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Rate Limited Stabilization: Sub-optimal Encoder-DecoderSchemes

I. Lopez Hurtado† ∗and C.T. Abdallah‡

Department of Electrical & Computer Engineering,University of New Mexico

SUMMARY

In this paper, we extend results from packet-based control theory and present sufficient conditions on the rate of a
packet network to guarantee asymptotic stabilizability ofunstable discrete LTI systems with less inputs than states.
Two types of Network Control Systems are considered in the absence of communication delays, then for one of
the two types, the case of a constant time delay is discussed.Examples and simulations are provided to illustrate
the results. Copyrightc© 2002 John Wiley & Sons, Ltd.
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1. Introduction

Feedback control systems wherein the control loops are closed through a real-time network are called
networked control systems (NCS) [17], [18]. The primary advantage of a NCS is that a reduced of
number system components and connections are used resulting in easier maintenance and diagnosis
of the system. However, when controlling across networks, several assumptions of classical theory
of control may need to be revisited. For example, the delay from the sensor to the controller may
be time-varying or random, and similarly for the delay from the controller to the actuators. This
specific issue has been analyzed in several works, for example:[4], [7], [3] and [8]. New complications
may therefore arise because the sensed data and the control signals are no longer connected directly
through a “dedicated wire”, but rather through a data network which has a finite bandwidth (or a
finite data rate), and which may also be shared by many other systems. In recent years, much research
has been expanded in the area of NCS and because of the benefitsof remote industrial control,
several reliable protocols have been developed for real-time control purposes. Meanwhile, computer
networking technologies have witnessed incredible advances in recent years. With the decrease in
cost, the increase in performance, and with the steady investment in infrastructure, the Internet has
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2 I. LOPEZ HURTADO AND C.T. ABDALLAH

in fact become a suitable network for industrial control applications. In 1999, Wong and Brockett
[19] considered a feedback system communicating through a digital channel with finite capacity, and
since asymptotic stability was deemed unrealistic, the concept of containability was introduced. Mitter
[6] and collaborators have contributed to the development of a new theory that matches classical
control theory with traditional information theory, [2], [16], [15] and [10]. In [16], an efficient encoder-
decoder scheme is proposed to guarantee stabilization of a class of discrete linear time-invariant (DLTI)
system using the minimum rate imposed by the Data Rate Theorem [16]. Reference [5] presented
an encoder/decoder scheme that also achieved the minimum data rate while also considering packet
losses. Similarly, reference [7] presents an encoder-decoder scheme that deals with uncertainty in the
plant model. It is clear in all of these schemes that the cost of reducing the data rate is the complexity
in the algorithm and the computational power required for the encoding/decoding operations. There
may however be situations where simpler algorithms are preferred, at the expense of having a higher
data rate. The purpose of this paper is to provide such simpleencoder/decoder schemes that are easy
to implement while requiring a higher data rate in order to guarantee asymptotic stability.

The first scheme that we present is based on ideas proposed in [13], [14] and [12]. The authors of
those papers considered a general DLTI systemx(k+ 1) = Ax(k)+ Bu(k) and found a sufficient rate
for exponential stabilization of an unstable plant of ordern, under the rather limiting assumption that
the system hasn inputs (wheren is the number of states) and an invertible input matrixB. The work
addressed finite rate issues, packet dropping, as well as uncertainties in the plant model. Moreover, the
authors assumed the existence of a truncation-based encoder/decoder without providing the specific
structure of this encoder/decoder.

We extend the results of [12] to the case of discrete-time, linear, time-invariant systems withm inputs
such thatm < n, wheren is the order of the system. We also relax the condition of the invertibility
of the B matrix, and extend the stabilizability results to systems with a constant time-delay induced
by the sensor-to-controller network. Moreover, we presentan easily implementable encoder/decoder
structure. As was considered in [12], we discuss two types ofnetwork control systems: one that includes
a network between the sensors and the controller, and another that models two networks in the loop,
one between the sensors and controller, and another betweenthe controller and the actuator.

Finally, we propose a new encoder/decoder scheme that is more complex but that uses a lower rate
than the truncation-based encoder/decoder. The new schemeis also less complex, but requires a higher
rate than the ones presented in [16], [5] and [7].

2. Problem Setup

We consider the two configurations for the packet-based network control system presented in [12]. The
first system, is referred to asNetwork Control System Type I, has a rate ofRp1 packets/sample-time.
This packet based network accomodates a packet size ofDMax bits used for data (although the protocol
information requires extra bits in the packet, it is not needed for this analysis). Let us consider the
discrete LTI system shown in Figure 1 and described by

x(k+1) = Ax(k)+Bu(k), (1)

whereA is n×n, B is n×mandu(k) is m×1.
The second type of packet-based network, referred to asNetwork Control System Type II, consists of

the same discrete LTI system given by equation (1), but with the addition of a second network between
the controller and the actuator with rateRp2 as shown in Figure 2.
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Figure 1. Closed-loop network control system: Type 1
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Figure 2. Closed-loop network control system: Type 2

From here on, the following notations are adopted. Thelog function is base 2, the norm symbol(‖.‖)
denotes the Euclidean norm and⌈.⌉ is theceil function. In addition, we use the variableµ to denote
the controllability index which for multivariable linear systems [1] is defined as the least integerk such
that

rank
[
B| AB| . . . | Ak−1B

]
= n. (2)

We assume that the controller does not saturate, and that thepacket-network does not drop packets
nor is it subjected to disturbances (noise). For both NCS types, we assume that the states may be
measured. We also assume equimemory of the encoder and decoder so that the decoder knows exactly
the encoding scheme used by the encoder at all times. This last assumption is explained in Section
3 where we present the encoder and decoder schemes. Finally,we assume that both the encoder and
decoder, know a valueL0 > 0 such that‖x(0)‖ < L0 and that both have access to the control signal or
can compute it (this is represented by a dotted line in Figures 1 and 2).
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3. Encoder-Decoder Design

Several approaches for the design of an encoder/decoder scheme were presented in previous works.
Most of them are based on some type of predictor that emulatesthe evolution of the plant state and the
difference between this prediction and on the actual measure of the plant, i.e., the error. The quantized
error is sent through the channel, then decoded at the receiver and used to obtained an approximation
of the state, which is used to generate the control signal. Inour case however, we send a quantized
version of every state component rather than the error usinga modified version of the encoder/decoder
scheme proposed in [11]. Figures 3 and 4 illustrate our scheme which is described next in detail. At
the first instant,k = 0, the sensor measures the state exactly. Since we assume that both the encoder
and decoder knowL0, each componentx j of the measured state is divided byL0 which gives a number
x j/L0 that is less than or equal than 1 in magnitude. We assume for now that x j/L0 is less than one
and positive (in Section 4 we will comment how to solve if it isexactly 1 or negative). The encoder
converts this number to its binary representation and keepsonly the r j most significant bits (MSB).

This truncated version is labeled as
(

xj (0)
L0

)
t
. The quantityr j will be later calculated in Section 4. The

decimal representation of theser j bits is multiplied byL0 resulting in an estimate ¯x j(0) =
(

xj (0)
L0

)
t
L0

which is stored in the encoder. By grouping in a vector thej truncated state components we obtain the
state estimate ¯x(0). The bits in each truncated state component form a packet (orpackets depending
on DMax) that is sent through the channel. On the receiver side, the decoder receives a packet (or
packets) and separates the bits that correspond to each state component. It then converts the binary
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RATE LIMITED STABILIZATION: SUB-OPTIMAL ENCODER-DECODERSCHEMES 5

representation of the bits received into a decimal representation and multiplies byL0 which gives the
valuex̄ j(0). This should the same value stored in the encoder and, therefore, the equimemory property
between encoder and decoder is preserved. Since the controlsignal at timek = 1 only depends on ¯x(0),
we can show that at timek = 1, x j(1), is bounded as follows. Using the triangle inequality and matrix
norm properties we have:

‖x(1)‖ ≤ ‖Ax(0)+Bu(x̄(0))‖
≤ ‖A‖‖x(0)‖+‖Bu(x̄(0))‖
≤ ‖A‖L0+‖Bu(x̄(0))‖
= L1.

Since the control algorithm is predefined, the encoder and decoder can both calculate this valueL1 right
after they have calculated the value ¯x(0). The storedL1 will then be used at instantk = 1 to keep the
ratio |x(1)/L1| ≤ 1. By carefully examining the above steps, we obtain the following difference scalar
equation to bound the norm of each state component:

Lk = ‖A‖Lk−1+‖Bu(x̄(k−1))‖ (3)

Since the equation above only depends on the termsLk−1 andx̄(k−1), all signals needed to compute
this equation are available at the encoder and the decoder. We also note that sinceA is unstable, the
‖A‖ > 1 andLk will become unbounded, but we will show in section 4 thatLk will only grow µ
time-steps, before it is reset to a new starting value for anotherµ time-steps.

4. Results

4.1. Network Control System: Type I

In the case of NCS Type I, the state vectorx(k) is given by

x(k) =




x1(k)
x2(k)

...
xn(k)


 . (4)

We assume below thatx j(k) > 0, ∀ j since the sign of each state component may later be accounted
for by addingn extra bits to the rate (one extra bit per state component). Wethen obtain the following
binary representation ofx(0)

L0
at the encoder side:

x(0)

L0
=




x1(0)
L0

x2(0)
L0
...

xn(0)
L0




=




∞
∑

i=1
α1i2−i

∞
∑

i=1
α2i2−i

...
∞
∑

i=1
αni2−i




; (5)
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6 I. LOPEZ HURTADO AND C.T. ABDALLAH

whereαi j ∈ {0,1}. This binary representation is truncated keeping only ther j most significant bits for
state componentx j . The truncated representation is given by:

(x(0)

L0

)
T

=




( x1(0)
L0

)
T( x2(0)

L0

)
T

...( xn(0)
L0

)
T




=




r1

∑
i=1

α1i2−i

r2

∑
i=1

α2i2−i

...
rn

∑
i=1

αni2−i




; (6)

whereαi j ∈ {0,1}. Ther j bits per state componentj are sent through the channel and, at the receiver
site, the decoder transforms the bits back into decimal numbers, and multiplies them byL0 in order
to obtainx̄(0). With this encoding/decoding process, we guarantee that the error between the actual
state component and its encoded version,ε j (0) = x j(0)− x̄ j(0), is limited by ‖ε j(0)‖ < 2−r j L0, ∀
j ∈ {0,1, . . . ,n}. Using the triangle inequality, the norm of the total error is bounded by

‖ε(0)‖ 6 ‖ε1(0)‖+ . . .+‖εn(0)‖

6

√
n

∑
j=1

2−2r j L0. (7)

Let us then consider the evolution of the system starting at timek = 0:

x(1) = Ax(0)+Bu(0)

x(2) = Ax(1)+Bu(1)

= A2x(0)+ABu(0)+Bu(1)

...

x(l) = Al x(0)+
l

∑
i=1

Al−iBu(i −1); ∀l ≥ 3.

Recalling thatµ represents the controllability index, afterk+ µ steps we have

x(µ) = Aµx(0)+Aµ−1Bu(0)+Aµ−2Bu(1)

+ . . .+Bu(µ −1). (8)

This equation may be re-arranged asx(µ) = Aµx(0)+ ζµU, where

ζµ =
[
B| AB| . . . | Aµ−1B

]

=
[
δ1| δ2| . . . | δ j | . . . | δnµ

]

and

U =




u(µ −1)
...

u(0)


 =




u1
...

u j
...

umµ




,
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RATE LIMITED STABILIZATION: SUB-OPTIMAL ENCODER-DECODERSCHEMES 7

noting thatδ j is the jth column inζµ andu j is the jth element in the vectorU. Let us select the first
n independent columns ofζµ and build a new matrix, calledζn. Let us also select the elements of
U(k) corresponding to the columns chosen fromζµ and form a new vector, calledUn. Recalling that
x(0) = x̄(0)+ ε(0) we havex(µ) = Aµ x̄(k)+Aµε(k)+ ζµU(k). If we choose the control law

Un = −ζ−1
µ Aµ x̄(0); (9)

we may reconstructU replacingu j with the corresponding values ofUn in the proper order and letting
u j = 0 for the remaining elements. Afterµ steps, and by applying the control sequenceU(k) we obtain

x(µ) = Aµε(0). (10)

Then, from equations (20) and (7) and the properties of matrix norms, we obtain

‖x(µ)‖ = ‖Aµε(0)‖
6 ‖Aµ‖‖ε(0)‖

6 ‖Aµ‖
√

n

∑
j=1

2−2r j L0.

In order to force the state to decrease in the norm (afterµ steps), we shrink the upper bound of
the statex(µ) by forcing it to be less than a fraction of the upper bound of the statex(0), i.e.,

‖Aµ‖
√

∑n
j=12−2r j L0 < L0/δ , for someδ > 1. At this point, we have to decide on the value of each

r j . This may be converted into an optimization problem whose objective is to minimize the total rate
given by∑n

j=1 r j . In other words, let us consider the optimization problem:

min
r j

n

∑
j=1

r j (11)

subject to √
n

∑
j=1

2−2r j <
1

δ‖Aµ‖ = C∗ (12)

This problem may be solved by applying the Karush-Kuhn-Tucker (KKT) conditions [9] on the
Lagrangian functionL(r1, r2, . . . , rn, l) with Lagrange multiplierl as is given by

L = r1 + r2 + . . .+ rn− l(C∗−
√

2−2r1 +2−2r2 + . . .+2−2rn).

The KKT conditions are then:

∂L
∂ r1

= 1− l
2−2r1 ln(2)√

2−2r1 +2−2r2 + . . .+2−2rn
= 0;

∂L
∂ r2

= 1− l
2−2r2 ln(2)√

2−2r1 +2−2r2 + . . .+2−2rn
= 0;

...
∂L
∂ r2

= 1− l
2−2rn ln(2)√

2−2r1 +2−2r2 + . . .+2−2rn
= 0;
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8 I. LOPEZ HURTADO AND C.T. ABDALLAH

Solving this system of n-equations system, we obtain:

r1 = r2 = . . . = r j = . . . = rn.

Therefore, an equal allocation of bits per each state component actually guarantees the minimum total
rate. Using the constraint (12) we obtain the optimal rate allocationrn >

⌈
log(‖Aµ‖)+ 1

2 logn+ logδ
⌉
.

We notice thatδ is a parameter that determines the fraction by which the upper bound of‖x(0)‖
is shrinking. Therefore, it is sufficient to consider theinfimum of this quantity to obtainrn >⌈
log(‖Aµ‖)+ 1

2 logn
⌉
. Note that the⌈.⌉ function was introduced sincern must be an integer denoting

the number of bits for each state component. We can thereforedefine the totalR bits in a packet (or
packets) asR= nrn+n where the secondn term may be used to code the sign of each state component.

For the nextµ steps, we repeat the same steps above but usingx(µ) as the initial condition. To stop
the growth ofLk, and noting thatx(µ) ≤ n‖Aµ‖2−rnL0, we resetLµ = n‖Aµ‖2−rnL0 for the nextµ
time steps. We repeat this procedure everyµ steps. Using the same algorithm to generate the control
sequence and the same rateR, the statex(2µ) will be a shrunken version ofx(µ). Proceeding in the
same fashion,x(tµ) will tend to zero ast ∈ N grows and, therefore, the statex will tend to zero and
asymptotic stabilizability will be achieved. Note thatR is the sufficient number effective bits that we
need to transmit of the whole state for stabilization, but since a packet has a maximum lengthDMax, if
R≤ DMax, we need a packet rate ofRp = 1 packet/sample-time. If on the other hand,R> DMax then,

a minimum of
⌈

R
DMax

⌉
packets/time-step are needed. Note that the last expression actually covers both

cases, since R
DMax

< 1 gives a 1 packet/sample-time when the ceil function is applied.

�

This analysis may be summarized in the following theorem.

Theorem 4.1. Assuming an equal allocation of bits per state component, a network rate Rp

packets/time-step, and assuming that(A,B) is a controllable pair with controllability indexµ , a
sufficient condition for system (1) to be asymptotically stabilizable is

Rp >

⌈
R

DMax

⌉
,

where R= n⌈log(‖Aµ‖)+ logn⌉+n and every state allocatesRn bits/time-step.

An immediate consequence of Theorem 4.1 in the specific case of a single input system is given in the
following corollary.

Corollary 4.1. Assuming an equal allocation of bits per state component, a network rate Rp

packets/time-step,(A,B) is a controllable pair, and B is n× 1 and the control law, u(k), is 1× 1, a
sufficient condition for system (1) to be asymptotically stabilizable is

Rp ≥
⌈

R
DMax

⌉
,

where R= n⌈log(‖An‖)+ logn⌉+n and every state allocatesRn bits/sample.

Proof: The proof is the same as that of Theorem 4.1. IfB is n× 1 andu(k) is 1× 1, thenµ = n.
Substitutingµ in R in the proof of Theorem 4.1, we obtain the rate given by the corollary.

�
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Figure 5. Closed-loop network control system: Type 1

4.2. Network Control System Type I with Time Delay

One of our motivations for extending the results of [12], wasto include the effects of time delays
that may be present in the network. As mentioned earlier, even for the scalar case, the invertibility
requirement ofB would not allow the traditional augmentation of the state byits delayed versions. Let
us consider the modified network control system type I shown in Figure 5 and the discrete LTI system
given by the following equation

x(k+1) = Ax(k)+Bu(k− p), (13)

whereA is n×n, B is n×1 andu(k) is 1×1. We assume here that the control signal to actuator delay
is a constant equal top∈ N time-steps. Under such conditions, we obtain the followingtheorem

Theorem 4.2. Assuming an equal allocation of bits per state component, a network rate of Rp =⌈
R

DMax

⌉
packets/time-step, and

A =




A B 0 . . . 0
0 0 1 . . . 0
0 0 0 . . . 0

1

0 0
... . . . 0




, B =




0
0
0
...
1




such that(A,B) is a controllable pair. A sufficient condition for system (13) to be asymptotically
stabilizable is

Rp ≥
⌈

R
DMax

⌉
;

where R= (n+ p)⌈log(‖An+p‖)+ logn⌉+ n, and each state component of the augmented system
allocates R

n+p bits/time-step.

Copyright c© 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control2002;00:1–6
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10 I. LOPEZ HURTADO AND C.T. ABDALLAH

Proof: We start out by augmenting the state vector, considering asnew states the lastp previous inputs.
We then obtain

X(k+1) =




x(k+1)
xn+1(k+1)
xn+2(k+1)

...
xn+p(k+1)




=




A B 0 . . . 0
0 0 1 . . . 0
0 0 0 . . . 0

1

0 0
... . . . 0







x(k)
xn+1(k)
xn+2(k)

...
xn+p(k)




+




0
0
0
...
1




u(k).

This may be written as
X(k+1) = AX(k)+Bu(k). (14)

We now have a system similar to the one treated in Corollary 4.1 with a state dimensionn+ p instead
of n. Therefore, in order to shrink the upper bound of the stateX(k+n+ p) we need a rateRgiven by

R
n+ p

>

⌈
log(‖A

n+p‖)+
1
2

log(n+ p)

⌉
+1.

Similarly to previous proofs, we find a minimum rate ofRp =
⌈

R
DMax

⌉
packets/time-step.

�

4.3. Network Control System: Type II

We now consider an NCS Type II and show the following result.

Theorem 4.3. Assume an equal allocation of bits per state component, network rates of Rp1 =
⌈

R1
DMax

⌉

packets/time-step and Rp2 =
⌈

R2
DMax

⌉
packets/time-step for network 1 and 2, respectively. Assuming

also that (A,B) is a controllable pair, where B is n× 1, the controllability matrix is given by
ζ =

[
B| AB| . . . | An−1B

]
and the control law, u(k), is 1× 1, a sufficient condition for system

(1) to be asymptotically stabilizable is

n‖An‖2−
R1
n +‖ζ‖

∥∥ζ−1A
∥∥2−R2 < 1.

Proof: Since there is now a rate constraint from the controller to the plant actuators, we can no longer
apply the calculated control signalu(k) directly to the plant. Instead, only the bits encodingu(k)
according to the available rate,R2, may be used. This encoded control signalũ(k) is the one that is
received by the plant. We then have

x(k+1) = Ax(k)+Bũ(k). (15)

Copyright c© 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control2002;00:1–6
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RATE LIMITED STABILIZATION: SUB-OPTIMAL ENCODER-DECODERSCHEMES 11

Let us assume that we have exactly the same encoding and decoding schemes used in Theorem 4.1.
The evolution of the system in the firstn time steps is given byx(n) = Anx(0) + ζ Ũ, whereŨ =[
ũ(n−1) . . . ũ(0)

]′
. If we choose the control signalU = −ζ−1Anx̄(0), then‖U‖ 6

∥∥ζ−1AnL0
∥∥ ≤∥∥ζ−1An

∥∥L0 = L20. For other timek, the normalization value that is kept in the memory of the
encoder/decoder of network II, i.e.L2k, is given byL2k = ‖ζ−1

n Aµ‖Lk.
Sinceũ(k) represents theR2 most significant bits ofu(k) we know that

∥∥∥U− Ũ

∥∥∥ 6
∥∥ζ−1An

∥∥L02−R2. (16)

From equation (16) and recalling thatx(0) = x̄(0)+ ε(0) and, similarly to previous proofs,‖ε(0)‖ <
√

nL02−
R1
n , we have

‖x(n)‖ =
∥∥∥Anx̄(0)+Anε(0)+ ζ Ũ

∥∥∥

=
∥∥∥ζ

(
ζ−1Anx̄(0)+ Ũ

)
+Anε(0)

∥∥∥

6 ‖ζ‖
∥∥∥U(k)− Ũ

∥∥∥+‖Anε(0)‖

6 ‖ζ‖
∥∥ζ−1A

∥∥L02−R2 +
√

n‖An‖L02−
R1
n

<
L0

δ
.

If we want to guarantee the shrinking ofx(n), we enforce that ‖ζ‖
∥∥ζ−1A

∥∥L02−R2 +
√

nL0‖An‖2−
R1
n < L0, i.e.,

√
n‖An‖2−

R1
n +‖ζ‖

∥∥ζ−1A
∥∥2−R2 < 1. As in previous proofs we now select

x(n) as the new initial condition and using the same control law and rates,R1 andR2, the statex(2n)
will be a shrunken version ofx(n). Continuing in the same fashion,x(tn) will tend to zero ast ∈ N

grows and, thereforex(k) will tend to zero and asymptotic stability is achieved. Hereagain we will

need a minimum ofRp1 =
⌈

R1
DMax

⌉
packets/time-step for the sensor-controller network and aminimum

of Rp2 =
⌈

R2
DMax

⌉
packets/time-step in the controller-actuator network.

�

5. Simulations

To verify some of the results derived in the paper, we presentseveral numerical examples using
Matlabr. We note that althoughx(k) is discrete and exists only at the time instantsk = {0,1,2, . . .},
the plots below show the components ofx(k) at all times for ease of visualization.

5.1. Example 1

First, we tested the results of Theorem 4.1 for the system

x(k+1) =




1 0 0
0 3 0
0 0 4


x(k)+




1 0
1 1
0 1


u(k)
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We assumeL0 = 71.68 and choose the initial conditionx(0) =
[
−16.333 30.768 8.44

]′
. The rate in

bits obtained according to Theorem 4.1 isR= 18bit/time-step(equivalent to 6 per state component) and
the simulation for such a rate is shown in Figure 6. Note that asymptotic stability is indeed achieved.
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x3(k)

Figure 6. Closed-loop NCS (Type I): MIMO case usingR= 18 bits/time-step

5.2. Example 2

In order to test the conservativeness of our results, we considered a single-input system given by

x(k+1) =




20 0 10
0 10 0
0 10 30


x(k)+




1
1
1


u(k)

We choose the initial condition to bex(0) =
[
16.333 13.768 −80.44

]′
. Using Corollary 4.1, we

haveR= 54 bit/time-step. We then verify in Figure 7 the asymptotic stability claims of the corollary.
Since our results provide sufficient conditions only, we tried for smaller values ofRand found out that
for this particular example,R= 42bit/time-stepleads to instability, see Figure 8.

5.3. Example 3

Let us finally consider a system with time-delayp = 2 evolving according to the following dynamics

x(k+1) =

[
2 0
0 1.5

]
x(k)+

[
1
1

]
u(k−2)

with the initial condition state vectorx(0) =
[
−16.333 30.768

]′
. For this system, Theorem 4.2 gives

a rate bounded below byR= 28bit/time-step. The corresponding simulation is shown in Figure 9.
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Figure 7. Closed-loop NCS (Type I): SISO case usingR= 54 bit/time-step.

0 2 4 6 8 10 12 14 16 18
−10

−8

−6

−4

−2

0

2

4

6

8
x 10

4

Time−Step

S
ta

te
s

Evolution of the State Components (R/n = 14 bits/time−step)

x1(k)
x2(k)
x3(k)

Figure 8. Closed-loop NCS (Type I): SISO case usingR= 42 bits/time-step.

6. Removing the rate dependency on‖A‖.

The result of Theorem 4.1 (as well as Corollary 4.1 and Theorem 4.2) established a sufficient rate in
terms of the norm ofA. For different matricesA with the same eigenvalues however, this may lead to
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Figure 9. Closed-loop NCS with Time-Delay: Type 1

very different rates, some of which may also be very large compared to the minimum rates of the Data
Rate Theorem [?]. For example, the following two matricesA have the same eigenvalues (therefore, the
same minimum stabilization rate according to the Data Rate Theorem) but different norms (therefore,
different sufficient rates according to Theorem 4.1):

A1 =

[
2 100000
0 2

]
(17)

and

A2 =

[
2 0
0 2

]
(18)

Then‖A1‖ = 1× 105. and‖A2‖ = 2 but A1 andA2 have the same eigenvaluesλ = {2,2}. One way
to remove this disadvantage is to change the control law usedin the proof of Theorem 4.1. Instead of
trying to asymptotically stabilize the statex, we attempt to stabilize the statez= Φ−1x, whereΦ is a
linear transformation such thatΦ−1AΦ is the diagonal matrix equivalent toA (or more generally the
Jordan-block matrix). The errorεz(0) in thez space is given byΦ−1(x j(0)− x̄ j(0)). For stabilization
purposes, designing a control law to stabilize the statez is equivalent to stabilizingxsincez→ 0 implies
x→ 0. There will however be a difference in the transient response as we will see later. The change of
variable implies that the control law in equation (9) no longer depends on the controllability matrix of
the pair(A,B), i.e.ζµ . It will depend, however, on the controllability matrix of the pair(Φ−1AΦ,ΦB),
denoted byζΦµ . Therefore, the new control law is given by

Un = −ζ−1
Φµ

(Φ−1AΦ)µΦ−1x̄(0); (19)

and in thezspace, afterµ time-steps, we will have

z(µ) = (Φ−1AΦ)µ εz(0). (20)
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Then, from equations (20) and (7), and using the properties of matrix norms, we obtain

‖z(µ)‖ = ‖(Φ−1AΦ)µεz(0)‖
6 ‖(Φ−1AΦ)µ‖‖εz(0)‖
6

√
n2−rn‖(Φ−1AΦ)µ‖‖Φ−1‖L0.

Similarly, in order to force the statez to decrease in the norm (afterµ steps), we shrink the
upper bound of the statez(µ) by forcing it to be less than the lower bound of the statez(0),
i.e., 2−Rn

√
n‖(Φ−1AΦ)µ‖‖Φ−1‖L0 < ‖Φ−1‖L0. However, if Φ−1AΦ is a diagonal matrix then

‖(Φ−1AΦ)µ‖ = |λmax|µ whereλmax is the eigenvalue ofA with the largest magnitude. We can then
replace in Theorem 4.1 the expressionR= n

⌈
log(‖Aµ‖)+ 1

2 logn
⌉
+n with

R= n

⌈
log(|λmax|µ)+

1
2

logn

⌉
+n. (21)

If on the other hand, matrixΦ−1AΦ is a Jordan-block matrix (as is the case for repeated eigenvalues
of A), we can use the norm ofΦ−1AΦ noting that‖(Φ−1AΦ)µ‖ ≈ |λmax|µ which will in general be
less than‖Aµ‖. Therefore, the rate is no longer a function of the norm ofA but rather a function of the
largest eigenvalue ofA. In general, this may lead to a lower sufficient rate for stabilizability, but with
the possible deterioration in the transient response.

6.1. Example

The following simulation shows the evolution ofx when using the control law given in equation (19)
with the rate given byR= n

⌈
log(|λmax|µ)+ 1

2 logn
⌉
+n. Let us consider the following system:

x(k+1) =




2 100 100
0 4 100
0 1 4


x(k)+




1
1
1


u(k)

Let initial condition to bex(0) =
[
16.333 13.768 −80.44

]′
. Using Equation (21), we find that

R = 42 bit/time-stepis now sufficient for stabilization. This was not the case using the control law
depending on the controllability matrix of the pair(A,B). The simulation using this control law is
shown in Figure 10. We also show in Figure 11 the simulation using the results of Theorem 4.1 and the
rate wasR= 57bit/time-step. The tradeoff is evident when comparing the two simulations: although a
lower rate is needed in the simulation in Figure 10, the transient response (overshoot, settling time) in
Figure 11 is actually better.

7. A New Encoder/Decoder Design: Optimizing the Rate for Stabilization

In the previous sections we obtained sufficient rates with aneasily implementable encoder-decoder
scheme. Although such rates are larger than the ones given bythe Data Rate Theorem, the
implementation of our encoder-decoder requires less computational power than other published
schemes. Specifically, the evolution of the quantizer in ourscheme uses one scalar equation (equation
(3)). On the other hand, encoder-decoder schemes such as theones proposed in [5] or [16] achieve the
minimum rate established by the Data Rate Theorem. These rates are achieved however with a higher
computational cost since they require state-space predictors, the use of rotational matrices (to undo the
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Figure 10. Closed-loop NCS (Type I): SISO case usingR= 14 bit/time-step.
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Figure 11. Closed-loop NCS (Type I): SISO case usingR= 19 bit/time-step.

possible rotations caused by theA matrix), and the calculation of the centroid of the region that traps
the state space variable.

In some scenarios, both the computational power and the ratemay be constrained. Our purpose in
this section is to design an encoder-decoder scheme that achieves a rate close to that provided by the
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Data Rate Theorem, while using less computational power. The following builds upon ideas described
in [7], [5], [16].

7.1. Encoder-Decoder Design

Let the initial state be bounded by some valueL0, i.e.‖x‖2 ≤ L0. This equally-length side n-cube region
will have 2n vertices. This set of vertices is denoted byV0, and each vertex is denoted by,v0. We will
allocater i bits for the state space componentxi , ∀i ∈ {1,2, . . . ,n}. We will necessarily consider that
r i > log2 |λi |, whereλi is the eigenvalue associated withxi . This last assumption is imposed by the
Data Rate Theorem and cannot be removed if we want to achieve stabilization. Each rater i must be an
integer number such thatr i ≥ ⌈log2 |λi|⌉. We introduce a matrixQR

QR =




1/2r1 0 . . . 0
0 1/2r2 . . . 0
...

...
...

...
0 0 . . . 1/2rn


 . (22)

Moreover, we will assume thatr1, r2, . . . , rn are such that the matrixAQ = AQR is a stable matrix (we
will show later how to accomplish this goal). In the following, we assume that the plant is deterministic
and undriven as described byx(k+ 1) = Ax(k). The controller design problem will be discussed in
subsection 7.2. The first step is to generate an dimensional cube centered at the origin with sides of
length 2L0. The center of this first quantizer will be labeledCQ(0). The uncertainty region is divided
in 2r1 subregions in thex1 direction, 2r2 subregions in thex2 direction, and so on until we obtain
2rn subregions for thexn direction. After one time step, the state will land in one of these smaller
n dimensional cubes and the total of small cubes will be 2r1+r2+...+rn. Therefore, the number of bits
needed to represent all the cube centroids isR= r1 + r2 + . . .+ rn which is the actual rate in bits/time-
step. After determining in which cube the state has landed, we calculate the centroid of this smaller
cube. This centroid will be chosen as the encoder estimate ofthe state, ¯x(0). The binary symbol,s,
that represents ¯x(0) is transmitted to the receiver. Note that the error between the state and the state
estimate,ε(0), lies in the region{[−L0/2r1,L0/2r1], [−L0/2r2,L0/2r2], . . . , [−L0/2rn,L0/2rn]}. This is
the key property of this quantizer. Figure (12) shows an example of a two dimensional quantizer with
r1 = 1 andr2 = 3. The encoder and decoder will evolve the center of the quantizer,CQ at timek+1:

CQ(k+1) = Ax̂(k) (23)

This new center is used to generate an uncertainty region that may be divided into another 2r1+r2+...+rn

subregions with the same 2r i subregions in the directionxi direction as explained before. At timek+1,
the length of eachn sides is determines by then quantities∆i(k+ 1). The sides of thek+ 1 box are
determined using the matrixAQ and the verticesv0 of the original uncertainn-dimensional cube. The
length of the side parallel to thexi direction at timek+1 is given by:

∆xi = max
v0

|(AQ,i)
k+1V0|, ∀ v0 ∈V0. (24)

whereAQ,i is the “i-th” row of matrixAQ. Equation (24) evaluates the maximum over absolute values,
therefore, we can guarantee that the statex(k+1) at timek+1 will land in an n-dimensional box (not
necessarily a cube) that is centered onCQ(k+ 1) and with sides of length 2∆xi in thexi direction. In
other words, the hyper-planes that are perpendicular to thexi component direction will be located at
−∆xi and∆xi units fromCQ(k+1) in thexi direction. The new uncertainty box, will again be divided
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.
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Figure 12. Quantizer evolution sample including centroid,state and state estimator.

into 2r1+r2+...+rn boxes with 2r i in the xi direction. We label these small boxes with binary symbols
(a total of 2r1+r2+...+rn binary symbols). We then determine in which of these boxes the actual state,
x(k+ 1), lies and use the centroid of this specific box as the state estimatex̄(k+ 1) at timek+ 1. We
again transmit the binary symbol,s, that corresponds to the box where the state lies. Because ofthe
way we have constructed this quantizer and sinceAQ was assumed to be stable, the uncertainty box
keeps on shrinking ask tends to infinity, which guarantees that our state estimate reaches the actual
state and that‖ε‖ tends to zero. Note that both encoder and decoder must know the original sizeL0 of
the uncertainty as well as the exact dynamics of the plant. Also, both encoder and decoder must be able
to compute the equations (23) and (24). This guarantees the equimemory property. The only remaining
issue is to guarantee thatAQ is stable. This can be done by a trial and error procedure as follows:

1. Set r i = ⌈log2 |λi |⌉ ∀i ∈ {1,2, . . . ,n} , where λi is the eigenvalue associated with the state
componentxi andr i are the bits/time-step allocated toxi .

2. Using ratesr i , we form the matrixQR and obtain the eigenvalues ofAQ = AQR.
3. Check that all such eigenvalues are inside the unit circle, i.e.,|λAQ| < 1.
4. If |λAQ| < 1, stop and use the ratesr i for transmission. If|λAQ| ≥ 1, we add 1 to eachr i in QR

that corresponds to an eigenvalue ofAQ that was outside of the unit circle and return to step 2.

We test this algorithm in the following example. Given the following matrix, findr1 andr2 such that
AQ is stable.

A =

[
2 0.5
3 4

]
.
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Since the eigenvalues ofA areλA = {1.418,4.581}we chooser1 = 1 andr2 = 3. Then,QR is given by

QR =

[
0.5 0
0 0.125

]
. (25)

We then obtain the eigenvalues ofAQ: λAQ = {1.14,0.35}. Since one of them is outside the unit circle,
and corresponds to the row wherer1 is located, we add 1 tor1 to obtainr1 = 2. We obtain the new
eigenvalues of . The new eigenvalues ofAQ with the updatedQR areλAQ = {0.761,0.283}. AQ is now
stable, and the valuesr1 = 2 andr2 = 3 may be used as the rates for transmission.

7.2. Adding a controller for stabilization

We have seen in the previous subsection that by expanding more computational power, a lower
stabilization rate may be achieved. Designing an asymptotically stabilizing controllers is however not
obvious. In order to address this issue, consider the systemdescribed by

x(k+1) = Ax(k)+Bu(k).

We next consider this system in the encoder/decoder computations and modify equations (23) and
(24)accordingly. The new equations are

CQ(k+1) = Ax̂(k)+Bu(k) (26)

and
∆xi = max

v0
|(AQ,i)

k+1V0|, ∀ v0 ∈V0. (27)

whereBi is the “i-th” row of vectorB. To use these new equations we assume that the encoder/decoder
have access to the control signal or that it may be computed locally. The derivations of the previous
subsection remain valid since the addition of the control law, only represent atranslationof the centroid
of the quantizer. At this point the simplest controller is the estimated state linear feedback controller,
u(k) = Kcx̄(k), which is motivated by the following Lemma found in [16].

Lemma 7.1. [16] Let As be a stable matrix. Let Bsk a set of matrices such that‖Bsk‖ ≤ L and the limit
limk→∞ Bsk → 0. Let St = ∑k−1

i=0 Ak−1−iBsi thenlimk→∞ Sk → 0.

If a Kc is found such thatA−BKc is stable, the evolution of the state will be given by

x(k) = (A−BKc)
kx̄(o)+

k−1

∑
i=0

(A−BKc)
k−1−iBKcε(i) (28)

Our encoder/decoder scheme guarantees that‖ε(i)‖ ≤ ‖(AQ,i)
k+1V0‖ and that‖ε(i)‖ tends to zero

wheni grows. If we letAs = A−BKc andBsk = BKcε(k), then we may apply Lemma 7.1. Therefore,
any stabilizingKc will guarantee asymptotic stabilization of the system using the rates obtained before
since the first additive term in equation (28) tends to zero sinceA−BKc is stable, and the second
additive term tends to zero by Lemma 7.1. We present next an example considering the following
system:

x(k+1) =

[
2 2.5
3 4

]
x(k)+

[
1
1

]
u(k)

u(k) = −
[
2.533 2.566

]
u(k)
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This Kc allocates the poles ofA−BKc at 0.5 and 0.4. Since theA matrix of this system is the same
used in the example of the previous subsection, we know that the rates that stabilizeAQ arer1 = 2 and
r2 = 3. This give us a total rate ofR= 5 bits/time-step. Using the encoder/decoder scheme proposed
we obtain the plots in Figure 13. The exponential decrease ofthe error in shown in Figure 14.
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Figure 13. State evolution in NCS Type I usingR= 5 bits/time-step
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Figure 14. Evolution of the Error Norm in NCS Type I usingR= 5 bits/time-step
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8. Conclusions and Future Work

This paper has extended previous results for determining the sufficient rate for stabilization of a packet-
based networked control system. While the rates obtained for Network Type I are higher that the limits
given by the Data Rate Theorem, the computational cost of ourscheme is simpler than earlier proposed
schemes. In this setup we were able to include to treat the case of a constant time delay in the network.

We also obtained sufficient rates for stabilizing a system using a Type II Network. In order to lower
the required transmission rates, we proposed a more complexencoder/decoder scheme that achieves
rates close to those specified by the Data Rate Theorem.

Future work will include the inclusion of time delays in a Network Control System Type II, and the
extension of the general case ofm inputs of this type of closed-loop system. Other ideas for future work
include dealing with noise in the loop and the generalization to the case of packet drops and saturation
in the control signal.
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