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Rate Limited Stabilization: Sub-optimal Encoder-DecoSehemes
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SUMMARY

In this paper, we extend results from packet-based cortealry and present sufficient conditions on the rate of a
packet network to guarantee asymptotic stabilizabilityrdtable discrete LTI systems with less inputs than states.
Two types of Network Control Systems are considered in tieemde of communication delays, then for one of
the two types, the case of a constant time delay is discuEseanples and simulations are provided to illustrate
the results. Copyrigh®© 2002 John Wiley & Sons, Ltd.
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1. Introduction

Feedback control systems wherein the control loops aredltgough a real-time network are called
networked control systems (NCS) [17], [18]. The primary atbage of a NCS is that a reduced of
number system components and connections are used rgdultasier maintenance and diagnosis
of the system. However, when controlling across networkgeal assumptions of classical theory
of control may need to be revisited. For example, the delagnfthe sensor to the controller may
be time-varying or random, and similarly for the delay frohe tcontroller to the actuators. This
specific issue has been analyzed in several works, for exa@p[7], [3] and [8]. New complications
may therefore arise because the sensed data and the cag@bsare no longer connected directly
through a “dedicated wire”, but rather through a data nektwehich has a finite bandwidth (or a
finite data rate), and which may also be shared by many otlségrsg. In recent years, much research
has been expanded in the area of NCS and because of the befefitmote industrial control,
several reliable protocols have been developed for resd-tiontrol purposes. Meanwhile, computer
networking technologies have witnessed incredible ademic recent years. With the decrease in
cost, the increase in performance, and with the steadytimesd in infrastructure, the Internet has
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2 |. LOPEZ HURTADO AND C.T. ABDALLAH

in fact become a suitable network for industrial control laggtions. In 1999, Wong and Brockett
[19] considered a feedback system communicating througgitaldchannel with finite capacity, and
since asymptotic stability was deemed unrealistic, theepnof containability was introduced. Mitter
[6] and collaborators have contributed to the developméra aew theory that matches classical
control theory with traditional information theory, [2].6], [15] and [10]. In [16], an efficient encoder-
decoder scheme is proposed to guarantee stabilizationadsaf discrete linear time-invariant (DLTI)
system using the minimum rate imposed by the Data Rate Tirefit6]. Reference [5] presented
an encoder/decoder scheme that also achieved the minimtanmata while also considering packet
losses. Similarly, reference [7] presents an encoderdicheme that deals with uncertainty in the
plant model. It is clear in all of these schemes that the ctducing the data rate is the complexity
in the algorithm and the computational power required fer ¢hcoding/decoding operations. There
may however be situations where simpler algorithms areepred, at the expense of having a higher
data rate. The purpose of this paper is to provide such siemeder/decoder schemes that are easy
to implement while requiring a higher data rate in order targmtee asymptotic stability.

The first scheme that we present is based on ideas propos&8]iril4] and [12]. The authors of
those papers considered a general DLTI systém- 1) = Ax(k) + Bu(k) and found a sufficient rate
for exponential stabilization of an unstable plant of ondeunder the rather limiting assumption that
the system has inputs (wheren is the number of states) and an invertible input mai&ixhe work
addressed finite rate issues, packet dropping, as well &staimties in the plant model. Moreover, the
authors assumed the existence of a truncation-based erdecteder without providing the specific
structure of this encoder/decoder.

We extend the results of [12] to the case of discrete-timeali, time-invariant systems withinputs
such thatm < n, wheren is the order of the system. We also relax the condition of tivertibility
of the B matrix, and extend the stabilizability results to systenith & constant time-delay induced
by the sensor-to-controller network. Moreover, we preseneasily implementable encoder/decoder
structure. As was considered in [12], we discuss two typegbtfork control systems: one that includes
a network between the sensors and the controller, and artb#itenodels two networks in the loop,
one between the sensors and controller, and another bethv@eaontroller and the actuator.

Finally, we propose a new encoder/decoder scheme that is coonplex but that uses a lower rate
than the truncation-based encoder/decoder. The new sdbease less complex, but requires a higher
rate than the ones presented in [16], [5] and [7].

2. Problem Setup

We consider the two configurations for the packet-basedar&teontrol system presented in [12]. The
first system, is referred to a$etwork Control System TypgeHas a rate oRp; packets/sample-time.
This packet based network accomodates a packet sRggfbits used for data (although the protocol
information requires extra bits in the packet, it is not rexefbr this analysis). Let us consider the
discrete LTI system shown in Figure 1 and described by

x(k+ 1) = Ax(K) + Bu(k), 1)

whereAisnx n, Bisnx mandu(k) ismx 1.

The second type of packet-based network, referred ieasork Control System Type tonsists of
the same discrete LTI system given by equation (1), but wteiddition of a second network between
the controller and the actuator with rdg, as shown in Figure 2.
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y(k) = x(k) !

Encoder
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Rate:Rp packets/time-step | Network
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Figure 1. Closed-loop network control system: Type 1

x(k+ 1) = Ax(k) + Bu(k)

y(k) = x(k) !

------------- Encoder Encoder |-
t Rate:Rp, packets/time-step |
Net\zlvork Net\ivork
t Rate:Rp, packets/time-step |
Decoder Decoder}-
L Controller |

Figure 2. Closed-loop network control system: Type 2

From here on, the following notations are adopted. [Bgdunction is base 2, the norm symHdl||)
denotes the Euclidean norm and is theceil function. In addition, we use the varialjleto denote
the controllability index which for multivariable lineaystems [1] is defined as the least integsuch
that

rank[B| AB| ...| A<IB]=n. 2

We assume that the controller does not saturate, and thatattieet-network does not drop packets
nor is it subjected to disturbances (noise). For both NC®gsymwe assume that the states may be
measured. We also assume equimemory of the encoder andedlsoathat the decoder knows exactly
the encoding scheme used by the encoder at all times. Thiadasmption is explained in Section
3 where we present the encoder and decoder schemes. Fimaligsume that both the encoder and
decoder, know a valukey > 0 such thatf|x(0)|| < Lo and that both have access to the control signal or
can compute it (this is represented by a dotted line in Figirand 2).
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4 |. LOPEZ HURTADO AND C.T. ABDALLAH

ENCODER
Bits that form a package and are sent
through the channglby, b, ..., bn}x;
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Figure 3. Encoder Scheme

DECODER
Bits in a packet that arrive
from the channel
{blab27"'7bn}Xj Binary )?J
——>| toDecimal |- Ly ——
Converter

Figure 4. Decoder Scheme

3. Encoder-Decoder Design

Several approaches for the design of an encoder/decodemscivere presented in previous works.
Most of them are based on some type of predictor that emutages/olution of the plant state and the
difference between this prediction and on the actual measfuhe plant, i.e., the error. The quantized
error is sent through the channel, then decoded at the mcaid used to obtained an approximation
of the state, which is used to generate the control signaluincase however, we send a quantized
version of every state component rather than the error @singdified version of the encoder/decoder
scheme proposed in [11]. Figures 3 and 4 illustrate our sehehich is described next in detail. At
the first instantk = 0, the sensor measures the state exactly. Since we assuniotihahe encoder
and decoder knowyg, each componend of the measured state is divided bywhich gives a number
Xj/Lo that is less than or equal than 1 in magnitude. We assume fotthmt x; /Lo is less than one
and positive (in Section 4 we will comment how to solve if iteigactly 1 or negative). The encoder
converts this number to its binary representation and keapsther; most significant bits (MSB).

This truncated version is labeled ééj,_(To))t. The quantityr; will be later calculated in Section 4. The
decimal representation of thessebits is multiplied byl resulting in an estimate; (0) = (%?)) Lo
which is stored in the encoder. By grouping in a vectorjttireincated state components we obtain the
state estimate(0). The bits in each truncated state component form a packeta@hkets depending
on Dmax) that is sent through the channel. On the receiver side, doeder receives a packet (or
packets) and separates the bits that correspond to eaelcstaponent. It then converts the binary
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RATE LIMITED STABILIZATION: SUB-OPTIMAL ENCODER-DECODERSCHEMES 5

representation of the bits received into a decimal reptasien and multiplies by o which gives the
valuex;(0). This should the same value stored in the encoder and, treréfie equimemory property
between encoder and decoder is preserved. Since the csigtral at timek = 1 only depends or(0),
we can show that at time= 1, X;(1), is bounded as follows. Using the triangle inequality andrina
norm properties we have:

X[ < [IAX(0) +Bux(0))]|
< [AIXO)] + [1Bux(0))]
< Ao+ [[Bu(x(0))]|

- L

Since the control algorithm is predefined, the encoder andakr can both calculate this valugright
after they have calculated the valk@j. The stored_; will then be used at instafkt= 1 to keep the
ratio |x(1)/L1| < 1. By carefully examining the above steps, we obtain the¥alg difference scalar
equation to bound the norm of each state component:

L = [|Al|Li-2+ [[Bu(x(k—1))|| ®3)

Since the equation above only depends on the tégmsandx(k — 1), all signals needed to compute
this equation are available at the encoder and the deco@eals® note that sinca is unstable, the
[IAl > 1 andLy will become unbounded, but we will show in section 4 thatwill only grow u
time-steps, before it is reset to a new starting value fottearq time-steps.

4. Results

4.1. Network Control System: Type |
In the case of NCS Type |, the state vectt) is given by

Xk =| .| (4)
xn&k)

We assume below thag (k) > 0, Vj since the sign of each state component may later be accounted
for by addingn extra bits to the rate (one extra bit per state componentthéfe obtain the following

binary representation d%%) at the encoder side:

. .
.0—1
x1(0) izl Q12
ol | |2 g0
2 092"
X(O) . 0 o izl 2 . 5
O || - , 5)
0 . .
%n(0) o .
Lo 2 anizil
Li=1 A
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6 |. LOPEZ HURTADO AND C.T. ABDALLAH

whereaq;; € {0,1}. This binary representation is truncated keeping only threost significant bits for
state componen. The truncated representation is given by:

rr e

3 032
(Xll_((z))T i _
(O (5| _ | 2,02 5
L—o)T o : =" ' ©6)
2(0 '
(XL(O))T rznanizfi
= |

wherea;; € {0,1}. Therj bits per state componeptre sent through the channel and, at the receiver
site, the decoder transforms the bits back into decimal musland multiplies them blyg in order

to obtainx(0). With this encoding/decoding process, we guarantee tleaétior between the actual
state component and its encoded versigi0) = x;(0) — X;(0), is limited by ||&;(0)|| < 2 "iLg, V

j € {0,1,...,n}. Using the triangle inequality, the norm of the total erobounded by

el < [le(0)][+... + llen(0)]]

n
< 22 L. @)
V&

Let us then consider the evolution of the system startingreg k = 0:
X(1) = Ax(0)+Bu(0)
X(2) Ax(1)+Bu(1)
A?x(0) + ABU(0) + Bu(1)

x(1) = A'x(0)+_|ZA'iBu(i—1); vl >3,

Recalling thafu represents the controllability index, afte# u steps we have

X(M) = AHX(0)+AH*1Bu(0) + A*2Bu(1)

+...+Bu(p—1). (8)
This equation may be re-arrangeddg ) = A#x(0) + {, U, where
4 = [B| AB ...| A“*lB}
= [& & .| &l ...| &y
and
uy
u(u—1) :
U= =y,
u(0) :
Umu
Copyright(©) 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Contr@002;00:1-6

Prepared usingncauth.cls



RATE LIMITED STABILIZATION: SUB-OPTIMAL ENCODER-DECODERSCHEMES 7

noting thatd;j is the jth column ing,, andu; is the jth element in the vectdy. Let us select the first
n independent columns af, and build a new matrix, called,. Let us also select the elements of
U(k) corresponding to the columns chosen frgmand form a new vector, called,. Recalling that
X(0) = x(0) + £(0) we havex(u) = AHx(k) + A& (k) + {,U(k). If we choose the control law

Un = —{, "A*X(0); 9)

we may reconstrudf replacingu; with the corresponding values B, in the proper order and letting
uj = 0 for the remaining elements. Aftgrsteps, and by applying the control sequeti¢k) we obtain

x(u) = AHg(0). (10)

Then, from equations (20) and (7) and the properties of matims, we obtain

Xl = [[A%e()]]
< IAe(O)]
n
< ALY 27 L.
2

In order to force the state to decrease in the norm (gfteteps), we shrink the upper bound of
the statex(u) by forcing it to be less than a fraction of the upper bound & #itatex(0), i.e.,

[1AH]| 4 /ZT:12*2’1L0 < Lo/9d, for somed > 1. At this point, we have to decide on the value of each

rj. This may be converted into an optimization problem whogeddive is to minimize the total rate
given byZT:lrj. In other words, let us consider the optimization problem:

n
miny r; 11
i3 (11)

] 1
1212 < W = C* (12)

This problem may be solved by applying the Karush-Kuhn-BudKKT) conditions [9] on the
Lagrangian functiom.(rq,r>,...,rn,|) with Lagrange multipliet as is given by

subject to

L=ri+ra+...+m—1(Ci— /22142224 4 2-2m),

The KKT conditions are then:

o _ 2-21n(2) o
oy V272 422
oL 27212|n(2)
- e — I =
or V27242722 4 4 2-2m
o _ 2-20In(2) B
ara V2 2 422
Copyright(© 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Contr@002;00:1-6

Prepared usingncauth.cls



8 |. LOPEZ HURTADO AND C.T. ABDALLAH

Solving this system of n-equations system, we obtain:
f1=r=...=Ij=...=TIn

Therefore, an equal allocation of bits per each state comtactually guarantees the minimum total

rate. Using the constraint (12) we obtain the optimal rdteationr, > [log (||A¥|)) + % logn+logd|.

We notice thatd is a parameter that determines the fraction by which the uppand of||x(0)]|

is shrinking. Therefore, it is sufficient to consider thdimum of this quantity to obtainr, >

[log (||AH])) + % logn]|. Note that thef.] function was introduced sinag must be an integer denoting

the number of bits for each state component. We can therdgdiee the totaR bits in a packet (or

packets) aR = nr,+ nwhere the secondterm may be used to code the sign of each state component.
For the nexiu steps, we repeat the same steps above but w§jingas the initial condition. To stop

the growth ofLy, and noting thak(u) < n||A¥||2-Lo, we reset,, = n||A*||2-""L, for the nextu

time steps. We repeat this procedure eversteps. Using the same algorithm to generate the control

sequence and the same r&ehe statex(2u) will be a shrunken version of( ). Proceeding in the

same fashionx(tp) will tend to zero ag € N grows and, therefore, the statevill tend to zero and

asymptotic stabilizability will be achieved. Note tHais the sufficient number effective bits that we

need to transmit of the whole state for stabilization, batsia packet has a maximum len@fax, if

R < Dmax, We need a packet rate B, = 1 packet/sample-time. If on the other haRd> Dwax then,

a minimum of[ﬁw packets/time-step are needed. Note that the last expnessioally covers both
cases, sinc% < 1 gives a 1 packet/sample-time when the ceil function isiaegpl

[ |
This analysis may be summarized in the following theorem.

Theorem 4.1. Assuming an equal allocation of bits per state componentetwork rate R
packets/time-step, and assuming tliatB) is a controllable pair with controllability indexu, a
sufficient condition for system (1) to be asymptoticallp#izable is

R
Rp > )
P {DMax—‘

where R= n[log(||A#||) +logn] + n and every state allocatékbits/time-step.

An immediate consequence of Theorem 4.1 in the specific daseingle input system is given in the
following corollary.

Corollary 4.1. Assuming an equal allocation of bits per state componentetwvaork rate R
packets/time-stedA, B) is a controllable pair, and B is x 1 and the control law, (k), is1x 1, a
sufficient condition for system (1) to be asymptoticallp#izable is

R
Ry, > ,
P= {DMax—‘

where R= n[log(||A"]|) +logn] + n and every state allocatésbits/sample.

Proof: The proof is the same as that of Theorem 4.1Bls nx 1 andu(k) is 1x 1, theny = n.
Substitutingu in Rin the proof of Theorem 4.1, we obtain the rate given by theltany.

Copyright(©) 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Contr@002;00:1-6
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RATE LIMITED STABILIZATION: SUB-OPTIMAL ENCODER-DECODERSCHEMES 9

x(k+ 1) = Ax(k) + Bu(k)
y(K) = x(k) }

Encoder
|

EEI Rate:Rp packets/time-step Network

|

Decoder

Controller <—,

Figure 5. Closed-loop network control system: Type 1

4.2. Network Control System Type | with Time Delay

One of our motivations for extending the results of [12], iasnclude the effects of time delays
that may be present in the network. As mentioned earliem évethe scalar case, the invertibility
requirement o8 would not allow the traditional augmentation of the statetbylelayed versions. Let

us consider the modified network control system type | shawFigure 5 and the discrete LTI system
given by the following equation

X(k+ 1) = Ax(k) + Bu(k — p), (13)

whereAisnx n, Bisnx 1 andu(k) is 1x 1. We assume here that the control signal to actuator delay
is a constant equal tp € N time-steps. Under such conditions, we obtain the followireprem

Theorem 4.2. Assuming an equal allocation of bits per state componentetvaerk rate of B =
[%W packets/time-step, and

A BO ..GO 0
001..0 0
A_]0 O O .. 0 p_|o
1|’ :

0 0 .0 1

such that(A,B) is a controllable pair. A sufficient condition for system Y18 be asymptotically

stabilizable is
R
R, > ;
P= {DMax—‘

where R= (n+ p) [log(||A™P||) +logn] +n, and each state component of the augmented system
aIIocatesn TP bits/time-step.

Copyright(©) 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Contr@002;00:1-6
Prepared usingncauth.cls



10 |. LOPEZ HURTADO AND C.T. ABDALLAH

Proof: We start out by augmenting the state vector, considerimgasstates the lagtprevious inputs.
We then obtain

[ x(k+1)
Xni1(K+1)
X(k+1) = [Xr2(k+1)
Xnsp(k+1)
(A B O 0 x(K) 0
0O 0 1 0| [Xns1(k) 0
_ |0 0 O Of |Xnt2(K) | 4 |O u(k).
1 .
0 0 0| [xmipk)| |1
This may be written as
X(k+ 1) = AX(K) + Bu(k). (24)

We now have a system similar to the one treated in Corolldryvth a state dimension+ p instead
of n. Therefore, in order to shrink the upper bound of the stgte+ n+ p) we need a rat® given by

R nipyy 4 &
155> [log(a™?l)+ Slog(n-+ p)| +1

ax

Similarly to previous proofs, we find a minimum rateRyf = [%W packets/time-step.

4.3. Network Control System: Type Il

We now consider an NCS Type Il and show the following result.

Theorem 4.3. Assume an equal allocation of bits per state component arktrates of By = Hfﬂ—lax]
packets/time-step andpR= LDTA—;] packets/time-step for network 1 and 2, respectively. Asgum
also that (A,B) is a controllable pair, where B is & 1, the controllability matrix is given by

{=[B] AB ..]| A”*lB] and the control law, (k), is 1 x 1, a sufficient condition for system
(1) to be asymptotically stabilizable is

A2+ 2] tAl 2 R < 1.

Proof: Since there is now a rate constraint from the controlleh®olant actuators, we can no longer
apply the calculated control signa(k) directly to the plant. Instead, only the bits encodin()
according to the available ratBp, may be used. This encoded control sign@) is the one that is
received by the plant. We then have

x(k+ 1) = Ax(K) + BU(K). (15)

Copyright(©) 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Contr@002;00:1-6
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RATE LIMITED STABILIZATION: SUB-OPTIMAL ENCODER-DECODERSCHEMES 11

Let us assume that we have exactly the same encoding andidgantiemes used in Theorem 4.1.
The evolution of the system in the firattime steps is given bg(n) = A'x(0) + U, whereU =
[G(n-1) ... ©(0)]" If we choose the control signél = — ~*A"X(0), then|[U]| < ||{~*A"Lo|| <
|{72A"||Lo = L2o. For other timek, the normalization value that is kept in the memory of the
encoder/decoder of network I1, i.e2y, is given byL2y = || {; 1AH||Ly.

Sincel(k) represents thB, most significant bits ofi(k) we know that

|[u-0] < lle*A"| Loz . (16)

From equation (16) and recalling th&0) = x(0) + £(0) and, similarly to previous proofgg(0)|| <
R
\/ﬁLOZ*Tl, we have

Hz (z*lA“m) +ifJ) +A”e(O)H

Wl

A'X(0) + A" (0) + szH

<121 ||ue -0 + e
Ry
< IZIH[E A Lo2 e+ V| AT Lo2
Lo
< g

If we want to guarantee the shrinking of(n), we enforce that||||{ 1Al Lo2 R +

JALo|JAT| 277 < Lo, i.e.,/RIAY[ 2% + | |{~1A||27Re < 1. Asiin previous proofs we now select
x(n) as the new initial condition and using the same control lad/@tes R, andRy, the statex(2n)
will be a shrunken version of(n). Continuing in the same fashior(tn) will tend to zero ag € N
grows and, thereforg(k) will tend to zero and asymptotic stability is achieved. Hagain we will

need a minimum oRp; = [%} packets/time-step for the sensor-controller network amirémum

of Ryp = | o2 packets/time-step in the controller-actuator network.
p Dax

5. Simulations

To verify some of the results derived in the paper, we presemeral numerical examples using
Matlabd®. We note that althougk(k) is discrete and exists only at the time instakts {0,1,2,...},
the plots below show the components«f) at all times for ease of visualization.

5.1. Example 1

First, we tested the results of Theorem 4.1 for the system

1 00 1 0
x(k+1)=1{0 3 0| x(k)+ |1 1|uk)
0O 0 4 0 1
Copyright(©) 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Contr@002;00:1-6
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12 |. LOPEZ HURTADO AND C.T. ABDALLAH

We assuméo = 71.68 and choose the initial conditioni0) = [~16.333 30768 844]". The rate in
bits obtained according to Theorem 4. Ris- 18bit/time-stegequivalent to 6 per state component) and
the simulation for such a rate is shown in Figure 6. Note thgirgtotic stability is indeed achieved.

Evolution of the State Components (R/n = 6 bits/time—step)
40 T T T T T

0 x1(K)
x2(K)
20} —O0— x3(k)
O L
_ZOG ° .
1%
jo)
=
0
_40 4
_60 4
-80 1
o
~100 i i i i i
0 1 2 3 4 5 6
Time-Step

Figure 6. Closed-loop NCS (Type I): MIMO case usiRg- 18 bits/time-step

5.2. Example 2

In order to test the conservativeness of our results, weideresd a single-input system given by

20 0 10 1
x(k+1)= |0 10 0fxK+ |1|u(k
0 10 30 1

We choose the initial condition to bé0) = [16.333 13768 -80.44]". Using Corollary 4.1, we
haveR = 54 bit/time-step We then verify in Figure 7 the asymptotic stability clainfdtee corollary.
Since our results provide sufficient conditions only, wedrfor smaller values dR and found out that
for this particular exampldl = 42 bit/time-stedeads to instability, see Figure 8.

5.3. Example 3

Let us finally consider a system with time-delpy= 2 evolving according to the following dynamics

x(K+ 1) = [(2) 195] X(K) + m u(k—2)

with the initial condition state vectof(0) = [-16.333 30768 ', For this system, Theorem 4.2 gives
a rate bounded below By = 28 bit/time-stepThe corresponding simulation is shown in Figure 9.

Copyright(©) 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Contr@002;00:1-6
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RATE LIMITED STABILIZATION: SUB-OPTIMAL ENCODER-DECODERSCHEMES 13

x 10* Evolution of the State Components (R/n = 17 bits/time-step)

T T T T T
O x1(K)
7t x2(K) | 4
—O0— x3(k)

States
(¢]

e ® e & T

0 1 2 3 4 5
Time-Step

(2]

Figure 7. Closed-loop NCS (Type I): SISO case udig 54 bit/time-step.

x 10* Evolution of the State Components (R/n = 14 bits/time-step)
T

0 x1(K)
6 x2(k) H
—6— x3(K)

States

-10 i i i i i i i i
0 2 4 6 8 10 12 14 16 18

Time-Step

Figure 8. Closed-loop NCS (Type I): SISO case usitig 42 hits/time-step.

6. Removing the rate dependency|gH|.

The result of Theorem 4.1 (as well as Corollary 4.1 and Thaote?) established a sufficient rate in
terms of the norm oA. For different matriceé\ with the same eigenvalues however, this may lead to
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14 I. LOPEZ HURTADO AND C.T. ABDALLAH

Evolution of the State Components (R/(n+p) = 7 bits/time—step)
1000 T T T T T T T
o —O0— x1(k)
ot 0 x2(K)

800 St B

States

-200 i i i i i i i

Time-Step

Figure 9. Closed-loop NCS with Time-Delay: Type 1

very different rates, some of which may also be very largeaned to the minimum rates of the Data
Rate Theorent]]. For example, the following two matricéshave the same eigenvalues (therefore, the
same minimum stabilization rate according to the Data Ragonfem) but different norms (therefore,
different sufficient rates according to Theorem 4.1):

A [(2) 10(;00? a7
and
A= B 2} (18)

Then||A7|| = 1 x 10°. and||Az|| = 2 butA; andA, have the same eigenvaluks= {2,2}. One way
to remove this disadvantage is to change the control law unstak proof of Theorem 4.1. Instead of
trying to asymptotically stabilize the statewe attempt to stabilize the state= ®1x, whered is a
linear transformation such thdt *Ad is the diagonal matrix equivalent # (or more generally the
Jordan-block matrix). The erra@g(0) in thez space is given byp~1(x;(0) — X;(0)). For stabilization
purposes, designing a control law to stabilize the gt&equivalent to stabilizing sincez— 0 implies

x — 0. There will however be a difference in the transient respas we will see later. The change of
variable implies that the control law in equation (9) no lendepends on the controllability matrix of
the pair(A, B), i.e. {,. It will depend, however, on the controllability matrix dfet pair(®~*Ad, ®B),
denoted bys,. Therefore, the new control law is given by

Un= _zq;;(quAm)“quﬂox (19)

and in thez space, aftep time-steps, we will have
2(p) = (¢~ AD)He,(0). (20)
Copyright(©) 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Contr@002;00:1-6
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RATE LIMITED STABILIZATION: SUB-OPTIMAL ENCODER-DECODERSCHEMES 15

Then, from equations (20) and (7), and using the properfiggatrix norms, we obtain
Iz = [l(®AD)He; (0)|

|(®A®)H]|[[£-(0)]|

V2 "[(@ T Ad)H || Lo.

NN

Similarly, in order to force the state to decrease in the norm (after steps), we shrink the
upper bound of the statg(u) by forcing it to be less than the lower bound of the staie),
i.e., 2R /m[(etAP)H||[|P YLy < ||@Y||Lo. However, if ®1Ad is a diagonal matrix then
[(P~LAD)H|| = |Amax* WhereAmayx is the eigenvalue oA with the largest magnitude. We can then
replace in Theorem 4.1 the expressis: n [log([|A#|)) + 3 logn] + nwith

R=n ’V|Og(|/\maxlu) + % Iogn-‘ +n. (21)

If on the other hand, matrisp~1A® is a Jordan-block matrix (as is the case for repeated eigieewa
of A), we can use the norm @b~*Ad noting that||(P~*ADP)H|| =~ [Amax* Which will in general be
less tharj|AH||. Therefore, the rate is no longer a function of the norm blit rather a function of the
largest eigenvalue d&. In general, this may lead to a lower sufficient rate for dizdiility, but with
the possible deterioration in the transient response.

6.1. Example

The following simulation shows the evolution »fvhen using the control law given in equation (19)
with the rate given bR = n [log (|Amax*) + % logn]| +n. Let us consider the following system:

2 100 10 1
x(k+1)= |0 4 100 x(k)+ |1 u(k)
0 1 4 1

Let initial condition to bex(0) = [16.333 13768 —80.44]'. Using Equation (21), we find that
R = 42 bit/time-stepis now sufficient for stabilization. This was not the casengghe control law
depending on the controllability matrix of the pdi, B). The simulation using this control law is
shown in Figure 10. We also show in Figure 11 the simulationghe results of Theorem 4.1 and the
rate wasR = 57 bit/time-step The tradeoff is evident when comparing the two simulatiafthough a
lower rate is needed in the simulation in Figure 10, the {mnisesponse (overshoot, settling time) in
Figure 11 is actually better.

7. A New Encoder/Decoder Design: Optimizing the Rate fobHitzation

In the previous sections we obtained sufficient rates witleasily implementable encoder-decoder
scheme. Although such rates are larger than the ones givethdyData Rate Theorem, the
implementation of our encoder-decoder requires less ctatipnal power than other published
schemes. Specifically, the evolution of the quantizer insmineme uses one scalar equation (equation
(3)). On the other hand, encoder-decoder schemes such asdbl@roposed in [5] or [16] achieve the
minimum rate established by the Data Rate Theorem. Thesg aa¢ achieved however with a higher
computational cost since they require state-space pogdjthe use of rotational matrices (to undo the
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16 I. LOPEZ HURTADO AND C.T. ABDALLAH

7 : : : : :
—— x1()
| v v x2(K)
6 —e— x3(k)

States

Time-Step

Figure 10. Closed-loop NCS (Type |): SISO case ustig 14 bit/time-step.

x 10° Evolution of the State Components (R/n = 19 bits/time-step)
T T

0% © S © —— © ©
1k 4
2l i

[%2]
Q
s -8f 1
7]
_4 - 4
_5 - 4
—— x1(k)
-6 x2(K) [4
—O0— x3(k)
-7 i i i i i
0 1 2 3 4 5 6 7
Time-Step

Figure 11. Closed-loop NCS (Type |): SISO case ustig 19 bit/time-step.

possible rotations caused by tAamatrix), and the calculation of the centroid of the regioattinaps
the state space variable.

In some scenarios, both the computational power and themayebe constrained. Our purpose in
this section is to design an encoder-decoder scheme thigivasta rate close to that provided by the
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RATE LIMITED STABILIZATION: SUB-OPTIMAL ENCODER-DECODERSCHEMES 17

Data Rate Theorem, while using less computational powex féllowing builds upon ideas described
in[7], [5], [16].

7.1. Encoder-Decoder Design

Let the initial state be bounded by some vadlygei.e. ||x||2 < Lo. This equally-length side n-cube region
will have 2" vertices. This set of vertices is denoted\gy and each vertex is denoted lwy, We will
allocater; bits for the state space componentvi € {1,2,...,n}. We will necessarily consider that
ri > log, |Ai|, where); is the eigenvalue associated with This last assumption is imposed by the
Data Rate Theorem and cannot be removed if we want to achivdization. Each rate must be an
integer number such that> [log, |Ai|]. We introduce a matriQg

121 0 ... 0
0 122 ... 0

Qr=| . : : : (22)
0O 0 .. 1/2n

Moreover, we will assume thag,r,,...,r, are such that the matrikg = AQr is a stable matrix (we
will show later how to accomplish this goal). In the followirwe assume that the plant is deterministic
and undriven as described byk + 1) = Ax(k). The controller design problem will be discussed in
subsection 7.2. The first step is to generatedimensional cube centered at the origin with sides of
length 20. The center of this first quantizer will be label€gd(0). The uncertainty region is divided
in 2" subregions in they direction, 22 subregions in the direction, and so on until we obtain
2'n subregions for thex, direction. After one time step, the state will land in one loéde smaller

n dimensional cubes and the total of small cubes will B&'2" ', Therefore, the number of bits
needed to represent all the cube centroid®4sry +r,+ ...+, which is the actual rate in bits/time-
step. After determining in which cube the state has landed¢calculate the centroid of this smaller
cube. This centroid will be chosen as the encoder estimatieeo$tate x(0). The binary symbols,
that represents(0) is transmitted to the receiver. Note that the error betwberstate and the state
estimateg(0), lies in the regio{[—Lo/2't,Lo/21],[—Lo/2"2,L0/2"2],...,[—Lo/2,Lo/2"]}. This is
the key property of this quantizer. Figure (12) shows an gtarof a two dimensional quantizer with
r1 = 1andr, = 3. The encoder and decoder will evolve the center of the dqgamntq at timek + 1:

Colk-+1) = AX(K) (23)

This new center is used to generate an uncertainty regiomttabe divided into anothef'2+-+n
subregions with the samé Zubregions in the direction direction as explained before. At tinket- 1,
the length of eaclm sides is determines by thequantitiesA;(k+ 1). The sides of thé&+ 1 box are
determined using the matrikg and the verticesp of the original uncertaim-dimensional cube. The
length of the side parallel to the direction at timek+ 1 is given by:

Dy = rr\]/(?_x| (AQ’i)k+1V0|, Vv eVo. (24)

whereAq; is the “i-th” row of matrixAq. Equation (24) evaluates the maximum over absolute values,
therefore, we can guarantee that the stéket 1) at timek+ 1 will land in an n-dimensional box (not
necessarily a cube) that is centered@jytk + 1) and with sides of length/Z; in the x; direction. In
other words, the hyper-planes that are perpendicular ta;tbemponent direction will be located at
—Ny andAy, units fromCq(k+ 1) in thex; direction. The new uncertainty box, will again be divided
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X2

x

(k) — Co(k+1) 1

X2

./ x(k) — x(k+1)

CoK X

Figure 12. Quantizer evolution sample including centrstdte and state estimator.

into 2'1tf2*-+M phoxes with 2 in the x; direction. We label these small boxes with binary symbols
(a total of 21tT2+--+n hinary symbols). We then determine in which of these boxesatttual state,
x(k+ 1), lies and use the centroid of this specific box as the stat@a&stx(k + 1) at timek+ 1. We
again transmit the binary symbd, that corresponds to the box where the state lies. Becaube of
way we have constructed this quantizer and siAgevas assumed to be stable, the uncertainty box
keeps on shrinking als tends to infinity, which guarantees that our state estimedelres the actual
state and thate|| tends to zero. Note that both encoder and decoder must kreoeritinal sizel of

the uncertainty as well as the exact dynamics of the plasb Aloth encoder and decoder must be able
to compute the equations (23) and (24). This guaranteegjtiimemory property. The only remaining
issue is to guarantee thag is stable. This can be done by a trial and error procedureliasvi

1. Setr;j = [log, |Ai|] Vie {1,2,...,n}, where ) is the eigenvalue associated with the state
componenk; andr; are the bits/time-step allocatedxo

2. Using rates;, we form the matri>Qr and obtain the eigenvalues & = AQr.

3. Check that all such eigenvalues are inside the unit cirelg|Aag| < 1.

4. If |Ang| < 1, stop and use the ratesfor transmission. IfAa,| > 1, we add 1 to each in Qr
that corresponds to an eigenvaluedgf that was outside of the unit circle and return to step 2.

We test this algorithm in the following example. Given th#dwing matrix, findr; andr, such that

Ag is stable.
2 05
a=3 %)
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Since the eigenvalues #fareAp = {1.418 4.581} we choose; = 1 andr, = 3. Then Qg is given by

0.5 0 4 ' (25)

Q= {o 012

We then obtain the eigenvaluesAd: Aa, = {1.14,0.35}. Since one of them is outside the unit circle,
and corresponds to the row whetgis located, we add 1 to; to obtainr; = 2. We obtain the new
eigenvalues of . The new eigenvaluesiefwith the update®r areAa, = {0.761,0.283}. Aq is now
stable, and the values = 2 andr, = 3 may be used as the rates for transmission.

7.2. Adding a controller for stabilization

We have seen in the previous subsection that by expanding emmputational power, a lower
stabilization rate may be achieved. Designing an asyngatibfistabilizing controllers is however not
obvious. In order to address this issue, consider the syd¢saribed by

x(k+ 1) = Ax(k) + Bu(k).

We next consider this system in the encoder/decoder cortiprngaand modify equations (23) and
(24)accordingly. The new equations are

Co(k+ 1) = AX(K) + Bu(K) (26)

and
Dy = rr\]/(?_x| (AQ’i)k+1V0|, Vv eVo. (27)

whereB; is the “i-th” row of vectorB. To use these new equations we assume that the encoderdecod
have access to the control signal or that it may be computsdlyo The derivations of the previous
subsection remain valid since the addition of the contre] &nly represent tanslationof the centroid

of the quantizer. At this point the simplest controller is #stimated state linear feedback controller,
u(k) = Kex(k), which is motivated by the following Lemma found in [16].

Lemma7.1. [16] Let As be a stable matrix. Let Bsa set of matrices such thiBs|| <L and the limit
limk . Bs — 0. Let § = T3 AK-1-1Bg thenlimy . Sc — 0.

If a K¢ is found such thaf — BK: is stable, the evolution of the state will be given by
k—1 _
x(k) = (A—BK:)*X(0) + %(A— BKc) 1 'BKe£(i) (28)
i=

Our encoder/decoder scheme guarantees|h@)| < ||(Agi)“**Vo|| and that||(i)|| tends to zero
wheni grows. If we letAs = A— BK; andBs; = BK:£(k), then we may apply Lemma 7.1. Therefore,
any stabilizingK; will guarantee asymptotic stabilization of the system gshe rates obtained before
since the first additive term in equation (28) tends to zencesA — BK; is stable, and the second
additive term tends to zero by Lemma 7.1. We present next ampbe considering the following
system:

x(k+1) = [g 245]x(k)+m u(k)

u(k) —[2533 2566 u(k)
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This K. allocates the poles &% — BK; at 0.5 and 04. Since theA matrix of this system is the same
used in the example of the previous subsection, we knowltkatites that stabilizkg arer; = 2 and

ro = 3. This give us a total rate ¢ = 5 bits/time-step. Using the encoder/decoder scheme pedpos
we obtain the plots in Figure 13. The exponential decreasieeoérror in shown in Figure 14,

Evolution of the State

——x1(k)
—6— x2(K)

States

-2+

-4+

-6}

-8 i i i
0 5 10 15 20 25
Time-Step

Figure 13. State evolution in NCS Type | usiRg= 5 bits/time-step

Evolution of the Error Norm
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Figure 14. Evolution of the Error Norm in NCS Type | usiRg= 5 bits/time-step
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8. Conclusions and Future Work

This paper has extended previous results for determinmgufficient rate for stabilization of a packet-
based networked control system. While the rates obtairmeddtwork Type | are higher that the limits
given by the Data Rate Theorem, the computational cost acscheme is simpler than earlier proposed
schemes. In this setup we were able to include to treat treeafasconstant time delay in the network.

We also obtained sufficient rates for stabilizing a systemgua Type Il Network. In order to lower
the required transmission rates, we proposed a more coreplder/decoder scheme that achieves
rates close to those specified by the Data Rate Theorem.

Future work will include the inclusion of time delays in a Merk Control System Type Il, and the
extension of the general casemfnputs of this type of closed-loop system. Other ideas farriwork
include dealing with noise in the loop and the generalizetiothe case of packet drops and saturation
in the control signal.
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