
Abstract
A special class of Physically Unclonable Functions (PUF) called
strong PUFs are characterized as having an exponentially large
challenge-response pair (CRP) space. However, model-building
attacks with machine learning algorithms have shown that the CRP
space of most strong PUFs can be predicted using a relatively
small subset of training samples. In this paper, we investigate the
delay model of the Hardware-Embedded deLay PUF (HELP) and
apply machine learning algorithms to determine its resilience to
model-building attacks. The delay model for HELP possesses sig-
nificant differences when compared with other delay-based PUFs
such as the Arbiter PUF, particularly with respect to the composi-
tion of the paths which are tested to generate response bits. We
show that the complexity of the delay model in combination with a
set of delay post processing operations carried out within the
HELP algorithm significantly reduce the effectiveness of model-
building attacks.

1 Introduction
Symmetric-key authentication and encryption are criti-

cally important to system security. Both are based on the
notion of a ’shared secret’ that only the communicating par-
ties know. Physical unclonable functions (PUFs) have been
proposed as an alternative to non-volatile memory (NVM),
alone or in combination with cryptographic hash functions,
as a mechanism of generating and/or regenerating these
shared secrets. However, the requirements for authentication
and encryption differ, with the former requiring the exist-
ence of an (ideally) unlimited number of shared secrets as a
mechanism to protect the system against impersonation
attacks. The term strong PUF was coined to represent PUFs
with this special property, i.e., the ability to generate an
exponential number of challenge-response pairs (CRPs).

Unfortunately, a very large CRP space is a necessary but
not a sufficient condition. A PUF used for authentication
must also be resistant to modern adversarial attack mecha-
nisms, in particular, those that leverage machine learning
(ML) algorithms to first learn the CRP behavior of a PUF
using a small set of observations, and then later use the con-
structed model as a predictor of PUF responses to any chal-
lenge. Proving that a PUF is model-building resistant is non-
trivial, requiring a complexity analysis of the underlying the-
oretical model of the PUF to be developed, and then a rigor-
ous set of experiments which show that the complexity of
the model requires large training set sizes to be used by ML
algorithms to achieve sufficiently low prediction error rates
to pass authentication protocol requirements.

In this paper, we investigate the model-building resis-
tance of a strong PUF called the hardware-embedded delay
PUF or HELP. Unlike other PUFs which leverage identically
designed test structures, such as the Arbiter PUF (APUF),
HELP measures path delays in arbitrarily synthesized on-
chip macros or functional units such as a multiplier or cryp-
tographic primitive. The random and complex nature of the

paths implemented by synthesis tools for mathematical func-
tions increases the complexity of the delay model over mod-
els proposed for PUFs with ’identically-designed’ circuit
structures. The HELP algorithm also batch processes groups
of digitized path delay measurements to generate bitstring
responses, in contrast to the single challenge-to-bit genera-
tion approach used in many other PUF algorithms. The post
processing operations carried out by the HELP algorithm
provide opportunities to further obfuscate the relationship
between the challenges, the underlying source of entropy
and the generated response bitstrings.

The main contributions of the paper include an investi-
gation of:

1) Tactics that can be used by adversaries for carrying
out model-building attacks on the HELP PUF, derived from
the mathematical operations carried out within the HELP bit-
string generation algorithm.

2) The effectiveness of these tactics evaluated using sev-
eral machine learning algorithms.

The remainder of this paper is organized as follows.
Related work is described in Section 2. An overview of the
HELP algorithm is presented in Section 3. Section 4 presents
results of applying ML algorithms using data from the delay
post processing operations carried out within the HELP algo-
rithm.

2 Background
The HELP PUF is proposed in [2] and used in a special-

ized authentication protocol in [3][4]. The authors in [5][6]
investigate model-building attacks on typical strong PUFs
(APUF and its variants [7]) using various machine learning
algorithms. Reference [8] evaluates the effectiveness of
modeling attacks on APUFs and indicate that APUFs are not
secure for challenge-response authentication. Follow-on
work in [9] shows that even PUF-based protocols in which
responses are highly obfuscated can be attacked by machine
learning. The authors in [10] prove that XOR APUFs can be
provably PAC learned in polynomial time. Recent work
described in [11] shows that the delay constraints of the
APUF can be utilized to expand the known CRP set to facili-
tate model-building attacks. A statistical metric that evalu-
ates the bias and quality of the APUF is proposed in [12].

3 Overview
HELP leverages within-die variations in path delays as a

source of entropy to generate reproducible and unique bit-
strings. The overall response generation process for HELP
consists of three phases: (1) Path Sensitization, (2) Delay
Digitization and (3) Delay Processing, as is depicted in Fig.
1. In the Path Sensitization Phase, a set of 2-vector
sequences (challenges) are applied to the functional unit’s
inputs to sensitize a set of structural paths. The transitions

Delay Model and Machine Learning Exploration of a Hardware-

Embedded Delay PUF

Wenjie Che+, Manel Martinez-Ramon, Fareena Saqib*, Jim Plusquellic
Enthentica+, University of North Carolina*, University of New Mexico

introduced by the 2-vector sequences propagate along a set
of sensitized paths and then are captured at the primary out-
puts (POs) by a set of capture flip-flops. The Delay Digitiza-
tion Phase utilizes a clock-strobing technique to obtain the
digitized delay values of the sensitized paths and stores them
in an on-chip BRAM. The 4096 digitized delay values are
post-processed in the Delay Processing Phase by a sequence
of mathematical operations to generate the response bit-
string.

3.1 Path Sensitization Phase

The delay model for most delay-based PUFs is derived
within the Path Sensitization Phase since a simple compari-
son operation is typically used to generate the response bit
after path sensitization. For example, a linear additive delay
model for the Arbiter PUF is typically used to explain how
the delay difference at each stage is constructed and how the
delay difference is related to the challenge bit of that stage.
The final response bit is derived from the sign of the accu-
mulated delay difference (’1’ if positive and ’0’ otherwise).
Therefore, the complexity of the delay model is largely
determined by the expressions used to specify how the sensi-
tized path is constructed at each of the stages by the applied
challenge.

The challenges in the Path Sensitization Phase for
HELP are 2-vector sequences. The task of developing a
delay model for HELP requires the relationship between the
sensitized paths (each composed of individually sensitized
path segments) and the applied 2-vector sequences to be
specified.

3.2 Delay Digitization Phase

HELP applies a series of launch-capture clocking events
(called clock strobing) using Clk1 and Clk2 to measure the

path delays as shown in Fig. 2. A 2-vector sequence (V1,
V2) is applied at the k-bit Primary Inputs, labeled PI, using
the Launch Row flip-flops (FF) as a means of generating
logic transitions in the functional unit. The first vector V1
represents the initialization vector. The application of V2
generates a set of transitions at the PI, some of which propa-
gate through the functional unit and emerge on the Primary
Outputs (PO). For each repeated application of the 2-vector

sequence, the phase shift between Clk1 and Clk2 is increased

by a small fixed ∆t. The smallest phase shift value that

allows the propagating transition along a path starting from a

Launch FF to be successfully captured in a Capture FF is

used as the digitized delay value for that path. Note that

more than one structural path can be sensitized by a given 2-

vector sequence (three are shown in Fig. 2). The Delay Digi-

tization process within the HELP engine is configured to

generate 4096 digitized path delays which are used as inputs

to the Delay Processing Phase.

3.3 Delay Processing Phase

In contrast to the simple delay comparison operation

used by, e.g., the Arbiter PUF, to generate response bits,

HELP applies a sequence of operations to the stored delays

including Delay Difference, TV Compensation and Modulus

(see bottom of Fig. 1). Each of these processing operations is

configurable using a set of module parameters. For example,

the Delay Difference operation requires two 11-bit seeds for

initializing two linear feedback shift registers (LFSRs),

which are used to pseudo-randomly pair the 4096 delays to

create 2048 delay differences. The TVComp operation uti-

lizes reference mean (µref) and range (Rngref) parameters to

apply a linear transformation to the entire set of 2048 delay

differences. The Modulus operation applies a division opera-

tion which makes use of a Mod parameter. The two 11-bit

LFSR seeds, µref, Rngref and Mod parameters are called

module parameters. The values of the module parameters

are determined using nonces generated by the token and ver-

ifier in the authentication protocol defined for HELP [4]. The

parameter selection process within HELP is set up such that

the adversary cannot specify (control) these parameters dur-

ing authentication.

Fig. 1. Top-level overview of the response generation process
for HELP PUF consists of three phases: (1) Path sensitization,

(2) Delay digitization and (3) Delay processing.

Fig. 2. Configuration of the functional unit for path
sensitization and the clock strobing method for delay

digitization.

Phase 1
Path Sensitization

A set of 2-vector sequences (challenges)

Functional Unit Delay
Model

Sensitized structural paths

Phase 2
Delay Digitization

Clock Strobing
Technique

2048 rising path delays (PNR)
2048 falling path delays (PNF)
(Stored in on-chip BRAM)

Phase 3
Delay Processing

Delay Difference
TV Compensation

Modulus

response bitstring

module

params

Model
building
using
Adaboost
learner

3.4 Model-Building Attacks on the Path Sensitization

and Delay Processing Phases

In order to build an accurate model for an instance of the
HELP PUF, a machine learning (ML) algorithm must learn
the challenge-response (CR) behavior of the PUF. For HELP,
the CR behavior is defined by activities which occur in two
disjoint phases of the algorithm; the Path Sensitization Phase
and the Delay Processing Phase. As discussed above, the
inputs to the Path Sensitization Phase are a set of 2-vector
sequences (challenges) and the outputs are a set of 4096 dig-
itized path delays. The inputs to the Delay Processing Phase
are the 4096 path delays and module parameters, and the
output is the response bitstring. More specifically, ML must
implicitly learn and predict (1) which structural paths will be
sensitized under a given set of challenges during the Path
Sensitization Phase, and (2) what the response bitstring will
be for a chip-specific set of 4096 path delays and module
parameters in the Delay Processing Phase.

The adversary can carry out an attack using any of the
following scenarios. The first approach is to train a ML algo-
rithm using CRPs, on the premise that it is capable of learn-
ing the behavior of both phases together. The benefit of this
traditional strategy is that it does not require any knowledge
of the structural characteristics of the functional unit. How-
ever, the delay model for HELP is complex, so this strategy
is likely to yield poor results.

A second strategy is to simplify the attack by pre-pro-
cessing the challenges using simulation experiments to
determine which paths are actually tested (sensitized). The
ML algorithm can then be directed to learn only the behavior
of the Data Processing Phase. Obviously, this strategy
requires knowledge of the implementation which might be
difficult or impossible to attain. Moreover, unlike PUFs that
use ’identically-designed’ test structures, the details of the
structural paths can vary widely depending on the synthesis
tool (and even when using the same synthesis tool) so
reverse engineering or IP theft will be required to obtain the
structural (layout) details of the implementation.

The third tactic is to derive Boolean expressions that
describe the functional behavior for each output and use an
equation solver to determine which paths are sensitized. In
order for this to be effective, the structural netlist must be
available (as is true for the simulation approach). The Bool-
ean expressions can become very complex, are ambiguous in
at least some cases regarding which path is actually sensi-
tized and are proportional in number to the number of paths
in the functional unit (approximately 8 million in the current
version of HELP).

As is true of the Arbiter PUF, the ML algorithm is ulti-
mately tasked with learning the delay relationships of the
individual path segments that define these paths indepen-
dent of which of these three attack scenarios is used.

Under either of the latter two attack scenarios, the input
to the attack is the 4096 paths and estimated delays derived
from simulations or the delay model, and the set of module
parameters. The ML algorithm must be capable of predicting
the response bitstring under any combination of challenges
and module parameters. The following sections of the paper
investigate ML-based attacks and determine the prediction
error rates under relaxed conditions which fix the challenges

to a small subset of those available and allow the modules
parameters to be systematically varied. Although the actual
problem is much larger and harder in practice, our analysis
does serve to provide evidence of the underlying strength of
the HELP algorithm against ML attacks. Moreover, the suc-
cess of a full-blown model-building attack is predicated on
solving this simpler problem.

3.5 Delay Model Complexity of HELP PUF

The complexity of the delay model of HELP is related
to the complexity of the Boolean expressions that represent
path sensitization conditions. The number of terms and the
size of each term in the Boolean equation are determined by
the number of gates (stages) that define the path, the number
of inputs to each of the gates along the path and the gates’
logic functions.

A delay model constructed in this fashion presents sev-
eral challenges. First, the number of expressions produced at
the primary outputs (POs) is proportional to the number of
paths in the circuit, which can be exponential to the number
of inputs. Second, the size of the expressions grows expo-
nentially as the logic depth (number of stages) of the path
increases. Boolean expression optimization techniques can
be used to reduce the size, but this will increase the level of
effort expended to construct the model. Third, in cases where
paths fanout and reconverge downstream, deciding which of
the multiple reconverging path segments dominates the tim-
ing, i.e., determines the output delay characteristics of the
path, requires accurate delay models. Even when such mod-
els are available, within-die variations within each chip may
change which path segment actually dominates the timing,
making it necessary to include ’possibly sensitized’ path
expressions in the delay model, which will greatly expand
the number of expressions that need to be evaluated.

4 Machine Learning (ML)
In this section, we investigate the effectiveness of ML

techniques as an attack strategy for predicting HELP
response bitstrings. From the discussion in Section 3.4, the
traditional attack which uses CRPs directly is more difficult
than an attack focused only on the Delay Processing Phase
of the HELP algorithm. The traditional attack, referred to as
a CRP-based attack, requires the ML algorithm to learn
which paths are sensitized by the challenges, which, by
itself, is a difficult problem. Therefore, our tactic is to
assume the adversary has obtained the netlist of the func-
tional unit used within HELP, and can run simulations (or
use the delay model described in the previous section) to
determine which paths are tested by the challenges. If it is
possible to use ML to predict responses by attacking only the
Delay Processing Phase, then a full-blown CRP-based attack
might be attempted. However, as we show below, even this
simplified attack scenario is difficult to carry out so it fol-
lows that attacking the entire algorithm is likely to yield poor
results.

Bear in mind that even though the adversary can deter-
mine which paths are tested for a given set of challenges, the
behavior of the Delay Processing Phase is also effected by
the module parameters. As indicated earlier, the HELP algo-
rithm uses a nonce exchange scheme to prevent the adver-
sary from having direct control over these parameters [4]. In
particular, the authentication protocol requires the server to

send a nonce to the token that is XOR’ed with a nonce gen-
erated by the token, and then this XOR’ed nonce is used to
specify the module parameters. Therefore, even in the learn-
ing phase, the adversary cannot apply a systematic attack
which varies the module parameters across all possible val-
ues, and instead, she must apply CRPs until the targeted set
of module parameters is eventually generated and used by
the HELP algorithm. This can add considerable time to the
learning phase. In this paper, we attack the Delay Processing
Phase assuming direct control of the module parameters is
possible, again as a demonstration that solving this simpler
problem is prerequisite to solving the problem constrained
by the actual usage scenario.

The attack investigated in this section further simplifies
the attack to using only one fixed set of 4096 delays. In other
words, we do not vary the applied challenge set. In practice,
the adversary would need to repeat the learning experiments
described in this section to include a much larger set of chal-
lenges. In fact, deciding which of the exponentially large set
of challenges are optimal for ML is by itself a difficult prob-
lem. Assuming the netlist is available, she can use compute-
intensive automatic test pattern generation (ATPG) to deter-
mine challenges that test most of the paths within the func-
tional unit (without the netlist, it would be impossible for the
adversary to select challenges in a strategic fashion to obtain
high path coverage). Using the functional unit currently
instantiated within HELP as an example, we determined that
more than 8 million rising and falling structural paths exist,
and that approximately 80% of them are testable. In sum-
mary, the goal of our investigation is to determine for a fixed
set of challenges (and tested paths) whether ML can be used
to predict the response bitstring by allowing direct control
over the module parameters.

4.1 Details of the Delay Processing Phase

The delay processing phase of the HELP PUF applies a
series of mathematical operations to the set of 4096 path
delays to produce the response bitstring. As illustrated in
Fig. 3, the conversion process consists of a series of opera-
tions including (2) PNDiff, (3) TVComp, (4) Modulus and
(5) bitstring generation.

The first step of the conversion process creates delay
differences by subtracting the 2048 falling delays from the

2048 rising delays. The pairings created by the PNDiff mod-
ule are selected pseudo-randomly using LFSRs. The digi-
tized rising and falling delays are called PUF numbers (PN)
and are designated as PNR for rising and PNF for falling,
while the differences are referred to as PND. The two 11-bit
seeds used to initialize the LFSRs are module parameters.
The primitives used in the LFSRs ensure that all 2048 PNR
and PNF are selected exactly once to produce a unique set of
PND indexed from [0, 2047]. The PND are trivially created
using the following expression: PNDLFSR1(i) = PNRLFSR1(i)

- PNFLFSR2(i), where 0<=i<=2047. The total number of

unique PND that can be constructed from the PNR and PNF
(assuming the tested paths are unique) is 2048*2048 =

4,194,304 (222).

The 2048 PND are used as input to the temperature-
voltage-compensation (TVComp) module as shown in Fig.
3. TVComp first calculates the mean and range of the PND
distribution by creating and parsing a histogram built from
the PND. The computed mean (µchip) and range (Rngchip) are

used to standardize the set of PND as given by Eq. (1) in Fig.
3. The standardized values Zvali are then used as input to a

second linear transformation given by Eq. (2). The reference
mean and range, labeled uref and Rngref, used in the second

transformation are also module parameters. The set of com-

pensated PND are called PNDc. The primary goal of
TVComp is to reduce undesirable variations in the measured
path delays introduced by varying environmental conditions
(TV noise).

The PNDc are then used as input to the Modulus mod-
ule, which applies a modulus (Mod) to produce a set of 2048
Mod_PND. The modulus is a module parameter that trans-
forms the PND to values in the range [0, Mod]. A response

bit is then assigned to each of the Mod_PND by comparing
the Mod_PND to a threshold defined as Mod/2. The response
bit is ’0’ if the Mod_PND is less than the threshold and ’1’
otherwise. The values 0 and Mod, and the threshold, are
referred to as ’0-1’ lines.

A margining scheme is also proposed within the HELP
algorithm (not shown) that eliminates response bits that are
deemed ’unstable’, i.e., bits generated from Mod_PND
which are within a ’margin’ of the ’0-1’ lines. In our ML
experiments, we ignore the margining process and instead
use all of the response bits. We justify this simplifying
assumption, as we did earlier for others, that incorporating
the margining scheme will increase the difficulty of an ML
attack.

A set of ML experiments are constructed to evaluate the
model-building resistance of the PNDiff, TVComp and

Modulus modules which use the PND, PNDc and Mod_PND
as input in each experiment. As a further simplification, we
reduce the number of fixed delay values from 4096 to 512
(256 PNR & 256 PNF) to deal with the huge data set sizes
created by varying the module parameters over the range of
values possible. The LFSRs and seeds are reduced accord-
ingly to 8-bits. Under these conditions, the total number of
unique PND that can be constructed by varying the LFSR

seeds is 256*256 = 65,536 (216). The ML experiments report
prediction errors using this subset of data.

Fig. 3. Delay processing phase and module parameters that
are investigated in machining learning experiments.

4.2 Experimental Setup

A set of experiments are devised that construct data sets
in which the module parameters are added one-at-a-time to
determine the contribution of each to model-building resis-
tance. Specifically, four experiments, identified as EXP1
through EXP4, are constructed in which the LFSR seeds, the
uref and Rngref (referred to as Refs subsequently) and Mod

parameters are added one-at-a-time into the input space of
the ML experiments.

Table 1 identifies the goals in each experiment. The col-
umn labeled ‘Varied Module Params’ identifies the module
parameters under investigation. In EXP1 through EXP3, two
sub-cases are considered in the column labeled ‘Status of
Other Module Params’ using module parameters that are
NOT varied. For example, EXP2 identifies two sub-cases
"No Mod" and "Fixed Mod" where the former indicates that
no modulus operation is applied and the latter indicates that
a modulus operation is applied but the Mod is fixed to a spe-
cific value. Note that the LFSR seeds are varied in all four
experiments.

A ‘base case’ is investigated in EXP1(a) where only the
LFSR seeds are varied, identified in the ‘Varied Module
Params’ column as Seeds. Here, the TVComp and Modulus
operations are not applied to the PND. We use the results
from EXP1(a) as a reference in which the prediction errors
of the other experiments are compared. Here, all combina-
tions of PNR and PNF are used to generate 256*256 =

65,536 or 216 unique PND (this defines the CRP space for
EXP1). Note that in order to generate bits from the PND
without applying a Modulus operation, an alternative tech-
nique is needed to define the 0-1 line. Here, we use the

median value of all 216 PND as the 0-1 line. EXP1(b) and (c)
add the TVComp and Modulus operations one-at-a-time
using fixed values for the parameters.

EXP2 and EXP3 add Refs and Mod to the parameters
that are varied, respectively. We use four fixed values for
each of the uref and Rngref (Refs) and Mod parameters and

therefore the CRP space of EXP2 and EXP3 is expanded by
(4*4) = 16 and 4, respectively. The fixed values used for the
Refs parameters are derived from characterization experi-
ments using 45 FPGAs. The four Mod values used are 12,
14, 16 and 18. EXP4 adds both the Refs and Mods parame-
ters and defines the most complex experiment with the CRP
space expanded to 65,536*64 = 4,194,304.

Table 1: Experimental Setup Summary

EXP Varied Module

Params

Status of Other Mod-

ule Params

CRP space

EXP1 Seeds

a) No Refs, No Mod

(Base case) 65,536 = 216

b) Fixed Refs, No Mod 65,536 = 216

c) Fixed Refs, Fixed Mod 65,536 = 216

EXP2 Seeds, Refs No Mod vs. Fixed Mod 65,536*16 = 220

EXP3 Seeds, Mod No Refs vs. Fixed Refs 65,536*4 = 218

EXP4 Seeds, Refs, Mods None 65,536*64 = 222

4.3 Machine Learning Algorithms and Data Set

Construction Process

The ML algorithms investigated include Logistic
Regression (LR), Support Vector Machine (SVM) [14] and
AdaBoost (AB) [15] using the sklearn platform [16]. We
investigated a wide range of different solver, kernel and
parameter combinations for LR and SVM but only the
results from those combinations the produced the lowest pre-
diction errors are reported. A similar approach is taken for
AdaBoost using the ‘depth’ and ‘N_classifiers’ parameters.
AdaBoost produced the lowest prediction errors for the base
case EXP1(a) and therefore is the only ML investigated in
the remaining experiments.

The challenge-response (CR) data sets are constructed
in the following fashion. An exhaustive set of PND are cre-
ated by pairing all PNR with all PNF. The binary representa-
tion of the index into the array of PND is used as input to the
ML algorithm. The binary index concisely encodes the
tested path pairing sequences and is able to represent any of
the pairings created by the PND module. In our experiments,

the index is 16 bits to represent the set of 256*256 = 216

PND. The set of 216 PND models the diversity introduced by
varying the LFSR seeds (identified in Table 1 as ‘Seeds’).
The ML algorithms for EXP1 use only these 16 bits as input.
A similar encoding scheme is used to enable inclusion of the
Refs and Mod parameters for EXP2 through EXP4. The
length of the binary index, and corresponding input to the
ML algorithm, adds four bits to represent the 16 Refs combi-
nations and two bits to represent the 4 Mod combinations.
The output of the ML is configured to predict one bit at a
time of the 256-bit response.

In each experiment, training sets of various sizes are
selected randomly from the overall input-output CRP space.
A total of five different training data sets are constructed for
each training set size. The data evaluated for prediction
errors, referred to as the test data, is randomly selected from
the remaining CRP space and is always fixed in size to 1000
CRPs. The prediction error is calculated as the average value
from evaluations carried out on the five data sets.

4.4 ML Experimental Results and Analysis

As indicated above, EXP1(a) only applies the PNDiffs
operation and is used as the base case experiment. EXP1(a)
is used to evaluate the effectiveness of the three ML algo-
rithms LR, SVM and AdaBoost. The prediction errors are
shown in Fig. 4(a) which plots curves for a set of training set
sizes shown along the x-axis. The LR algorithm has the
poorest performance with prediction errors remaining at
approximately 40%. AdaBoost, on the other hand, produces
the best result with prediction error falling below 5% for

training set sizes > 215. Given these results, we use Ada-
Boost for the remaining experiments.

In contrast to EXP1(a) which uses the PND directly,
EXP1(b) applies TVComp to the PND but fixes µref & Rngref

(Refs) to specific values. Similarly, EXP1(c) applies both the
TVComp and Modulus operations but fixes the input param-
eters to both routines. Fig. 4(b) shows that the prediction
errors are unchanged for EXP1(b) over the base case, which
indicates that TVComp by itself does not improve ML resis-
tance. However, ML resistance is significantly increased by

the Modulus operation as shown in Fig. 4(c) even under
these simplifying conditions where the same Mod is used to
construct the entire CRP space.

EXP2 varies both the Seeds and Refs parameters and
investigates two sub-cases, namely ‘No Mod’ and ‘Fixed
Mod’ as a means of providing further support that the Modu-
lus operation is responsible for improving ML resistance.
Fig. 5(a) plots the prediction errors, again with training set

size along the x-axis but now for a larger 220 CRP space.
Once again, prediction errors remain large for the ‘Fixed
Mod’ curve and drop to nearly 0 without the Modulus. EXP3
varies both the Seeds and Mod parameters and uses the Refs
parameters in the two subcases ‘No Refs’ and ‘Fixed Refs’.
As expected, the prediction errors remain large for both sub-
cases because the Modulus operation is included. EXP4
investigates the case which is closest to an actual usage sce-
nario where the Seeds, Refs and Mod parameters all vary.

The CRP space expands to 222 as shown by the x-axis in Fig.
5(c). Here, prediction error remains above 40% even when
up to 99% of the CRP space is used for training.

Note that the data set construction process which creates
all combinations of PNR and PNF reuses each of the PNR
and PNF in 256 different PND. Reuse of the PNR and PNF
in this fashion reduces entropy because of correlations that
exist in the PND. ML algorithms are able to learn these cor-
relations and reduce prediction errors. However, the Modu-
lus operation ‘wraps’ the PND into a much smaller range
between 0 and Mod and effectively ‘breaks’ the classical
correlations that are present in the PND. These experiments
show that the reduction in these classical correlations make
it difficult for ML algorithms to build a model that is capable
of accurately predicting the responses.

5 Conclusion
The delay model for delay-based PUFs gives a mathe-

matical representation of the sensitized path delays under a
given challenge. In this paper, we investigated several
machine learning (ML) algorithms and a wide range of strat-

egies of applying model-building attacks to the HELP PUF.
Our experimental results show that the Modulus operation
carried out as a component of the HELP algorithm adds sig-
nificantly to the ML resistance of HELP even when evalu-
ated using data sets constructed under simplified usage
scenarios.

6 References
[1] Gassend, B., Clarke, D., Van Dijk, M., Devadas, S., "Silicon physical

random functions," CCS 2002, pp. 148-160.
[2] J. Aarestad, J. Plusquellic, D. Acharyya, "Error-Tolerant Bit Generation

Techniques for Use with a Hardware-Embedded Path Delay PUF,"
HOST, 2013, pp. 151-158.

[3] W. Che, F. Saqib and J. Plusquellic, "PUF-Based Authentication", IC-
CAD, 2015.

[4] W. Che, M. Martin, G. Pocklassery, V. K. Kajuluri, F. Saqib and J.
Plusquellic, "A Privacy-Preserving, Mutual PUF-Based Authentica-
tion Protocol", Cryptography, 2017.

[5] U. Rührmair et al., "Modeling attacks on physical unclonable functions,"
CCS, 2010, pp. 237-249.

[6] U. Rührmair, J. Solter, F. Sehnke, X. Xu, A. Mahmoud, V. Stoyanova,
G. Dror, J. Schmidhuber, W. Burleson, and S. Devadas, "PUF Mod-
eling Attacks on Simulated and Silicon Data", TIFS, vol. 8, no. 11,
2013, pp. 1876-1891.

[7] M. Majzoobi, F. Koushanfar, and M. Potkonjak, "Lightweight Secure
PUFs," ICCAD 2008, pp. 670-673.

[8] G. Hospodar, R. Maes, and I. Verbauwhede, "Machine Learning Attacks
on 65nm Arbiter PUFs: Accurate Modeling poses Strict Bounds on
Usability", WIFS, 2012, pp. 37-42.

[9] G. T. Becker, "On the Pitfalls of using Arbiter-PUFs as Building
Blocks", Trans. Comput.-Aided Design Integr. Circuits Syst., 2015,
pp. 1295-1307.

[10] F. Ganji, S. Tajik, and J.P. Seifert, "Why Attackers Win: On the Learn-
ability of XOR Arbiter PUFs", Trust and Trustworthy Computing,
Springer, 2015.

[11] U. Chatterjee, R. S. Chakraborty, H. Kapoor, and D. Mukhopadhyay,
"Theory and Application of Delay Constraints in Arbiter PUF",
Trans. on Embed. Comp. Syst., 2016.

[12] D. P. Sahoo, P. H. Nguyen, R. S. Chakraborty, and D. Mukhopadhyay,
"Architectural Bias: a Novel Statistical Metric to Evaluate Arbiter
PUF Variants", IACR Cryptology ePrint Archive Report, 2016.

[13] K.Tiri and I. Verbauwhede, "A Logic Level Design Methodology for a
Secure DPA Resistant ASIC or FPGA Implementation", DATE,
2004.

[14] http://scikit-learn.org/stable/modules/svm.html
[15] Y. Freund, R. E. Schapire, "A Decision-Theoretic Generalization of

On-line Learning and an Application to Boosting", J. Comput. Syst.
Sci., 1997. pp. 119-139.

[16] http://scikit-learn.org/stable/

Fig. 4. Prediction error of EXP1 where only LFSR seeds vary: (a) base case using different ML algorithms including Adaboost,
SVM and LR, (b) when fixed Refs are used and (c) when fixed Refs and fixed Mod are used.

Fig. 5. Fig. 5. Prediction error when LFSR seeds and (a) Refs (EXP2), (b) Mod (EXP3) and (c) Refs and Mod (EXP4) are varied.

