
HW/SW Codesign Analysis of Control & Data Flow II ECE 522

ECE UNM 1 (7/9/17)

Translating C to Hardware

As mentioned, control and data flow analysis can be helpful in translating C into

hardware

Translating data structures and pointers from C to hardware can get tricky

For the purpose of this course, we restrict our analysis as follows

• Only scalar C code is used (no pointers, arrays or other data structures)

• We assume each C statement executes in a single clock cycle

We first create the CFG and DFG for the C program

The control edges translate to signals that control datapath operations

The data edges define the interconnection of the datapath components

HW/SW Codesign Analysis of Control & Data Flow II ECE 522

ECE UNM 2 (7/9/17)

Translating C to Hardware: Data Path Design

Data Path Design: The following process can be used to create the datapath

• Each variable in the C program is translated into a register and a multiplexer

The multiplexer is used to allow the register to be written to from any one of

multiple sources

The select inputs of the multiplexor are connected to the controller

The default multiplexer setting is to preserve the register contents, which means

the output of the register is fed back to the input

• For each node (operation) in the DFG, create the corresponding combinational cir-

cuit from the C expression

For example, the expression b - a is used for the operation a = b - a; which

is implemented using a subtractor

Note that conditional expressions also generate datapath elements whose out-

puts define flags used by the hardware controller

HW/SW Codesign Analysis of Control & Data Flow II ECE 522

ECE UNM 3 (7/9/17)

Translating C to Hardware: Data Path Design

• The datapath and the registers are connected consistent with the DFG

Assignments connect combinational circuit outputs to register inputs, while the

data edges connect register outputs to combinational circuit inputs

System I/O is connected to datapath inputs and register outputs resp.

Let’s convert the GCD program to a hardware implementation

• The variables a and b are assigned to registers

• The conditional expressions for the if and while stmts require an equality- and

greater-than comparator circuit

• The subtractions b - a and a - b are implemented using subtractors

The connectivity of the components is defined by the data edges of the DFG

The resulting datapath has two data inputs (in_a and in_b), and one data output

(out_a)

The circuit needs two control variables, upd_a and upd_b (outputs of control-

ler) and it produces two flags, flag_while and flag_if (inputs to controller)

HW/SW Codesign Analysis of Control & Data Flow II ECE 522

ECE UNM 4 (7/9/17)

Translating C to Hardware: Data Path Design

The directed edges in the DFG correspond to the connections in the schematic

Schematic representations of a circuit are low-level representations with lots of

detail (similar to assembly code in programming languages)

We will learn how to create HLS and behavioral VHDL descriptions that synthesize

to schematics similar to the one shown here

1

2 6

3

4 5

a,b
a,b

a,b

a,b

a

a

a

a
a

a b

b

b

b

HW/SW Codesign Analysis of Control & Data Flow II ECE 522

ECE UNM 5 (7/9/17)

Translating C to Hardware: Control Path Design

Controller Design: The design of the controller can be derived directly from the

CFG and translated into a finite state machines (FSM)

A FSM is typically depicted using bubbles and directed edges, similar to CFGs

Unlike CFGs, the edges in FSMs are labeled with condition/command tuples

The ’_’ in _/run1 means don’t care, i.e., the transition is unconditional

The command component is given by the symbol run1, which is used to control

the data path and therefore represents an output of the FSM

1

2 6

3

4 5

CFGFSM

HW/SW Codesign Analysis of Control & Data Flow II ECE 522

ECE UNM 6 (7/9/17)

Translating C to Hardware: Control Path Design

Similarly, flag_while/_ means the transition out of the current state is conditional on

flag_while

And the command ’_’ is a hold operation, which means maintain the current

state of the datapath and registers

The command set for this FSM includes _, run1, run4, run5

These symbols will be used to create the upd_a and upd_b data path control sig-

nals

1

2 6

3

4 5

CFGFSM

HW/SW Codesign Analysis of Control & Data Flow II ECE 522

ECE UNM 7 (7/9/17)

Translating C to Hardware: Control Path Design

Hardware implementation of the GCD controller with data path

One each clock cycle, the controller generates a new command based on the current

state and the current values of flag_while and flag_if

The combination of the data path and controller is referred to as a finite state

machine with datapath (FSMD)

The commands run1, run4 and run5

are decoded into upd_a and upd_b.

HW/SW Codesign Analysis of Control & Data Flow II ECE 522

ECE UNM 8 (7/9/17)

Translating C to Hardware: Example

FSMDs are central to custom hardware design, so we discuss them further in the next

chapter (and throughout this course)

The table shows an example execution, where each row of the table corresponds to

one clock cycle:

Note that this solution is sub-optimal, in paricular:

• The resulting implementation limits parallelism -- it executes a single C statement

per clock cycle and does not share datapath operators

For example, only one subtractor is needed in the implementation because only

one is ever used in any given clock cycle

HW/SW Codesign Analysis of Control & Data Flow II ECE 522

ECE UNM 9 (7/9/17)

Single-Assignment Programs

Converting into hardware with one C-stmt/clock is not very efficient

This one cycle-per-statement is similar to what microprocessors do when they

execute a program

A more lofty goal is to devise a translation strategy that allows the execution of

multiple C stmts/clock

But our original variable-to-register mapping strategy creates a performance bottle-

neck

This is true because only one storage location exists for each variable and

therefore, sequential updates to it will each require one clock cycle

We fix this problem by converting the C code to a single-assignment program

This is done by creating new variables for each sequential assignment stmt

HW/SW Codesign Analysis of Control & Data Flow II ECE 522

ECE UNM 10 (7/9/17)

Single-Assignment Programs

Consider a simple example:

a = a + 1;

a = a * 3;

a = a - 2;

Our previous strategy requires 3 clock cycles to execute these statements

Let’s re-write this as:

a2 = a1 + 1;

a3 = a2 * 3;

a4 = a3 - 2;

This code allows a2 and a3 to be mapped to wires and a4 to a register, reducing the

clock cycle count to 1

HW/SW Codesign Analysis of Control & Data Flow II ECE 522

ECE UNM 11 (7/9/17)

Single-Assignment Programs

Note: care must be taken that all assignments are taken into account, which might be

difficult to determine

a = 0;

for (i = 1; i < 6; i++)

 a = a + i;

After conversion to single-assignment, it remains unclear what version of a should be

read inside of the loop

a1 = 0;

for (i = 1; i < 6; i++)

 a2 = a + i; // which version of a to read

The answer is that both a1 and a2 are needed and it depends on the iteration, i.e., a1

is needed on the first iteration and a2 on subsequent iterations

HW/SW Codesign Analysis of Control & Data Flow II ECE 522

ECE UNM 12 (7/9/17)

Single-Assignment Programs

The solution is to introduce a new merge variable that selects from the two versions

that are available

a1 = 0;

for (i=0; i<5; i++) {

 a3 = merge(a1, a2); // merge two instances.

 a2 = a3 + 1;

}

In a hardware implementation, the merge operation is mapped into a multiplexer,

with the selection signal derived from the test of (i == 0)

Using these transformations, we can reformulate any program into single assignment

form

HW/SW Codesign Analysis of Control & Data Flow II ECE 522

ECE UNM 13 (7/9/17)

Single-Assignment Programs

Consider the GCD program

int gcd (int a, int b) {

while (a != b)

 {

if (a > b)

 a = a - b;

else

 b = b - a;

 }

return a;

 }

HW/SW Codesign Analysis of Control & Data Flow II ECE 522

ECE UNM 14 (7/9/17)

Single-Assignment Programs

The equivalent single-assignment form:

int gcd (int a1, int b1)

 {

while ((a3 = merge(a1, a2)) != (b3 = merge(b1, b2)))

 {

if (a3 > b3)

 a2 = a3 - b3;

else

 b2 = b3 - a3;

 }

return a2;

 }

HW/SW Codesign Analysis of Control & Data Flow II ECE 522

ECE UNM 15 (7/9/17)

Single-Assignment Programs

The implementation of this single-assignment version might look like:

Here, a2 and b2 are mapped into registers while the other variables are replaced with

wires

This type of manipulation allows multiple C statements to be executed per clock

merge operations
implemented
as multiplexers

