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Abstract secure hash and/or other types of cryptographic functions to
. . . obfuscate the challenges, the responses or both when used in
A special class of Physical Unclonable Functions (PUFs) referred L N
to as strong PUFs can be used in novel hardware-based authent@uthentication applications. In contrast, the number of chal-
cation protocols. Strong PUFs are required for authentication lenges is exponential for strong PUFs making exhaustive
because the bitstrings and helper data are transmitted openly byeadout of the CRP space impractical. However, in order to
the token to the verifier and therefore, are revealed to the adverpe secure, a truly strong PUF must also be resilient to

sary. This enables the adversary to carry out attacks against th : : : :
token by systematically applying challenges and Obtailr“ng‘?nachme learning algorithms, which attempt to use a subset

responses in an attempt to machine-learn and later predict thedf the CRP space to build a predictive model.
token’s response to an arbitrary challenge. Therefore, strong PUFs ~ The hardware-embedded Delay PUF (HELP) analyzed
must both provide an exponentially large challenge space and bgn this paper generates bitstrings from delay variations that

resistant to machine learning attacks in order to be considered ; _chi
secure. We investigate a transformation called TVCOMP uset?ccur along paths in an on-chip macro, such as the datapath

within the Hardware-Embedded deLay PUF (HELP) bitstring gen-cOmponent of the Advanced Encryption Standard (AES)

eration algorithm that increases the diversity and unpredictability algorithm. The HELP processing engine defines a sebof

of the challenge-response space and therefore increases resistanfiguration parameters which are used to transform the mea-
to model-building attacks. HELP leverages within-die variations in g red path delays into bitstring responses. One of these

path delays as a source of random information. TVCOMP is a lin- i g ; )
ear transformation designed specifically for dealing with changesp_arameters’ called thieath-Select-Maskrovides a mecha

in delay introduced by adverse temperature-voltage (environmeniSm to choosek paths fromn that are produced, which
tal) variations. In this paper, we show that TVCOMP also increasesenables an exponential number of possibilities. However,

entropy and expands the challenge-response space dramatically. resource-constrained versions of HELP typically restrict the

1 Introduction number of paths to the range of®2 Therefore, the CRP

A physical unclonable function (PUF) is a next-genera-space of HELP is not large enough to satisfy the conditions
tion hardware security primitive. Security protocols such asof a truly strong PUF unless mechanisms are provided by the
authentication and encryption can leverage the random bitHELP algorithm to securely and significantly expand the
string and key generation capabilities of PUFs as a means efumber of path delays that can be compared to produce bit-
hardening vulnerable mobile and embedded devices againstrings.
adversarial attacks. Authentication is a process that is carried A key contribution of this work is an experimentally-
out between a hardware token (smart card) and a verifier (gerived proof of a claim that a component of the HELP algo-
secure server at a bank) that is designed to confirm the idenithm called Temperature-Voltage-Compensation
tities of one or both parties [1]. With 10T, there are a growing (TVCOMP) is capable of providing this expansion.
number of authentication applications in which the hardwareTVCOMP is an operation carried out within the HELP bit-
token is resource-constrained. Conventional methods oftring generation process that is designed to calibrate for
authentication which use area-heavy cryptographic primivariations in path delays introduced by changes in environ-
tives and non-volatile memory (NVM) are less attractive formental conditions. Therefore, the primary purpose of
these types of evolving embedded applications [2]. PUFs, omVCOMP is unrelated to entropy, but rather is a method
the other hand, can address issues related to low coslesigned to improve reliability.
because they can potentially eliminate the need for NVM.  The HELP bitstring generation process begins by select-
Moreover, the special class aftrong PUFscan further ing a set ofk paths, typically 4096, from a larger set of
reduce area and energy overheads by eliminating cryptopaths that exist within the on-chip macro. A series of simple
graphic primitives that would otherwise be required. mathematical operations are then performed on the path

A PUF measures parameters that are random and uniguielays. The TVCOMP operation is applied to the entire dis-
on each IC, as a means of generating digital secrets (bitribution of k path delays. It first computes the mean and
strings). The bitstrings are generated in real time, and areange of the distribution and then applies a linear transforma-
reproducible under a range of environmental variations. Theaion thatstandardizeshe path delays, i.e., subtracts the mean
elimination of NVM for key storage and the tamper evidentand divides each by the range, as a mechanism to eliminate
property of PUFs to invasive probing attacks represent sigany changes that occur in the delays because of adverse envi-
nificant benefits for authentication applications in resourceronmental conditions.
constrained environments. The standardized values therefore depend on the mean

Many existing PUF architectures utilize a dedicated on-and range of the origind-path distribution. For example, a
chip array of identically-designed elements. The parameterixed path delay that is a member of two different distribu-
measured from the individual elements of the array are comtions, with different mean and range values, will have differ-
pared to produce a finite number of challenge-response-paient standardized values. This difference is preserved in the
(CRPs). When the number of challenges is polynomial inremaining steps of the bitstring generation process. There-
size, the PUF is classified agseak Weak PUFs require fore, the bit generated for a fixed path delay can change from



0-to-1 or 1-to-0 depending on the mean and range of the disstring diversity. Moreover, we have found no related work
tribution. We refer to this dependency between the bit valughat demonstrates that the same fixed path delays for a chip
and the parameters of the distribution as istribution can generate a different (stable) response simply by chang-
Effect. Distribution Effect adds uncertainty for algorithms ing the set of challenges. The linear (analog) transformation
attempting to learn and predict unseen CRPs. applied to a selected group of elements in combination with

It is important to note that this type of diversity-enhanc- a subsequent modulus operation has, so far, proven to be
ing CRP method is not applicable to PUFs built from identi- unlearnable by machine-learning algorithms including Deep
cally-designed test structures, e.g., RO and Arbiter PUFs [3]l-earning within Neural Network frameworks and AdaBoost.
because it is not possible to construct distributions withUnfortunately, the scope of our machine-learning evaluation
widely varying means and ranges. In other words, the distriis too large and complex to include as supporting evidence in
butions defined by sets &RO frequencies measured from a this paper.
larger set ofn RO frequencies are nearly indistinguishablg. We also point out that the mathematical operations per-
The HELP PUF, on the other hand, measures paths whichymed by the HELP algorithm have linear time and space
have significant differences in path delays and thereforegomplexity. Our failure to successfully machine-learn the
crafting a set of CRPs which generate distributions with dis+yjtstring responses produced by HELP indicate that complex
tinct parameters is trivial to accomplish, as we demonstratgpjlenge and/or response obfuscation methods, e.g., those
in this paper. . proposed for other weak and strong PUFs which are based

Although there are-choosek ways of creating a set of on secure hashes, are not needed. Secure-hash-based obfus-
k-path distributions (an exponential), there are only a poly-cation techniques introduce considerable cost in time, area,
nomial number of different integer-based means and rangesnergy and reliability, and are more expensive than the
that characterize these distributions, and of these, an evGRELP module operations applied to a small set of path
smaller portion actually introduce changes in the bit valuedelays. Moreover, the bit-flip avoidance schemes proposed
derived from a fixed path delay. Unfortunately, deriving afor HELP also have linear time complexity, in contrast with
closed form expression for the level of CRP expansion is difmost, if not all, of the error correction schemes that have
ficult at best, and in fact, may not be possible. Instead, afeen proposed for other PUFs. Time and resource utilization
alternative empirical-based approach is taken in this paper tgf a typical implementation of HELP are reported in [6].
derive an estimate. We first demonstrate the existence of the . “ , .

A method to estimate the “extractable” entropy in PUF-

Distribution Effect, and then evaluate the bitstring dlverSItygenerated bitstrings is proposed in [8] by calculating the

introduced by Distribution Effect using Interchip Hammin : ) .

distance y g P 9 mutual information between the bias measurements done at
Noté that even though the increase in the CRP space gnrollment and regeneration. The authors in [9] evaluate the

polynomial (we estimate conservatively that each path delarobustness and unpredictability of five different PUFs

can produce approx. 100 different bit values), the real}(inCIUding Arbiter, RO, SRAM, flip-flop and latch PUFs) by

strength of the Distribution Effect is related to the real time ezim?;'?r?[ig(]a (;zcr)]troospg dZﬁg_i‘é;&ﬂ%ﬂ%{g‘g%ﬁezS-EB(_E
processing requirements of attacks carried out usin prop y

; : ; : N et ofk RO pairs (out oN) contributes to the final delay dif-
machine learning algorithms. With Distribution Effect, the ¢, 000 “The technique proposed in this paper is unique and
machine learning algorithm needs to be able to construct aflsvel amona published work related to this tobic
estimate of the actuak-path distribution. This in turn gp pic.

requires detailed information about the layout of the on-chip3 HELP Overview
macro, and an algorithm that quickly decides which paths o compinational logic circuit is used as the source of
are being tested.for the speuﬂq set of server'—selected Chatntropy for HELP. The left side of Fig. 1 shows sequences of
lenges used during an authentication operation. Moreovefogic gates that define several paths within a typical logic cir-
the machine learning algorithm must produce a prediction in it (which is also referred to as the functional unit). Unlike
real time and only after the.ser_ver transmits the entire set Obther proposed PUF structures, the functional unit used by
challenges to the authenticating token. We believe thesgir| p'is an arbitrary, tool-synthesized netlist of gates and
addltlonal tasks will add significant difficulty to a successful wires, as opposed to a carefully structured physical layout of
impersonation attack. I identically-designed test structures such as ring oscillators.
~ The implications of the Distribution Effect are two-fold. |n this paper, the combinational logic that defines a 32-bit
First, HELP can leverage smaller functional units and stillcolumn from the Advanced Encryption Standard (AES)
achieve an exponential number of challenge-response-paigggorithm, subsequently referred to abox-mixedco| is
(CRPs) as required of a strong PUF. Second, the difficulty okynthesized using Xilinx Vivado to a bitstream for program-
model-building HELP using machine learning algorithms ming an FPGA [11]sbox-mixedcois implemented using a
will be more difficult because the path delays from the physazard-free logic style called WDDL [12]. WDDL trans-
ical model are no longer constant. forms the netlist from the original 32-bit design into true and
2 Related Work complementary netlists. A complementary set of 32-bit pri-
Although references [4-7] describe previous research omary inputs (Pls) and primary outputs (POs) are added to the
HELP, no prior work exists that describes the Distribution design, doubling the input/output width to 64-bits. Structural
Effect presented in this paper. We have found no relateénalysis reveals that approx. 8 million paths exist within the
work that leverages the membership characteristics of 2,900 LUTs and 30K wires that define the final form of the
group of physical elements as a mechanism to increase bisynthesized netlist.
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Fig. 1. Instantiation of the HELP entropy source (left) and HELP processing engine (right).
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HELP defines challenges as 2-vector sequences. The
sequences are applied to the PIs of the functional unit and
the delays of the sensitized paths are measured at the POs.
The delay of a path is the amount of timgt) it takes for a
rising or falling signal to propagate along the path from Pl to
PO. High precision measurements of path delay are obtained
using a clock-strobing technique which is graphically
depicted on the left side of Fig. 1. The challenge is repeat-
edly applied to the Pls of the functional unit using the
Launch row flip-flops (FFs), which are driven I8lk;. The
Capture row FFs are driven by a second clock,, whose

phase is incrementally increased by snigtls (approx. 18

ps) across the sequence of repeated applications of the 2-
vector challenge. The digital clock manager (MMCM) on a
Xilinx FPGA is used to generate and tune .the phase offsets Fig. 2. sbox-mixedcol functional unit instance placement in Xilinx
between the two clocks. The process terminates when all ¢ Zynq 7020 using Vivado implementation view.

the emerging signal transitions on the POs are successfull )

captured in the Capture row FFs. The status of each PO iLZe_nge§ and masks to be applied that test a total of 2048 paths
monitored by an XOR gate, which is connected between th&ith rising transitions and 2048 paths with falling transi-
input and output of each Capture row FF. A successful Captions. The termPN is used to refer to the 16-bit averaged
ture of an emerging signal transition occurs when the XORpath delays in the following.

outputs a 0, which occurs when the input and output of th ;

FF Fg;lre the same. At the beginning of t?\e test seqﬁence, tﬁg’e’1 Experimental Setup

phase shift betwee@lk; and Clk, is too small to allow a The data analyzed in this paper is collected from a set of
successful capture. Therefore, the XOR gates output a 20 FPGAs (chips). For each chip, we created 25 identical,
(except on outputs that do not have transitions). The first tedut shifted, instances a$box-mixedcofor a total of 500

in the clock-strobing sequence which causes the XOR gatehip-instances The shifted versions are shown in Fig. 2 as
to output a 0 identifies the phase shift value that best repreinstances highlighted as magenta rectangles in a screen
sents the delay of the path. The telannch-capture-interval — spnapshot of Implementation View created by Xilinx Vivado.
(LCI) is used to refer to the current phase shift value. Then order to keep the contents within the magenta rectangles
f'T“‘e state machine that implements the clock stroblng' teChl'denticaI, a Xilinx construct called pblockis used as a con-
nique is labeled a€lock strobemodule in the center portion i or thesbox-mixedcolVivado synthesis is performed

of Fig. 1. only once for thesbox-mixedcotesign, and tcl commands

The phase shift values used to represent the path delayge’;sed to save a set of constraints which fix the locations of
are 12-bit integers, which typically vary between 100 (1'8tpe wires and LUTs in a file called@eck-pointA set of 25

ns) to 600 (10.8 ns). These integer-based path delays are cql- ina bi d . b
lected and stored by treoragemodule in an on-chip block programming bitstreams are generated one-at-a-time by

RAM (BRAM) (see Fig. 1). APath-Select-Masls also sent shifting the fixed contents within thpblock vertically as

by the verifier (not shown), along with the challenges, toShOWn by sequence of magenta rectangles in Fig. 2. For each
specify which path outputs, from those that have transitionsinStance, the basgcoordinate of thepblockis incremented

are actually stored. The BRAM stores the digitized pathPy 3 as a means of implementing the vertical shift. The
delays as 16-bit values, with an additional 4 bits added as &hifted versions of the design significantly increase the size
fixed point fraction to enable averaging of up to 16 samplesof our data set (from 20 to 500), which in turn, increases the
The bitstring generation algorithm requires a set of chal-statistical significance of the analysis.
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Fig. 3. (a) Example rising (PNR) and falling (PNF) path delays, (b) (PNR-PNF) path delay differences (PND) and (c) TV Compensated PNDr 500

chips (individual curves) and 16 TV corners (points in curves).
3.2 PN Processing From Fig. 3(a), it is clear that changes in temperature-
oo . . : . vol nditions chan I herwise the waveform
The bitstring generation process is carried out using theOtage conditions change delay (otherwise the waveforms

stored PN as input. The right side of Fig. 1 lists the opera_vvould be straight horizontal lines). Variations in delay intro-

tions performed by a set of state machines during bitstring!uced by changes in TV conditions are undesirable because
generation. The operations are simple and therefore, thejtch changes reduce the ability of the HELP algorithm to
can be applied in time linear to the size of the stored pNeproduce the generated bitstrings, a function that is required
(4096 in total). The first operation is performed by the when the bitstrings are used as security keys. Moreover,
PNDiff module. PNDiIff creates PN differences by subtract- from Fig. 3(b), the PND also portray TV-related variations,
ing the 2048 falling PN from the 2048 rising PN. Pairings despite the fact that the difference operation reduces their
between rising and falling PN are determined by two seede¢hagnitude over that shown in (aJvV compensation or
11-bit linear feedback shift registers (LFSR). The LFSRSTVCOMP is a process designed to further reduce TV-

each require an 11-bitFSR seedo be provided as input re|ated variations, such as those that remain in (b).

during the first iteration of the algorithm. The two LFSR

seeds can be varied from one run of the HELP algoritthm to ~ The TVCOMP process measures the mean and range of
the next. We refer to the LFSR seeds as user-spedified  the PNDdistribution and applies a linear transformation to
figuration parameters. The ter®ND is used subsequently the original PND as a means of removing TV-related varia-
to refer to the PN differences. THENDiIff module stores the tions. A histogram distribution of the 2048 PND is created in
2048 PND in a separate portion of the BRAM. a separate portion of the BRAM shown in Fig. 1, which is
then parsed to obtain its mean and range parameters.

The waveforms shown in Fig. 3(a) illustrate this process

using data obtained from a set of FPGA experiments inChanges in the mean and range of the PND distribution cap-

which exactly two paths are tested, one with a rising transitu’® the shifting and scaling that occurs to the delays when

tion (PNR) and one with a falling transition (PNF). Each temperature and/or supply voltage vary above or below the

waveform plots the PNR and PNF measured from one of thgominal values. The mean and range paramefggg, and
500 chip-instances. The 13 line-connected points in eacRN&nip aré used to create standardized valuws|, from
waveform represent delays from the same path but measurdfie original PND according to Eq. (1). The fractiormdaj

under different environmental conditions, called tempera- (PND; —H;pyip) Ea.1
ture-voltage (TV) corners. The left-most points in the wave- ~ zval = T 9
forms (assigned 0 along the x-axis) represent the values hip Eq. 2

PND, = zval Rng ¢+ H o q-. =

measured with the conditions set to°25 1.00V. The term
enrollment refers to data collected under this (nominal) TV are transformed back into fixed point values using Eq. (2).
corner. The x-axis positions 1, 2 and 3 identify PN measured hereferencedistribution parametersyes andRngey, given

at 25°C but at supply voltages of 0.95, 1.00 and 1.05 V., Thein Ed. (2) are also user-specified configuration parameters,
legend below the figure gives the correspondence for othefdding to the FSR seeddescribed earlier.

x-axis values. The termegenerationrefers to data collected Fig 3(c) illustrates the impact of TVCOMP using the
under TV corners 1 through 12. Fig. 3(b) shows the correPND from Fig. 3(b). The samp,es andRnges is used in all

sponding PND waveforms that are computed by subtractingVCOMP transformations of the data obtained from the 500
the fall PN from the rise PN shown in (a). chip-instances at each of the 13 TV corners (Note: 500 x 13



SSSWSWSSSWSWSWWWS S paths. The value of the Modulus is also a user-specified con-
2—0ww SWWSWSWWWWWWS S SW figuration parameter, similar to theFSR seedsp,es and

_|18 N NNNUEIN }LlMaskSe(g Rnges parameters, and is discussed further below. The term
&|1e ktron%\ f values modPND is used to refer to the values used in the bitstring
S 1‘21 - % 14 generation process.
B Lo LI WA I o S Ausal 7 70 \Maskses 3.3 Bitstring Generation
P API AN ASNANN AN NI R values The bitstring generation process uses a fifth user-speci-
2| 6 ./] \/ v fied configuration parameter, called theargin, as a means

4 trong 0 of further improving the reliability of the bitstring regenera-

2 22 tion process (beyond that provided by the TVCOMP pro-

0 02 4 6 8 10 12 14 16 cess). Fig. 4 illustrates the bitstring generation process using

index two sets of 18 modPNDPfrom Chip,; labeled MaskSgtand

Fig. 4. lllustration of the Modulus-Margin process carried out by M35kse[§1- A modulus of 20 is used in combination with a
HELP for bitstring generation. set of margins of size 2 surrounding two strong bit regions of
= 6500 applications of TVCOMP are applied). The TV com- size 6. HELP classifies the modPN&sstrong (s) andweak
pensated PND are referred to BBID;. The zig-zag trends  (w) based on their position within the range defined by the
evident in (b) are eliminated in (c) and the shape of theModulus. Designators along the top given as ‘s’ and ‘w’
waveforms are closer to the ideal ‘horizontal line’. Also, in indicate the classification status of the enrollment modPND
addition to TV-related variations, TVCOMP also eliminates Data points that fall on or within the hatched areas are classi-
global (chip-wide) performance differences that occurfied as weak.
between chips, leaving only within-die variation8/DV). The Margin method improves bitstring reproducibility
WDV are widely recognized as the best source of Entropyhy eliminating data points classified as ‘weak’ in the bit-
for PUFs. As an illustration, the highlighted red waveformsstring generation process because they are too close to the
in Figs. 3(a), (b) and (c) are associated with the 25 instancesgit-flip lines of 10 and 0 (or 20). A helper data bitstring is
created on chig,. The close grouping of the waveforms in generated to record the status of the bits using 0 for weak
Fig. 3(a) and (b) illustrates that the performance characterisand 1 for strong. A strong bitstring is constructed using only
tics of all instances are similar. This is the expected resulthose data points classified as strong. When HELP is used in
because the path delays for these 25 instances are measuegtthentication protocols, both the helper data bitstring and
from the same chip. In contrast, Fig. 3(c) shows the redstrong bitstring are sent to the verifier in the clear and there-
waveforms are in fact distributed across most of the rangefore, an adversary can leverage this information to model-
and are inter-mingled with the 450 waveforms from thebuild the PUF.
remaining 19 chips. Therefore, the distinction in the PND4 Distribution Effect
attributable to global performance variations is eliminated in  As indicated above, th@ath-Select-Maskare config-
the PNQ2. WDV, on the other hand, are preserved and are thgred by the server to select different setkd¥N among the
primary source of variations that remain in the RND larger setn generated by the applied challenges (2-vector
A second important component of the variations thatSe€duences). In other words, the 4096 PN are not fixed, but
remain in Fig. 3(c) is referred to asicompensatetV noise V&Y from one authentication to the next. For example,
(TVN). TVN is portrayed by the variations in each wave- assume that a sequence of challenges produces a set of 5000

form that occur across TV corners. TVN is illustrated in the rising PN and a set of 5000 falling PN, from which the server
. » ) .~ selects a subset of 2048 from each set. The number of ways
bottom-most curve of Fig. 3(c), with the dotted lines delin- choosing 2048 from 5000 is given by Eq. 3.

eating its worst case behavior at approx. 3 LCIs (which
translates to approx. 90 ps). The probability of a bit-flip error Path-select-combos %gg% = 331 Eq. 3.
during bitstring regeneration is directly related to the magni-
tude of TVN. The primary purpose of TVCOMP is to mini- From this equation, it is clear that tiRath-Select-Masks
mize TVN and therefore, to improve the reliability of enables the PN to be selected by the server in an exponential
bitstring regeneration. However, TVCOMP can also be used-choosek fashion. However, there are only 5G0possible
to improve randomness and uniqueness in the enrollmenf2ND that can be created from these rising and falling PN.
generated bitstrings, and is at the heart of the contributiond herefore, the exponentiatselectk ways of selecting the
described in this paper. PN would be limited to choosing among thé number of

The Modulusmodule shown on the right side of Fig. 1 Pits (one bit for each PND) unless it is possible to vary the
applies a final transformation to the PNDModulus is a bit value associated with each PND. This is precisely what

standard mathematical operation that computes the ositi\}g e Distribution Effect is able to accomplish.
P P P Previous work has shown that an exponential number of

remainder after dividing by the modulus. The bias intro- o S
duced by testing paths of arbitrary length reduces random-€SPonse bits is a necessary condition for a truly strong PUF

ness and uniqueness in the generated bitstrings. The _
Modulus operation significantly reduces, and in some cases 1. The reasonwe include wo sets of modMWil be
eliminates, large differences in the lengths of the tested explained later.




MaskSet, PND distribution MaskSet; PND distribution a dependency between the PND and corresponding PND
Hehip = 0.0 Hehip= 1.0 that is based on the parameters of the entire distribution
PNDp =-9.0 The Modulus-Margingraph of Fig. 4 described earlier

illustrates this concept using data from chip-instangeThe
5% 95% 95% 18 vertically-positioned pairs of modPNDalues included

y in the curves labeled MaskSeand MaskSegf are derived
“«—» “«—» from the same PND. However, the remaining PND, i.e.,
Rngcpip = 100 RNGehip = 90 (2048-18) = 2030 PND, (not shown) in the two distributions
standardize‘ ‘ are different. These differences change the distribution

Zonbo= (-9.0 - 0.0)/100 0.09  Zpypo= (-9.0 - 1.0)/90 =0.11 paramet_erq,lchipanang:hip, ofthe_two distributions, whph
in turn, introduces vertical shifts in the PNEnd wraps in
reference Href = 0.0, Rngy¢ = 100 ‘ istribiti
transform re the modPNR. The Distribution Effect affects all of the 18
PNDgg = -0.09%100 + 0.0 =9.0 PND,=-0.11*100 + 0.0 =11.0  pairings of modPNRin the two curves except for the point
Fig. 5. Impact of the TVCOMP process on PNpwhen members of circled in red.
the PND distribution change for different mask set#A and B. The Distribution Effect can be Ieveraged by the verifier
but not a sufficient condition. The responses must also bas a means of increasing the unpredictability in the generated
largely uncorrelatedas a means of making it difficult or response bitstrings. One possible strategy is to intentionally
impossible to apply machine learning algorithms to model-introduce skew into th@ih, and Rngy, parameters when
build the PUF. The analysis provided in this section showsonfiguring thePath-Select-Maskas a mechanism to force
that the Path-Select-Masksin combination with the diversity in bit values derived from the same PN, i.e., those
TVCOMP process add significant complexity to the PN that have been used in previous authentications. The sort-
machine-learning model. ing-based technique described in the next section represents
The set of PN selected by thPath-Select-Mask ©n€ such technique that can be used by the server for this

changes the characteristics of the PND distribution, which ifPUrPose.

turn impacts how each PND is transformed through thed EXperimental Results o
earlier in reference to Eqgs. 1 and 2. In particular, Eq. 1 use§Sing a specialized process that enables a systematic evalua-
the Pehip and Rngpyp of the measured PND distribution to tion of the Distribution Effect. As indicated earlier, the num-

standardize the set of PND before applying the second tran{" Of possible PN distributions is exponentiaiohoosek),
formation given by Eq. 2. making it impossible to enumerate and analyze all possibili-

ties. The fixed number of data sets constructed by our pro-
Fig. 5 provides an illustration of the TVCOMP process. cess therefore represents only a small sample from this
The two distributions are constructed using data from theexponential space. However, the specialized construction
same chip but selected using two different setsPath-  process described below illustrates two important concepts,
Select-MasksMaskSef and MaskSgf. The point labeled namely, the ease in which bitstring diversity can be intro-
PNDy is present in both distributions, with value -9.0 as duced through the Distribution Effect, and the near ideal
labeled, but the remaining components are purposely chosd@sults that can be achieved, i.e., the ability to create bit-
to be different. Given the two distributions are defined usingstrings using the same PN that possess a 50% Interchip
distinct PND (except for one member), it is possible that theHamming distance. Our evaluation methodology ensures the
Henip and Rngyy,i, parameters for the two distributions will oply parameters that can change are those related to the dis-
also be different (a simple algorithm is described below thaffiPution, namelypenip, andRngypp, so the differences in the
ensures this). The example shows thatjig, andRngyh, bitstrings r(_epqrteq are due entirely to the D_|str|byt|on Effeg:t.
measured for the MaskSetdistribution are 0.0 and 100, The distributions that we construct in this analysis

resp., while the values measured for the Mask@tistribu-  "'¢lude a fixed set of 300 rising and 300 falling PN drawn
tion are 1.0 and 90 randomly from ‘Master’ rise and fall PN data sets of size

7271. The bitstrings subjected to evaluation use only these
The TVCOMP process builds these distributions, mea-PN, which are subsequently processed into PND, Palil
sures theilichip andRngy,j, parameters and then applies Ed. modPND, in exactly the same way except for they, and
1to 'standardizethe PND of both di_strit_)utions. The stan- RNy, used within TVCOMP process. They, andRng-
dardized values for PNgin each distribution are shown as - chip Of each distribution are determined using a larger set of
0.09 and -0.11, resprhis first transformation is at the 2048 rise and fall PN, which includes the fixed sets of size
heart of the Distribution Effect, which shows that the 300 plus two sets of size 1748 (2048 - 300) drawn randomly
original value of -9.0 is translated to two different stan-  gach time from the Master rise and fall PN data sets. There-
dardized values. TVCOMP then applies Eq. 2 to translate ¢qore the Henip and Rngyy, parameters of these constructed

the standardized values back into an integer range Usiig yisyinutions are largely determined by the 1748 randomly
andRngey, given as 0.0 and 100, resp. for both distributions. ggjected rise and fall PN.

The final PNR from the two distributions are -9.0 and - A windowing technique is used to constrain the ran-
11.0, respThis shows that the TVCOMP process creates domly selected 1748 rise and fall PN as a means of carrying
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Fig. 6. lllustration of the distribution creation process using a Master
distribution of 7271 PND. The ‘X’s represent the set of randomly left ht i
selected 300 fixed PND that are included in the EVERY distribution. A et to nght over the

set of windowsW, are used to confine the selection of the 1748 ; ; ;
remaining PNDXto specific regions within the sorted Master The WmeWSWX are sized to contain 2000 PND and

distribution. This process is used to generate a set of 528 PND therefore, the width of eact varies according to the den-
distributions of size 2048. . _— . . . .

) i i sity of the distribution. Each consecutive window is skewed
out a systematic evaluation which ensures thatifig, and o the right by 10 elements in the Master PND distribution.
Rnghip parameters increase (or decrease) by small deltassiven the Master contains 7271 total elements, this allows
Since TVCOMP derives thgc, and Rngy,, parameters 528 windows (and distributions) to be created. The 2048

from the PND distribution, our random selection process isPND for each of these 528 distributions, referred to/gs

applied to a Master PND distribution as a means of enablinglistributions, are then used as input to the TVCOMP pro-

better control over thpgpi, andRngy, parameters. cess. The 300 fixed PND are present in all distributions and
The Master PND distribution is constructed from the therefore, prior to TVCOMP, they are identical in value.

Master PNR and PNF distributions in the following fashion. ~ The objective of this analysis is to determine how much
The 7271 elements from the PNR and PNF Master distributhe bitstrings change as then, andRng;, parameters of
tions are first sorted according to their worst-case simulatiorihe W, distributions vary. As noted earlier, the bitstrings are
delays. The rising PN distribution is sorted from largest toconstructed using only the 300 fixed PND, and are therefore
smallest while the falling PN distribution is sorted from of size 300 bits. We measure changes to the bitstrings using a
smallest to largest. The Master PND distribution is then creteference bitstring, i.e., the bitstring generated using\ige

ated by subtracting consecutive pairings of PNR and PNRjjstribution. Interchip Hamming distancdnterchipHD )
from these sorted lists, i.e., PNB PNR - PNF fori=0to  counts the number of bits that are different betweenwie
7271. This construction process creates a Master PND distryjtstring and each of the bitstrings generated by\Wedis-
bution that possesses the largest possible range among gl tions, forx = 1 to 527. The expression used for comput-
possible PNR/PNF pairing strategies. ing InterchipHD is discussed further below.

A histogram portraying the PND Master distribution is The construction process used to createWheW, dis-

shown in Fig. 6. The PNR and PNF Master distributions (nottribution airinas ensures that a difference exists in
shown) from which this distribution is created were created P 9 1o

from simulations of thesbox-mixedcolfunctional unit ~andRNGnip parameters. Fig. 7 plots the average difference in
described in Section 3 using approx. 1000 challenges (2-vedhe Hchip and Rngy, of eachWg-W pairing, using FPGA
tor sequences). The range of the PND is given by the widthlata measured from the 500 chip-instances. The differences
of the histogram as approx. 1000 LCls (~18 ns). are created by subtracting th&, parameter values, e.g.,
The 2048 rise and fall PN used in the set of distributionsjicyipwyandRngnipwy from the reference\ parameter val-
e_valuart]ed below are S(-i-jlgct%d from thllskMar:]ster PND déstnbuueS, €.0-HehipwoaNdRNGpipwo The W distribution param-
tion. The PND Master distribution (unlike the PNR and PNF o615 are given a8chip = -115.5 andRngyyj, = 205.1 in the
Master distributions) permits distributions to be created Sucqigure As the window is shifted to the right, the mean
that the change in thegp andRngyyp parameters from one increases towards 0, and the correspondifig {W,) differ-

distribution to the next is controlled to a small delta. The redence becomes more negative in nearly a linear fashion as
‘X's in Fig. 6 illustratively portray that the set of 300 fixed 9 y

PND (and corresponding PNR and PNF) are randoml)'lShown by the curve labelegpp differences’. Using thé\
selected across the entire distribution. These 300 PND aré&luescnip varies over the range from -115 to approx. +55.
then removed from Master PND distribution. The remaining ~ The range, on the other hand, decreases as window
1748 PND for each distribution are selected from specificshifts to the right because the width of the window contracts
regions of the Master PND distribution as a means of con{due to the increased density in the histogram), until the mid-
straining theplehip and Rngyy,i, parameters. The regions are point of the distribution is reached. Once the mid-point is
called windows in the Master PND distribution and are reached, the range begins to increase again. UsingMpe
labeledw, along the bottom of Fig. 6. values,Rngy;, varies from 205 down to approx. 105 at the

Fig. 7. Change inpichjpand RngChi&gzttgredvi\gtnr?b%vtvi\é\éx is moved from
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o )stays 1, ,J1wo o 1 Margin scheme.
15p0= - - - -~ JJoto1r T . _D_St;y_sa T _6 for two phipsCX andC, are shovyn glong the tgp and bottom
10 -----—-—-"-—-—"-—"--—"-"---- i of the figure, resp. ThélelpD bitstrings classify the corre-
1 2 3 4 5 ] sponding raw bit as weak using a ‘0’ and as strong using a
Chip Number ‘1. The InterchipHD is computed by XOR’ing only those
Fig. 8. lllustration showing ‘shifting’ (y-axis) introduced by BitStr bits from theCy andCy that have BOTHHelpD bits

Distribution Effect on a single PNy for 5 different chips (x-axis) as getto ‘1, i.e., both raw bits are classified as strong. This pro-
window Wy from Fig. 6 is shifted from W, (lowest points) through Wz, ce intai l tin the t bitstri d

Wsgand Wos (top points). ss maintains alignment in the two bitstrings and ensures
) ) ) ] the same modPNDfrom C, and C, are being used in the
mid-point. Note that the window construction method cre-|erchinHD calculation. Note that the number of bits con-
ates nearly all possiblgehip values but only a portion of the - gigereq in each InterchipHD is less than 300 using this
possibleRng,y, values, e.g., distributions with ranges up to method, and in fact, will be different for each pairing.

nearly 1000 can be constructed from this Master PND distri-  Eq. 4 provides the expression for InterChipHED e,

bution. Therefore, the results reported below represent a coR ¢ takes into consideration the varying lengths of the indi-
servative subset of all possible distributions. vidual InterchipHDs. The symboNC, NB, andNCCrepre-
Also note thatRng;, continues to change throughout

the set oW, distributions. This occurs because the range is E BN B BS . 0BS %
measured between the 6.25% and 93.75% points in the histo- H . NC NC %(Z (BS; k J k)%

gram representation of the 2048 element PND distributions.HD, . = %—é—c z z =1 NE Ox 100

If the extreme points were used instead, Rieg.,, values 0 i=1j=i+1 x E

from Fig. 7 would become constant once the window moved E H Eq. 4.

inside the points defined by the fixed set of 300 PND.

Fig. 8 provides an illustration of the Distribution Effect sent ‘number of chips’, ‘number of bits’ and ‘number of chip

- L combinations’, resp. We used 500 chip-instances for the
using data from several chip-instances. The effect on ND ‘number of chips’, which yields 500%499/2 = 124.750 for

is shown for 5 chips given along the x-axis for four windows \cc, This equation simply sums all the bitwise differences
given asWo, Was, Wsp andWys. The bottom-most points areé  peqyeen each of the possible pairing of chip-instance bit-
the PNDQ for the distribution associated withjy. As the  stringsBSas described above and then converts the sum into
index of the window increases, the Ppjrom those distri- a percentage by dividing by the total number of bits that
butions is skewed upwards. A modulus grid of 20 is shownwere examined. The final value Bit cnterfrom the center
superimposed to illustrate how the corresponding bit value®f Fig. 9 counts the number of bits that are usedNd, in
change as the parameters of the distributions change. Eq. 4, which varies for each pairing as indicated above.

We use InterchipHD to measure the number of bits that ~ The InterchipHD results shown in Fig. 10 are computed
change value across the 5&/-W, distributions. It is impor-  using enroliment data collected from 500 chip-instances of a
tant to note thawve apply InterchipHD to only those por- Xilinx Zyng 7020 chip as described earlier. The x-axis plots
tions of the bitstring that correspond to the fixed set of  the Wo-W pairing, which corresponds one-to-one with the
300 PN InterchipHD counts the number of bits that differ graph shown in Fig. 7. The HELP algorithm is configured
between pairs of bitstrings. Unfortunately, InterchipHD can-With a Modulus of 20 and a Margin of 3 in this analysis (the
not be applied directly to the HELP algorithm-generated bit-results for other combinations of these parameters are simi-
strings because of the Margining technique described ifar). The HDs are nearly zero for cases in which in windows
Section 3.3. Margining eliminates weak bits to create the/Vp and W, have significant overlap (left-most points) as
strong bitstring (SBS), but the bits that are eliminated areexpected because tfgy;, and Rngy,, of the two distribu-
different from one chip-instance to another. In order to pro-tions are nearly identical under these conditions (see left side
vide a fair evaluation, i.e., one that does not artificially of Fig. 7). As the windows separate, the InterchipHDs rise
enhance the InterchipHD towards its ideal value of 50%, thgyuickly to the ideal value of 50% (annotatedvéW, pairing
bits compared in the InterchipHD calculation must be gener— 4), demonstrating that the Distribution Effect provides sig-
ated from the same modPRD nificant benefit for relatively small shifts in the distribution

Fig. 9 provides an illustration of the process used forparameters.
ensuring a fair evaluation of two HELP-generated bitstrings.  The overshoot and undershoot on the left and right sides
The helper data bitstringslelpD and raw bitstringsBitStr ~ of the graph in Fig 10 reflect correlations that occur in the



100 N hi sent the challenges a@th-Select-Maskd his adds consid-
Strong Bitstring Interchip HD erable time and complexity to an impersonation attack,
Modulus = 20 beyond that required to build an accurate model. Unfortu-
75 Margin = 3

nately, a closed-form quantitative analysis of the benefit pro-
vided by the Distribution Effect is non-trivial to construct.
Our on-going work is focused on determining the difficulty
of model-building the HELP PUF as an alternative.

6 Conclusions

A novel entropy-enhancing technique called the Distri-
i) 100 500 300 200 500 | bution Effe_ct is pro_pose_d for the HELP PUF that is based on
Distribution Pairing Wy W) Number purposely mtroducm_g blasges in the mean anc{ range parame-
_ ! N9 o) o ters of path delay distributions. The biased distributions are
Fig. 10. Interchip HD of strong bitstrings derived from distributions  then used in the bitstring construction process to introduce
in which 300 of the modPNRvalues are fixed (common) in each pair diff in the bi | iated with h del h
of distributions of size 2048. ifferences in the bit values associated wit pat e ayS that

movement of the modPNDor special case pairs of they, would normally remain fixed.The Distribution Effect
P P hip -~ changes the bit value associated with a PUF’s fixed and

andRngyyp parameters. For example, for pairings in Which imiteq underlying source of Entropy, expanding the
the Rng;hip of the two distributions are identical, Shlftlng CRP space of the PUFThe technique useBath-Select-
Hchip causes all modPNDo rotate through the range of the Masksand a TVCOMP process to vary the path delay distri-
Modulus (with wrap). Fopigpi, shifts equal to the Modulus, butions over an exponential set of possibilities. The Distribu-
the exact same bitstring is generated by both distributionsiion Effect is likely to make the task of model-building the
This case does not occur in our analysis otherwise the curvBELP PUF significantly more difficult, which is supported
would show instances where the InterchipHD is 0 at place®Y our on-going work in this area.

other than when X = 0. FQIgp, shifts equal to 1/2 Modulus - 7 References
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