- HOME
- PUBLICATIONS
- RESEARCH/STUDENTS
- TEACHING
- Controls Group
- ECE@UNM
- SWECEDHA
- SOE@UNM
- UNM
- PERSONAL LINKS

` [ `

**Journal Papers** | **Books** | **Book Chapters** | **Conference Papers** | Tech Reports ` ] `

**2009**

- R.H. Byrne, J.T. Feddema, and C.T. Abdallah, Algebraic Connectivity and Graph Robustness, Sandia Report, SAND2009-4494, July 2009.

**2008**

- J. Khoury, C. Abdallah “Towards a Taxonomy of Inter-network Architectures”, UNM Technical Report EECE-TR-08-008.
- J. Khoury, C. Abdallah, and G. Heileman "Towards Formalizing Network Architectural Descriptions,” University of New Mexico, Technical Report EECE-TR-08-03, February 2008.
- J. Piovesan, C.T. Abdallah, B. Tanner, Interconnected Hybrid Systems: A Framework for Multi-agent Systems with Hybrid Interacting Dynamics, 2008.

**2007**

- J. Piovesan, C.T. Abdallah, H. Tanner, Leader-Follower Control with Odometry Error Analysis, 2007.
- J. Khoury, H. Jerez, and C.T. Abdallah, Efficient User Controlled Inter-Domain SIP Mobility: Authentication, Registration, and Call Routing, 2007.
- J. Khoury, J. Crichigno, H. Jerez, C. Abdallah, W. Shu, G. Heileman, The intermesh network architecture, University of New Mexico, Technical Report EECE-TR-07-007, April 2007.
- J. Khoury, C.T. Abdallah, H. Tanner, H. Jerez, J. Khoury, Resource Allocation for Multi-agent Problems in the Design of Future Communication Networks, 2007.

**2006**

- H. Jerez, J. Khoury, C. Abdallah, A mobile transient network architecture, 2006, arXiv Pre-print available at http://hdl.handle.net/2118/hj_tran_06.
- J. Khoury, H. Jerez, N. Nehme, C. Abdallah, "An application of the mobile transient network architecture: IP mobility and inter-operability," 2006, arXiv Pre-print available at http://hdl.handle.net/2118/jk_transapp_06.
- M. Ariola, V. Koltchinski, and C. T. Abdallah, Application of Statistical Learning Control to the Design of a Fixed-Order Controller for a Flexible Beam.

**2001**

- V.Koltchinski, C. T. Abdallah, M. Ariola, P. Dorato, D. Panchenko, Statistical Learning Control of Uncertain Systems: It is Better Than It Seems.

**2000**

- C. T. Abdallah, I. Demir, Switch-Discovery Algorithms Comparison in Wireless ATM Networks

**1998**

- V.S. Soualian, G.T. Parks, C. T. Abdallah, E. Schamiloglu, Iterative Learning Control Applications to High Power Microwave Tubes.

**1997**

- D. Famularo, C. T. Abdallah, P. Dorato, Non-Fragile Synthesis with Structured and/or Unstructured Perturbations.
- A. Jadbabaie, C. T. Abdallah, Simultaneous Passification and Stabilization of a Class of Minimum-Phase Nonlinear Systems via Static Output Feedback.

**1996**

- F.L. Lewis, B.G. Horne, C. T. Abdallah, On the Computational Complexity of the Manufacturing Job Shop and Reentrant Flow Line
- D. Docampo, D.R. Hush, C. T. Abdallah, Constructive Function and Approximation: Theory and Practice

**1995**

- J.W. Howse, C. T. Abdallah, G.L. Heileman, A Synthesis of Gradient and Hamiltonian Dynamics Applied to Learning in Neural Networks.
- C. T. Abdallah, G.L. Heileman, D. Hush, M. Georgiopoulos, An Overview of Neural Networks Results for Systems and Control.
- C. T. Abdallah, P. Dorato, R. Liska, S. Steinberg, W. Yang, Applications of Quantifier Elimination Theory to Control Theory.
- V.L. Syrmos, C. T. Abdallah, P. Dorato, K. Grigoriadis, Static Output Feedback: A Survey.

**1994**

- J.W. Howse, C. T. Abdallah, G.L. Heileman, General Neural Networks Dynamics are a Superposition of Gradient-like and Hamiltonian-like Systems.
- F. Perez, C. T. Abdallah, D. Docampo, Robustness Analysis of Polynomials with Linearly Correlated Uncertain Coefficients in Lp-normal Balls
- F. Perez, C.T. Abdallah, Phase-Convex Arcs in Root Space and Their Application to Robust SPR Problem.

**1993**

- J.W. Howse, G.L. Heileman, C. T. Abdallah, Gradient-Like Dynamics in Neural Networks
- F. Perez, D. Docampo, C. T. Abdallah, P. Dorato, Output Stabilizability.

**1992**

- C. T. Abdallah, F. Perez, D. Docampo, From Nyquist to Kharitonov: Robust Controllers

**1991**

- D. Hush, C. T. Abdallah, B. Horne, The Recursive Neural Network.