6, we find limitations on tracking systems that are

imposed by the presence of a finite capacity channel. We consider the expression

I(rk; ŷk) instead of I(rk;yk). Although I(rk;yk) provides the actual information

between the output and the reference signals, the former is easier to calculate than

the later. The mutual information I(rk; ŷk) represents the information between the

transmitted feedback, i.e., ŷ
k, and the reference signal. If this mutual information

happens to be zero, all information contained in the feedback signal about the ref-

erence signal was lost and the error e used to generate the control signal is useless.

In fact, I(r; ŷ) measures the usefulness of feedback. By the properties of mutual

information, we have

I((rk,x(0)); ŷk) = I(rk; ŷk) + I(x(0); ŷk|rk). (5.19)
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From the definition of mutual information, Property 5.3.1.(e), and from the fact that

ek = rk − ŷ
k, we have

I(x(0); ŷk|rk) = h(ŷk|rk) − h(ŷk|x(0), rk);

= h(ek|rk) − h(ek|x(0), rk);

= I(x(0); ek|rk). (5.20)

From equation (5.19) and (5.20) we have

I((rk,x(0)); ŷk) = I(rk; ŷk) + I(x(0); ek|rk). (5.21)

From equation (5.21) and knowing that kCf ≥ I((rk,x(0)); ŷk) we obtain

I(rk; ŷk) ≤ kCf − I(x(0); ek|rk). (5.22)

By Lemma 5.6.2, and dividing equation (5.22) by k and taking the limit as k → ∞,

we finally have

I∞(r; ŷ) ≤ Cf −
∑

i

log
2

(
|λi(A)|

)
.

We summarize this result in the following lemma:

Lemma 5.7.1 Consider the closed-loop system given in Figure 5.1, where the plant

is a DLTI system described by equations (5.1) and (5.2), a feedback capacity Cf in

the channel. If E{ε(k)ε(k)T} < ∞, then

I∞(r; ŷ) ≤ Cf −
∑

i

log
2

(
|λi(A)|

)
.

We note from Lemma 5.7.1 that if the channel does not have a minimum capacity

of
∑

i
log

2
(|λi(A)|), the feedback signal does not provide any information of the

reference signal. Lemma 5.6.2 is one of the main contributions of this chapter. We

note that Lemma 5.6.3 is needed when the output is only one of the state components

and not the whole state.
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5.7.1 Limitations on Reference Signals

The results of the previous sections deal with the idea of bounding the error signal,

ε(k) = r(k) − y(k). However, it is well known that given a plant and a particular

controller, there will be limitations on the type of signals that may be tracked. We

show next that a tracking system may be thought of as a channel where the reference

signal is the input message, the closed-loop is a feedback channel (with the encoder-

decoder embedded) and the system output is the received message. Under this

scenario good message estimation is synonymous with good tracking. We consider

ε = r − y as the error estimate of the message. Note from Property 5.3.1.(i), that

E{(r− y)2} ≥
1

2πe
22h(r).

This inequality captures the idea that the greater is the entropy of the reference

signal, the larger is the error signal, ε. Moreover, since E{(r− y)2} is a nonnegative

number, we note that the error between the output and the reference cannot reach

zero unless the reference signal is deterministic (h(r) = −∞). In other words, perfect

tracking is not possible and tracking gets worse for high entropy reference signals

regardless of the type or quality of the channel and the controller. Moreover, the

following result holds regardless of the plant. Let us consider that the expected value

of (εk)2 given the entire past ε
k−1

0
as k tends to infinity given by

σ2

∞(r) = lim
k→∞

E{ε2(k)|ε(k − 1)}.

From information theory, the entropy rate lower-bounds the variance σ2

∞(r):

σ2

∞(r) ≥
1

2πe
22h∞(r).

We then obtain the following lemma.

Lemma 5.7.2 Consider the closed-loop system given in Figure 5.1, where the plant

is a DLTI system described by equations (5.1) and (5.2). Then the best estimator y
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for r is bounded as

E{(r− y)2} ≥
1

2πe
22h(r). (5.23)

Moreover, the variance of the best reference estimator, σ2

∞(r), is bounded from below

as follows

σ2

∞(r) ≥
1

2πe
22h∞(r). (5.24)

5.8 Examples

The results derived in so far are necessary conditions but not sufficient. Since the

quantity I∞(r; ŷ) implies correlation of signals and not necessarily that y is tracking

r. The following examples capture how conservative the results of this chapter are.

5.8.1 Example 1: Erasure Channel

We consider the tracking problem shown in Figure 5.1 for the reference signal, r(k).

The reference signal is assumed to be a white Gaussian sequence, with zero-mean and

with σ2

r
= 1. We consider a memoryless erasure channel as shown in Figure 5.2 in the

feedback link with limited rate and a probability of receiving the state measurement

of pγ = 0.70479. The probability of dropping a packet is therefore 1−pγ . We consider

a two-part encoder-decoder scheme: First, the encoder converts the real state-vector

measured, x(k), to its binary form, truncates the binary representation to its R most

significant bits, then encapsulates the bits in a packet and send the packet through

the channel. If the packet is not dropped, the decoder on the receiver site receives

the packet, extracts the bits and converts them to its real number representation. If
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1 − pγ

Figure 5.2: Erasure Channel Scheme.

the receiver does not receive a packet, the decoder will assume that a zero was sent

and the controller does not apply any control signal. In [48] it is shown that for the

scalar case, this scheme guarantees that the error between the actual measurement

signal and the decoded signal, ε(k) = x(k)− x̄(k), is bounded and that the feedback

channel capacity Cf = log
2
(a)/pγ is achieved. The scheme also assumes that the

decoder knows exactly the operation of the encoder and that both have access to the

control signal. Consider the following plant:

x(k + 1) = 4.33x(k) + u(k);

y(k) = x(k);

u(k) = 4.33(r(k) − ȳ(k)).

One limitation of our result is that it is given in terms of the mutual information

rate, which is difficult to compute for this type of problems. However, we know that

it imposes a limit to guarantee that E{ε(k)εT (k)} < ∞. In order to explore what

happens to E{ε(k)εT (k)}, we plot the power spectrum of ε, Sεε(ω) whose enclosed

area from [−π, π] is equivalent to the squared output average of ε, i.e.,

E{ε2} =

π∫

−π

Sεε(ω)dω. (5.25)

According to Theorem 5.7.1, the minimum feedback channel capacity for stabilization

needed is 3 bits/time-step. The power spectrum density is shown in Figure 5.3, where

we notice that the power spectrum is bounded and, therefore, E{ε2(k)} is finite. If,
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instead of using 3 bits/time-step, we use 2 bits/time-step, we obtain the new power

spectrum of the error in Figure 5.4. Note that the power spectrum is becoming
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Figure 5.3: Example with Erasure Channel and Bit Rate of 3 bits/time-step.
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Figure 5.4: Example with Erasure Channel and Bit Rate of 2 bits/time-step.
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y ŷ

n ∼ N(0, σ2)

Figure 5.5: AGWN Channel Scheme.

unbounded and so the area below the curve, i.e., E{ε2(k)} is no longer finite.

5.8.2 Example 2: AWGN Channel

We consider the problem of tracking (see Figure 5.1) a reference signal, r(k), which

is assumed to be a white Gaussian sequence with zero-mean and σ2

r
= 5000. We

consider a memoryless AWGN channel (Figure 5.5) in the feedback link with feedback

channel capacity, Cf = (1/2) log
2
(1 + P/Φ), where Φ is the noise variance and P is

the power constraint such that E{ŷ2} ≤ P . The variance Φ is varied in the range

[1000; 200000], i.e, the SNR from the reference signal to the noise signal changes

between 0.025 and 5. Let the plant be:

x(k + 1) = 2x(k) + u(k);

y(k) = x(k);

u(k) = 2(r(k) − ŷ(k)).

In this example, we can actually measure the mutual information rate between

the reference and the feedback signal for different SNR values, and monitor the

upperbound Cf − log
2
(a) given in Lemma 5.7.1. We use previous results from [38]

to measure the mutual information rate, I∞(r; ŷ), and results from [2] to design a

controller. Since the system is linear and all inputs are white Gaussian processes,
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the output ŷ is also a Gaussian process. From [38], we know that if r and ŷ are two

jointly-Gaussian stationary processes, with spectral densities Φr(ω) and Φŷ(ω), and

if we define w =


r

ŷ


, with spectral density Φw(ω), the mutual information rate of

r and ŷ is given by

I∞(r; ŷ) =
1

4π

π∫

−π

det(Φr(ω)) det(Φŷ(ω))

det(Φw(ω))
dω. (5.26)

Figure 5.6 illustrates that we obtain the expected result. The mutual information

rate tends to zero for low SNR and, for this particular case reaches its upper bound,

i.e. Cf − log
2
(a), for high SNR. We see that this upper bound never reaches a value

of zero (actually, for a SNR of 0, its value is 0.61 bits/time). We conclude, however,

that the bound for good tracking, as measured by I∞(r; ŷ), is higher that the one

for stabilization.
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Figure 5.6: Example with AWGN Channel for different SNR levels.
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5.8.3 Example 3: Limitations Due to the Entropy of the

Reference

This example is presented to illustrate the results in Subsection 5.7.1. Let us consider

the following system/controller:

x(k + 1) = 1.2x(k) + u(k);

y(k) = x(k);

u(k) = r(k) − 0.3ȳ(k).

Assume that the reference signal is given by

r(k) = 2 + nr(k);

where nr has a Gaussian distribution with zero mean and variance σ2 with σ = 2.

Moreover, we assume a perfect feedback of the output. Since the reference is a

Gaussian signal, by substitution in Property 5.3.1.??, the differential entropy of

the reference signal is given by h(r) = (1/2) log
2

(
2πeσ2

)
. According to Lemma

5.7.2, the lower bound in the right side of equation (5.23) is σ2. In order to plot

E{(r − y)2} = E{(ε)2}, we ran 1000 simulations and averaged then. The average

result of these simulations is shown in Figure 5.7, which clearly illustrates the result

of Lemma 5.7.2.

5.9 A Misleading Case: Non-minimum Phase Ze-

ros

The mutual information rate I∞(r, ŷ) between the reference signal r(k) and the

feedback signal ŷ(k) has been our performance measure in the previous sections of
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Figure 5.7: Example with Gaussian Reference Signal.

this chapter. Although it may be adequate to determine the relationship between

channel capacity, unstable poles, and the possibility of achieving tracking, I∞(r, ŷ)

is limited in predicting other important properties.

In order to illustrate the limitations of I∞(r; ŷ), we choose an AWGW channel.

Let us consider the same LTI plant P (z) as before and let us restrict the controller

to be a linear time-invariant controller C(z). We assume that the open loop transfer

function is given by

C(z)P (z) = γ

∏
nz

i=1
(z − zi)∏np

i=1
(z − pi)

.

Since we consider an AWGN channel and if we assume r(k) to be a Gaussian signal,

r(k) and ŷ(k) are jointly Gaussian and we can then evaluate the mutual information

rate exactly using equation (5.26). We start with the following relation

ŷ = T (eiω)r + S(eiω)n;

where T (eiω) is the Complementary Sensitivity function and S(eiω) is the Sensitivity
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function. Let w =


r

ŷ


, then Φw = ΦrΦŷ − ΦrŷΦŷr so that

Φŷ = |T |2Φr + |S|2Φn;

Φw = ΦrΦn|S|
2.

Substituting these relations in equation (5.26) we obtain

I∞(r; ŷ) =
1

4π

π∫

−π

log
2

( |T (eiw|2Φr + |S(eiw)|2Φn

Φn|S(eiw)|2

)
dω; (5.27)

=
1

4π

π∫

−π

log
2

(Φr

Φn

|C(eiw)P (eiw)|2 + 1
)
dω; (5.28)

where

|C(z))P (z)|2 =
∣∣∣γ
∏

nz

i=1
(z − zpi)∏np

i=1
(z − ppi)

∣∣∣
2

.

Now, from equation (5.28) and using the properties of logarithms, we have:

I∞(r; ŷ) =
1

4π

π∫

−π

log
2

(Φr

Φn

|C(eiw)P (eiw)|2 + 1
)
dω;

≥
1

4π

π∫

−π

log
2

(Φr

Φn

|C(eiw)P (eiw)|2
)
dω;

=
1

4π

π∫

−π

log
2

(Φr

Φn

)
dω +

1

4π

π∫

−π

log
2

(
|C(eiw)P (eiw)|2

)
dω;

= log
2
(|γ|) +

1

4π

π∫

−π

log
2

(Φr

Φn

)
dω +

nz∑

i=1

1

4π

π∫

−π

log
2
|z − zi|

2dω

−

np∑

i=1

1

4π

π∫

−π

log
2
|z − pi|

2dω.
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From complex variable Calculus we have the following result:

π∫

−π

log
2
|z − p|2dω =





0 if |p| ≤ 1;

2π log
2
(p2) if |p| > 1.

Finally, we obtain the following lower bound for the mutual information rate:

I∞(r; ŷ) > log
2
(|γ|) +

1

4π

π∫

−π

log
2

(Φr

Φn

)
dω +

nz∑

i=1

log
2

(
|zi|
)
−

np∑

i=1

log
2

(
|pi|
)
.

We note that the right hand side contains a signal-to-noise ratio term, a gain term, a

term that corresponds to the unstable open loop poles, and one that corresponds to

the open-loop unstable zeros. We note first as expected, that the greater the signal-

to-noise ratio is, the greater the mutual information rate between the reference and

the output signal. Second, we note that the unstable open-loop poles decrease the

mutual information rate. Finally, we note that the non-minimum phase zeros term

increases the mutual information rate. This is unexpected since we know from control

theory that the presence of non-minimum phase zeros decreases the performance of

a tracking systems, therefore, it seems that we reach a contradiction.

We have another interpretation to this issue. Since the unstable poles decreases

the information flow, the presence of the unstable zeros can help to cancel this effect

(with perfect zero-pole cancelation). From control theory, we now that this is not

an option if we want to preserved internal stability. But this issue was not consider

in the analysis, i.e., the only analysis of the mutual information rate is not enough

when designing a tracking feedback system and we see that it could be misleading.
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wŷ v

C P

+
+

d

Figure 5.8: Closed-Loop System with Additive Disturbance.

5.10 Tracking under the Presence of Disturbances

5.10.1 Upper Bound of the Information Flow in the Pres-

ence of Disturbance

Let us suppose that a disturbance is present at the sensor and that the disturbance

dk is independent of x(0) and of rk. The new diagram is shown in Figure 5.8. We

try next to find conditions for tracking. We first redefine the feedback capacity in

this new setup. Recall that the feedback capacity is the quantity Cf that satisfies

sup
k∈N+

I((rk,dk,x(0)); ŷk)

k
≤ Cf .

If we expand the quantity I((rk,dk,x(0)); ŷk), by Property 5.3.1.(h) we obtain

I((rk,dk,x(0)); ŷk) = I(rk; ŷk) + I(x(0); ŷk|rk) + I(dk; ŷk|x(0), rk). (5.29)
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Let us focus on I(dk; ŷk|x(0), rk) to obtain

I(dk; ŷk|x(0), rk) = h(dk|x(0), rk) − h(dk|x(0), rk, ŷk);

= h(dk) − h(dk|x(0), rk, ŷk); (5.30)

≥ h(dk) − h(dk|ŷk); (5.31)

= I(dk; ŷk); (5.32)

where equations (5.30) and (5.31) are due to Property 5.3.1.(a) and equation (5.32)

results form the mutual information definition. We showed in equation (5.20) that

I(x(0); ŷk|rk) = I(x(0); ek|rk). If we revisit Lemma 5.6.2’s proof, we see that the

lemma holds even with disturbances. Therefore, I(x(0); ek|rk) ≥ k
∑

i
log

2
(|λi(A)|).

Moreover, from the definition of feedback capacity we know that

kCf ≥ I((rk,dk,x(0)); ŷk)

then, from equation (5.29) we obtain

kCf − k
∑

i

log
2

(
|λi(A)|

)
≥ I(rk; ŷk) + I(dk; ŷk).

If we divide by k and take the limit as k → ∞ we finally have:

I∞(r; ŷ) + I∞(d; ŷ) ≤ Cf −
∑

i

log
2

(
|λi(A)|

)
.

This result may be summarized in the following theorem:

Theorem 5.10.1 Consider the closed-loop system given by Figure 5.1, where the

plant is a DLTI system described by equations (5.1) and (5.2), a feedback capacity

Cf in the channel. If E{ε(k)ε(k)T} < ∞, then

I∞(r; ŷ) + I∞(d; ŷ) ≤ Cf −
∑

i

log
2

(
|λi(A)|

)
.
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From this result we can see that if I∞(d; ŷ) is large enough, compared with

Cf −
∑

i

log
2
(|λi(A)|);

no useful information about the reference appears in the feedback, since the inequality

may also be interpreted as

I∞(r; ŷ) ≤ Cf −
∑

i

log
2

(
|λi(A)|

)
− I∞(d; ŷ).

Similarly,

I∞(d; ŷ) ≤ Cf −
∑

i

log
2

(
|λi(A)|

)
− I∞(r; ŷ).

If I∞(r; ŷ) is large enough, compared with Cf −
∑

i
log

2
(|λi(A)|), no useful informa-

tion about the disturbance appears in the feedback.

5.10.2 Disturbance Rejection and Tracking Tradeoff

The previous subsection is concluded with Theorem 5.10.1. The goal in this section

is to interpret Theorem 5.10.1 in the frequency domain. For this purpose, we assume

that the following conditions hold:

• The signals r and d are Gaussian.

• The signals r and e are jointly asymptotically stationary.

• The signals d and e are jointly asymptotically stationary.

These conditions are needed to replace the stochastic processes by their correspond-

ing asymptotic power spectra. Next, we start with the definition of the mutual
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Figure 5.9: Equivalence of Tracking Closed-Loop with Block Diagram 2.3.

information between r and ŷ:

I(rk; ŷk) = h(rk) − h(rk|ŷk);

= h(rk) − h(ek|ŷk); (5.33)

≥ h(rk) − h(ek); (5.34)

where equation (5.33) is due to the fact that e = r − ŷ and Property 5.3.1.(e),

equation (5.34) is due to Property 5.3.1.(a). If we divide by k and let k → ∞ we

obtain:

I∞(r; ŷ) ≥ h∞(r) − h∞(e);

≥
1

4π

π∫

−π

log
2

(
2πeΦ̂r

)
dω −

1

4π

π∫

−π

log
2

(
2πeΦ̂e

)
dω; (5.35)

=
1

4π

π∫

−π

log
2

(Φ̂r

Φ̂e

)
dω; (5.36)

where equation (5.35) is due to Property 5.3.1.(k). Changing the sign in inequality

(5.36), we get

−I∞(r; ŷ) ≤
1

4π

π∫

−π

log
2

( Φ̂e

Φ̂r

)
dω.

109



Chapter 5. Limitations in Tracking Systems

Then, using the inequality of Theorem 5.10.1 we obtain

I∞(d; ŷ) ≤ Cf −
∑

log(λ) +
1

4π

π∫

−π

log
2

( Φ̂e

Φ̂r

)
dω. (5.37)

In Figure 5.9, we group together the blocks enclosed within the dashed line. By

doing so, we obtain the same block diagrams shown in Figure 2.3. We notice that

some of the internal signals are labeled differently: in Figure 5.9 the signals u and û

correspond to signals z and e in Figure 2.3, respectively. According to Theorem 2.3.3

in Chapter 2, we know that I∞(d; û) is related to a disturbance rejection measure

as follows:

1

2π

π∫

−π

min{0, log
2
(Sû,d(ω))}dω ≥ −I∞(d;u);

where, Sû,d(ω) =
√

Φ̂û

Φ̂d

. We note that the smaller the term

1

2π

π∫

−π

min{0, log
2
(Sû,d(ω))}dω

is, the better is the disturbance rejection. From Property 5.3.1.(g) we know that

I∞(d;u) ≤ I∞(d; ŷ). Substituting this expression in equation (5.37) we obtain

1

2π

π∫

−π

min{0, log
2
(Sû,d(ω))}dω ≥

∑

λ(A)

log
2
(λ) − Cf −

1

4π

π∫

−π

log
2

( Φ̂e

Φ̂r

)
dω.

We summarize this result in the following theorem:

Theorem 5.10.2 Consider the closed-loop system given by Figure 5.1, where the

plant is a linear system described by equations (5.1) and (5.2), a feedback capacity

Cf in the channel. If E{ε(k)ε(k)T} < ∞, r and d are Gaussian signals, r and e are

jointly asymptotically stationary, d and e are jointly asymptotically stationary, then

1

2π

π∫

−π

min{0, log
2
(Sû,d(ω))}dω ≥

∑

λ(A)

log
2
(λ)−Cf −

1

4π

π∫

−π

log
2

( Φ̂e

Φ̂r

)
dω. (5.38)
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Figure 5.10: Closed-Loop System with AWGN Channel and Disturbance Presence.

where Sû,d(ω) =
√

Φ̂û

Φ̂d

is a sensitivity-like function, Φ̂û, Φ̂d, Φ̂e and Φ̂r are the

asymptotical power spectrum densities of the signals û, d, e and r, respectively.

We therefore observe that for good tracking, formally defined as being Φ̂e near zero,

implies log
2

(
Φ̂e

Φ̂r

)
to be negative and the whole integral term in inequality (5.38)

positive. Therefore, the lower bound will be larger than the one where no tracking

is required. In other words, if we improve tracking performance, we loose the infor-

mation between the disturbance d and the feedback signal ŷ, and the disturbance

can no longer be rejected.

5.10.3 Design Ideas for Disturbance Rejection

Let us consider the case of achieving tracking in the presence of disturbance. From

Theorem 5.10.1 we know that a finite capacity channel limits the information of the

reference signal and the disturbance signal available at the feedback. Let us analyze

the case of a feedback configuration with a AWGN channel shown in Figure 5.1. To

accomplish good tracking, we need to force the information rate between r and y to

be greater than the information rate d and y, i.e.:

I∞(r;y) > I∞(d;y). (5.39)
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If we assume that r is zero white noise and that the disturbance is also white noise, we

may calculate exactly the two mutual information rates in inequality (5.39). Before

we proceed, let us introduce the following transfer functions:

y

r
=

C(z)P (z)

1 + C(z)P (z)
;

y

d
=

1

1 + C(z)P (z)
;

y

c
=

−C(z)P (z)

1 + C(z)P (z)
.

To simplify notation, we define

T (z) =
C(z)P (z)

1 + C(z)P (z)
;

V (z) =
P (z)

1 + C(z)P (z)
.

We use these transfer functions to calculate the spectral density of y

Φy = (Φr + Φc)|T (z)|2 + Φd|V (z)|2.

Let wry =


r

y


, then Φwry

= ΦrΦy − ΦryΦyr, where Φry = ΦrT and Φyr = ΦrT
∗,

and T (z)∗ is the complex conjugate of T (z). Similarly, we define wdy =


d
y


, then

Φwdy
= ΦdΦy − ΦdyΦyd, where Φdy = ΦdV and Φyd = ΦyV

∗, and V ∗ is the complex

conjugate of V (z). Next, from equation (5.26) we calculate the mutual information

rate between r and y:

I∞(r;y) =
1

4π

π∫

−π

log
2

(
1 +

Φr

Φd(
1

|C(eiω)P (eiω)|2
) + Φc

)
dω.

Similarly, we have the mutual information rate between d and y:

I∞(d;y) =
1

4π

π∫

−π

log
2

(
1 +

Φd

(Φr + Φc)|C(eiω)P (eiω)|2

)
dω.

112



Chapter 5. Limitations in Tracking Systems

Since inequality (5.39) is a necessary condition to achieve a good tracking, we obtain

the following inequality

1

4π

π∫

−π

log
2

(
Φr |C(eiω

)|2+Φc|C(eiω
)|2+Φd

|C(eiω)|2Φc+Φd

(Φr+Φc)|C(eiω)|2+Φd

(Φr+Φc)|C(eiω)|2

)
dω > 0.

This may be simplified to:

1

4π

π∫

−π

log
2

(
(Φr + Φc)|C(eiω)|2

Φd + Φc|C(eiω)|2

)
dω > 0;

log
2

(Φr

Φd

+
1

γ

) 1
2

+
1

4π

π∫

−π

log
2

( |C(eiω)|2

1 + 1

γ
|C(eiω)|2

)
dω > 0; (5.40)

where γ = Φd

Φc
. Inequality (5.40) provides guidelines for controller design. We will

consider next two cases: a) γ > 1, b) γ < 1. These two cases are shown in Figures

5.11 and 5.12 where we plot the integrand log
2

(
|C(eiω

)|2

1+
1
γ
|C(eiω)|2

)
.

Case γ > 1

For the case illustrated in Figure 5.11, γ > 1, we note that a large gain controller,

for all ω ∈ [−π, π], is sufficient to satisfy inequality (5.39) since

1

4π

π∫

−π

log
2

( |C(eiω)|2

1 + 1

γ
|C(eiω)|2

)
dω ≈ log

2
(γ)

1
2 . (5.41)

If we add to equation (5.41) the quantity log
2

(
Φr

Φd
+ 1

γ

) 1
2
, we obtain that:

log
2
(γ)

1
2 + log

2

(Φr

Φd

+
1

γ

) 1
2

= log
2

(Φr

Φn

+ 1
) 1

2
> 0.

To keep |C(eiω)| large at all frequencies is not always possible nor recommended.

The condition

1

4π

π∫

−π

log
2

( |C(eiω)|2

1 + 1

γ
|C(eiω)|2

)
dω > 0
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log
2

(
|C(eiω

)|2

1+
1
γ
|C(eiω)|2

)

|C(eiω)|2
γ

1−γ

Figure 5.11: Plot of log
2

(
|C(eiω

)|2

1+
1
γ
|C(eiω)|2

)
with γ > 1.

can however be used to shape the controller in the frequency-domain.

Case γ < 1

In this case, the integral term in inequality (5.40) is negative, i.e,

1

4π

π∫

−π

log
2

( |C(eiω)|2

1 + 1

γ
|C(eiω)|2

)
dω < 0.

Therefore, to keep inequality valid, we need to make log
2

(
Φr

Φd
+ 1

γ

) 1
2

large and to keep

the magnitude of the controller large for all frequencies. We note in Figure 5.12 that

the smallest the magnitude of the controller, the more negative is the integral and,

therefore, we need a much better signal-to-noise ratio Φr

Φd
or a smaller signal-to-noise

ratio γ = Φd

Φn
. This last observation about γ is a consequence of the fact that we

can only reject a disturbance if we have good information about it, i.e., when the

noise signal of the channel, n, does not distort the disturbance signal too much. In
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log
2

(
|C(e

iω
)|2

1+
1
γ
|C(eiω)|2

)

|C(eiω)|2

Figure 5.12: Plot of log
2

(
|C(eiω

)|2

1+
1
γ
|C(eiω)|2

)
with γ < 1.

addition to the two analyzed cases, we note that, for our particular channel, the

input to the AWGN channel is y and by definition is assumed to be constrained in

power. The power limit is given by some constant P:

||y||POW =
1

2π

π∫

−π

Φy(ω)dω < P. (5.42)

But ||y||POW is given by

||y||POW =
1

2π

π∫

−π

Φy(ω)dω;

=
1

2π

π∫

−π

|T |2(Φr(ω) + Φc(ω)) + Φd(ω)|V |2dω. (5.43)

115



Chapter 5. Limitations in Tracking Systems

In other words, equations (5.42) and (5.43) provide another limitation that has to

be considered while designing a controller.

5.11 Summary

This chapter has provided information theoretic conditions for tracking control sys-

tems. Our results are in terms of the mutual information rate between the feedback

signal and the reference signal, the channel capacity, and the unstable eigenvalues

of the DLTI system. We also obtained a lower bound for the maximum achievable

accuracy for a tracking system, even in the absence of a channel. This bound is in

terms of the entropy of the reference signal. These results were verified with several

examples and simulations.

We also reported some limitations of the mutual information rate approach. In

particular, we analyzed the case where non-minimum phase zeros, counterintuitively,

increase the mutual information rate instead of decreasing it as expected from control

theory.

Finally, we analyzed the case where both good tracking and good disturbance

rejection are required at the same time. We noted that the finite-capacity channel

imposes a tradeoff between the two objectives. This limitation was interpreted in

the frequency-domain.
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Chapter 6

General Conclusions and Future

Work

6.1 General Conclusions

In this dissertation we addressed the stabilization of unstable DLTI systems under

communication constraints. The problem was formulated considering a noiseless

channel but with limitations in the data rate and we obtain sufficient conditions for

the stabilization rate.

We considered several encoding schemes that were very simple to implement,

although they do not achieve the minimum rate given by the Data Rate Theorem.

The first scheme proposed was a 2-Bit Delta-Modulation-like scheme to encode the

output of a scalar system. This scheme guaranteed the stabilization of scalar systems

with eigenvalue a < 3. Moreover, the scheme guarantees stabilization even in the

case of an specific number of lost bits. The drawback of the scheme is that it does

not exploit all the potential of every bit in terms of stabilization. By this we mean

that the degree of unstability of the systems that can be stabilized is far away from
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the one given by the Data Rate Theorem.

We then addressed the stabilization of multi-dimensional DLTI systems. We show

a truncation-based system that is very simple to implement but that requires a larger

stabilization rate compare to previous schemes in the literature. The main limitation

of this approach is that it depends on an specific control law and not in a general

linear state feedback.

Another approach that does work with a general state feedback control law is the

dynamic quantizer that we proposed. This achieves lower rates than the truncation-

based scheme and it is simpler to implement compared to others in the literature.

However, one possible drawback of the scheme is that its zoom-in feature requires

a very precise model of the plant to predict the evolution of the quantizer in the

encoder and decoder.

We also obtain fundamental limitations for tracking systems under communica-

tion constraints. We obtain an upper bound for the information flow between the

reference and the feedback signals in terms of the feedback channel capacity and

the unstable eigenvalues of the plant. This bound is universal in the sense that it

is independent of the encoding scheme or the control law. Although this result is

not surprising, it provides an interesting interpretation of the tracking problem in

terms of information theoretical quantities. We also notice that the solely informa-

tion theoretical interpretation is not completed to analyze the tracking problem, in

particular for the non-minimum phase zeros.

Finally, we provide an interpretation of the tracking-rejection problem in the

frequency domain. It was shown that a finite capacity channel limits more the pos-

sibility of having good tracking and disturbance rejection simultaneously. Moreover,

we see that the exact measurements of the information rate for the Gaussian Channel

gives some guidelines of the shape of the controller in the frequency domain.
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6.2 Future Work

The current research topic is far from being completed. We have identified some

paths for future research. We plan to explore a Delta-Modulation encoding-decoding

scheme for multidimensional systems and include time-delays in the channel. The

idea of the 2-Bit Delta Modulator may also be extended for the M-Bit case in order

to control systems with arbitrary magnitude eigenvalues a and/or to allow for a

larger number of dropped packets. A time-varying scheduling policy to reach global

stability may be explored in a multi-bit setup.

For the results in Chapter 4 we want to include time delay in a NCS Type II, and

the extension of the general case of m inputs of this type of closed-loop system. Some

other ideas include dealing with noise in the loop and the generalization to the case

of packet drops and saturation in the control signal. For the dynamic quantizer there

is the open question of how to select the values of ri in terms of the eigenvalues. This

is an optimization problem that may be interesting for future research. Similarly,

these encoding schemes must be generalized at least to consider noisy channels and

inaccuracies in the plant model.

Finally, we see that the the fundamental limitations that we obtain for tracking

systems were limited to guarantee boundedness of the tracking error. We think that

the accuracy of the tracking problem, measure in terms of some metric of the tracking

error, is also lower bounded by the finite capacity of the channel and not only by the

entropy of the reference signal. This would be another interesting research area for

the future.
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A Convergence of Random Sequences

B Information Theory Review
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Appendix A

Convergence of Random Sequences

According to [49] we have the following types of convergence for random sequences:

Definition A.0.1 The random sequence xk converges surely to the random variable

x if the sequence of functions xk(ζ) converges to the function x(ζ) as k → ∞ for all

ζ ∈ Ω.

Definition A.0.2 The random sequence xk converges almost surely to the random

variable x if the sequence of functions xk(ζ) converges to the function x(ζ) as k →

∞ for all ζ ∈ Ω except possibly on a set of probability zero. In other words:

P
(

lim
k→∞

xk(ζ) = x(ζ)
)

= 1.

Definition A.0.3 Given the random sequence xk and the limiting random variable

x, we say that xk converges in probability to x if for every ε > 0, then

lim
k→∞

P
(
|x(k) − x| > ε

)
= 0

.
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Definition A.0.4 A random sequence xk converges in the mean-square sense to the

random variable x if E
{
|x(k) − x|2

}
→ 0 as k → ∞.

Definition A.0.5 A random sequence xk with probability distribution function Fk(x)

converges in distribution to the random variable x with probability distribution func-

tion F (x) if lim
k→∞

Fk(x) = F (x) at all x for which F is continuous.
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Information Theory Review

Definition B.0.6 [5] The differential entropy of a random variable z with pdf f(z)

is

h(z) = −

∫

S

f(z) log
2
f(z)dz;

where S is the support set of the random variable.

Definition B.0.7 [5] The joint differential entropy of a set zk of random variables

with density f(z1, z2, . . . , zk) is defined as

h(z1, z2, . . . , zk)

= −

∫
f(z1, . . . , zk) log

2
f(z1, . . . , zk)dz1, . . . , dzk.

Definition B.0.8 [5] The mutual information I(z; w) between two random vari-

ables, z and w, with joint density f(z, w) is defined as

I(z; w) =

∫
f(z, w) log

2

f(z, w)

f(z)f(w)
dzdw.
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Definition B.0.9 [5] The entropy rate of z is given by

h∞(z) = lim
k→∞

h(zk)

k
;

where h(zk) is the joint differential entropy of zk.

Definition B.0.10 [5] The mutual information rate of two stochastic processes z

and w is defined

I∞(z; w) = lim
k→∞

I(zk; wk)

k
;

where I(zk; wk) is the mutual information of zk and wk as defined by (B.0.8).
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