Programmable Logic Devices = Data Types/Operators CMPE 415
\

(Data Types and Operators
There are two kinds of variables in Verilog.

* nets: used to represent structural connectivity
* registers: used as abstract storage elements.

All structural connections are made with nets.
Verilog provides a variety of net types to enable the code to accurately

model the hardware.

wire is by far the most popular net type.
It defines connectivity with no logical behavior or functionality implied.

Other types include tri, wand, wor, triand, trior, supply0, supply1, tri0, tril and
trireg to enable more advanced modeling of hardware.

A net may be assigned a value explicitly only by a continuous assignment stmt
or implicity as an output of a primitive or module.

J
1 (1072/07)

Programmable Logic Devices = Data Types/Operators CMPE 415

(Data Types and Operators)
Register variables can be assigned value only within a behavior, task or func-

tion.

reg and integer are the most common register types.
Other types include time, real and realtime.

The rules for using nets and registers in ports of modules and primitives:

Variable type input output inout
net YES YES YES
register NO YES NO

Memory Declaration (two-dimensional arrays)
Verilog provides an extension to the register variable declaration for this.
For example, for 1024, 32-bit words:
reg [31:0] cache_memory [0:1023];

Note that bit-select and part-select are not valid with memories, only
entire words can be addressed.
To access bits, assign a word to a 32-bit register.

J

% UMBC : a0

Programmable Logic Devices Data Types/Operators CMPE 415

(Data Types and Operators
Verilog has a 4-valued logic set:

Logic 0, 1, x to represent an unknown logic value and z to represent a
high impedance (floating) condition.

A truth table is used to define the mapping of inputs to outputs for each of
these values.

A m—] y
B m——

\

J

3 (10/2/07)

Programmable Logic Devices = Data Types/Operators CMPE 415

(Data Types and Operators)
Strings
Verilog does not have a distinct data type for strings.

Instead, a strings must be stored within a properly sized register by a
procedural assignment stmt.

reg [8*num_char-1 : 0] string_holder;

Don’t forget, each character requires 8 bits.

Assignments of shorter strings, e.g., "Hello World" to a 12 character
array, will cause zeros to be assigned starting at the MSB.

Constants
Declared using the keyword parameter.

parameter byte_size =8 ; // integer

J

% UMBC J a0

Programmable Logic Devices = Data Types/Operators CMPE 415

fOperators)
Operators (Arithmetic)

Standard operators here include +, -, ¥, / and %

When arithmetic operations are performed on vectors, the result is deter-

mined by modulo 2" arithmetic.

Note that a negative value is stored in 2’s complement format, but is
interpreted as an unsigned value when used in an expression.

For example, if A =5 and B = 2, the result B-A yields 29 (11101) in a 5-bit
register when printed as an unsigned value.
The value interpretation is -3.

Bitwise Operators
Standard operations include ~, &, |, A, ~ (bitwise exclusive nor)

If the operands do not have the same size (in the case of a binary opera-
tion), the shorter word is extended with 0 padding.

J

 UMB C 5 (10/2/07)

Programmable Logic Devices = Data Types/Operators CMPE 415

(Operators)
Reduction Operators

These are unary operators which create a single bit value for a data word

of multiple bits.
Symbol Operator
&, ~& reduction and, nand
|, ~| reduction or, nor
N, AN N reduction xor, xnor

For example, if y is 1011_0001, the reduction and, &, operation produces y
= 0.

Logical Operators

Symbol Operator
! Logical negation
&&, | | Logical and, or
==, I= Logical equality, inequality
===, |== Case equality, inequality

J
6 (1072/07)

Programmable Logic Devices = Data Types/Operators CMPE 415

fOperators h
Logical Operators (cont):

Operate on Boolean operands. Operands may be a net, register or
expression and are treated as unsigned.

For example, if ((a < size -1) && (b !=c) && (index != last_one)) ...

The case equality operators (===) determine whether 2 words match
identically on a bit-by-bit basis, including bits that have values "x" and

"n_nmn

Z

The logical equality operators (==) are less restrictive.
They are used in expressions to test whether 2 words are identical but

n_n n_n

it produces an "x" result if any bits are "x".

Relational Operators
The operators <, <=, > and >= compare operands and produce a Boolean
result (true or false).
If the operands are nets or registers, their values are treated as unsigned.

J

 UMB C 7 (10/2/07)

Programmable Logic Devices = Data Types/Operators CMPE 415

fOperators)
Shift Operators

Shift operators, >> and <<, are unary operators which perform left or
right shifts, zero filling vacated positions.

Conditional Operator:
conditional_expression ::= expression ? true_expression: false_expression

If expression evaluates to Boolean true, then true_expression is evaluated,
otherwise false_expression.

Y=(A==B)?A:B; // Y gets A if A==B is true.

Concatenation Operator
Forms a single operand from two or more operands, and is useful for
forming logical buses.

If A =1011 and B = 0001, then {A, B} = 1011_0001.
4Hal} =1a,a,a,a

J

% UMBC : 10207

Programmable Logic Devices = Data Types/Operators CMPE 415

(Operators h
Operator Precedence

Verilog evaluates expression left-to-right.

Verilog also uses short-circuit evaluation of Boolean expression.
Evaluation is terminated as soon as it is clear what the result will be.

Precedence Operator Symbol
highest Unary +-T~
Mult, Div, Modulus */ %
Add, Sub + -
Shift << >>
Relational < <=>>=
== |= === ==
Reduction/Logical & ~&, N~ |~
&& I
lowest Conditional 7

Use parentheses when precedence needs to be overridden.

J
9 (1072/07)

