
Abstract

Statistical properties including uniqueness, randomness and repro-
ducibility are commonly used as metrics for Physical Unclonable
Functions (PUFs). When PUFs are used in authentication proto-
cols, the first two metrics are critically important to the overall
security of the system. In this paper, we investigate the statistical
qualities of bitstrings generated by a Hardware-Embedded Delay
PUF called HELP using hardware data collected from a set of 500
Xilinx Zynq FPGAs. HELP measures and analyzes variations in
path delays that occur within a hardware-implemented macro. Two
novel techniques are proposed in which the verifier computes a set
of offsets that are used to fine tune the token’s digitized path delays
as a means of maximizing Entropy and reproducibility in the gener-
ated bitstrings. The offsets are derived from the enrollment data
stored by the server in a secure database. A population-based offset
method is proposed which computes median values using data from
multiple tokens (the population). A second chip-specific technique
is proposed which fine tunes path delays using the stored enroll-
ment data associated with the authenticating token. The analysis of
FPGA data shows that the population-based offset method signifi-
cantly improves Entropy while the chip-specific technique, used
alone or in combination with the population-based method, signifi-
cantly improves reproducibility.

1  Introduction
Security and trust have become critically important for a

wide range of existing and emerging microelectronic sys-
tems including those embedded in aerospace and defense,
industrial ICS and SCADA environments, automotive and
autonomous vehicles, data centers, communications and
medical healthcare devices. The vulnerability of these sys-
tems is increasing with the proliferation of internet-enabled
connectivity and unsupervised in-field deployment. Authen-
tication and encryption are heavily used for ensuring data
integrity and privacy of communications between communi-
cating devices. These protocols require keys and bitstrings
(secrets) to be stored in non-volatile memory (NVM). Cur-
rent methods utilizing a NVM-based key represent a vulner-
ability, particularly in fielded systems where adversaries can
access the hardware and carry out probing and other invasive
attacks uninhibited. Physical Unclonable Functions or PUFs
on the other hand provide an alternative to NVM-based key-
storage, and for the generation of unique and unpredictable
authentication information.

PUFs extracts random information (Entropy) from vari-
ations in the physical and electrical properties of ICs, that
are unique to each IC, as a means of generating digital
secrets (bitstrings). The type and amount of information
available to a PUF through these physical-layer variations in
the chip are critically important security properties, and are
the most often cited benefits of PUFs over conventional
NVM-based alternatives.

A PUF is defined by a source of on-chip electrical varia-
tions. The hardware-embedded Delay PUF (HELP) investi-
gated in this paper generates bitstrings from delay variations

that occur along paths in an on-chip macro (functional
unit ), such as a cryptographic primitive. Therefore, the cir-
cuit structure that HELP utilizes as a source of random infor-
mation differs from traditional PUF architectures which use
precisely placed and routed arrays of identically designed
components. In contrast, HELP imposes no restrictions on
the physical layout characteristics of the Entropy source.

This departure from a traditional definition of a PUF
architecture provides both advantages and disadvantages. An
important advantage is related to the effort involved in con-
structing the functional unit and the diversity in the number
of possible implementations. For example, commercial logic
synthesis tools such as Xilinx Vivado can be used to quickly
build multiple implementations of the functional unit. Each
implementation is identical in function but has a unique cir-
cuit architecture and therefore, a unique set of path delays.

The widely varying nature of path delays in an arbi-
trarily synthesized functional unit represents the disadvan-
tage. Unlike PUFs with identically designed components,
comparing the delays of paths within the functional unit dur-
ing bitstring generation introduces bias. Bias reduces the sta-
tistical quality of the bitstrings by skewing the distribution of
‘0’s and ‘1’s away from the ideal of 50%. Although it is pos-
sible to implement a bitstring generation algorithm that iden-
tifies and compares paths that are nearly equal in delay to
address this problem, the effectiveness of the procedure
would depend on the quality of the delay model and/or char-
acterization data. Furthermore, implementing constraints of
this nature would increase the complexity of the bitstring
generation algorithm.

Instead, HELP addresses the path length bias problem
by first subtracting pairs of path delays and then applying a
modulus operation to the difference. The modulus operator
divides the path delay differences by a constant, which we
refer to as themodulus, and returns the remainders. The
modulus is chosen to minimize the bias that remains in the
differences for pairings of paths that are originally of differ-
ent lengths, while simultaneously preserving the smaller
delay variations that occur because of random processes,
e.g., within-die process variations.

In order to ensure that bias is minimized for all path
pairing combinations used to generate bits, the modulus
needs to be as small as possible. This is true because the
range of the smaller and randomly varying component of
path delays that contribute to the randomness and uniqueness
properties of HELP-generated bitstrings is upper bounded.
The modulus is also lower bounded by temperature and
power supply noise sources which adversely affect bitstring
reliability. Therefore, the range ofsuitable moduli that
achieve the PUF’s primary goals of producing unique, ran-
dom and reproducible bitstrings is upper and lower bounded
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to a specific range.
In this paper, we proposepopulation-basedandchip-

specific offsetmethods for improving Entropy, reliability
and the length of the HELP generated bitstrings. The meth-
ods build on a concept first presented in [1]. The population-
based offset method can also widen the range of suitable
moduli that can be used while maintaining zero-information
leakage in the helper data. Information leakage associated
with the chip-specific offset method can be kept near zero
with constraints imposed on the parameters used by the
HELP engine.

We describe the techniques in reference to a PUF-based
authentication scenario [1][2], which occurs between a hard-
ware token and a verifier. In our proposed authentication
protocol, a set of path delays are measured and stored by the
verifier in a secure database during the enrollment process,
i.e., before the token is released for field use. The proposed
population-based offset method also requires the verifier to
compute and store a set ofmedianvalues of each path delay
using the enrollment data of all tokens (the population). Dur-
ing authentication, the verifier selects a modulus and then
computes the difference between the mean path delays and
the modulus, and encodes the differences (calledoffsets) in
the challenge data sent to the token. The token and verifier
add the offsets to the path delays before computing the cor-
responding bits. The offsets effectively shift the distributions
of the path delays such that approx. half of the chips gener-
ate a ‘0’ and half generate a ‘1’, maximizing the Entropy of
each generated bit.

We evaluate the effectiveness of the offset technique
using inter-chip Hamming distance and Entropy metrics
from data collected from a set of Xilinx Zynq FPGAs. The
results are compared with those obtained using the original
‘unshifted’ data. The following summarizes the specific con-
tributions of this paper.
• We discuss the implementation details of the proposed

population-based and chip-specific offset methods, as
well as their benefits and limitations.

• Statistical tests including Entropy, Min-Entropy, Inter-
chip hamming distance (HD), Intra-chip HD and the
NIST statistical test suite are used to show the impact of
the offset methods on Entropy, uniqueness and repro-
ducibility.

• The overhead associated with the offset methods is
compared with previously proposed ECC methods.
The remainder of this paper is organized as follows.

Section 2 presents related work and Section 3 provides an
overview of HELP. Sections 4 and 5 provide details on the
population-based offset method and a second chip-specific
offset method, resp, and corresponding experimental results.
Section 6 compares the overhead associated with PUF bit
and Helper data generation with previous proposed ECC
methods and summarizes FPGA resource utilization. Con-
clusions are provided in Section 7.
2  Related Work

Implementation-related bias that is associated with iden-
tically-designed PUF architectures, in particular, the Arbiter
PUF, have been addressed in [5] with a Programmable Delay
Line (PDL) and in [6][7] using a Double Arbiter PUF. The
authors in [8] propose to select adjacent RO pairs as a means
of reducing systematic across-chip bias effects. A regres-

sion-based distiller is proposed to decouple systematic varia-
tions of the RO PUF in [9]. The authors in [10] proposed a
framework that enables Optical Proximity Correction (OPC)
to increase the randomness and uniqueness for PUFs. A sta-
tistical metric which evaluates architectural bias is proposed
in [11] and applied to variants of the Arbiter PUF. A recent
work [12] summarizes and compares the efficiency and over-
head of several Error Correction Codes (ECC) methods pro-
posed previously in [13-18]. They also propose a lightweight
key reconciliation based ECC method.

HELP and the population-based method are described in
previous work [1], [3] and [4]. However, a thorough and
comparative analysis of the population-based offset method,
alone and in combination with a new chip-specific method,
is presented for the first time in this paper. The data from the
overhead analysis presented for the ECC methods in [12] is
leveraged in our comparative analysis.
3  HELP Overview

HELP attaches to an on-chip module (functional unit),
such as a hardware implementation of the cryptographic
primitive, as shown in the block diagram of Fig. 1. The logic
gate structure of the functional unit defines a complex inter-
connection network of wires and logic gates. The functional
unit in the block diagram is a 32-bit column from Advanced
Encryption Standard (AES) which includes 4 copies of the
SBOX and 1 copy of the MIXEDCOL (calledsbox-mixed-
col) [19][20]. This combinational data path component is
implemented in a Wave Dynamic Differential Logic
(WDDL) logic style [21], which doubles the number of pri-
mary inputs and primary outputs to 64. The implementation
of sbox-mixedcolrequires approx. 3000 LUTs on a Xilinx
Zynq FPGA and provides approx. 8 million paths. Although
the analysis carried out in this paper usessbox-mixedcol,
alternative lighter-weight functional units can also be used
[22].

HELP accepts challenges as 2-vector sequences. The
vector sequences are applied to the primary inputs of the
functional unit and the delays of the sensitized paths are
measured at the primary outputs. Path delay is defined as the
amount of time (∆t) it takes for a set of 0-to-1 and 1-to-0
transitions introduced on the primary inputs to propagate
through the logic gate network and emerge on a primary out-
put.

A clock-strobing technique is used to obtain high reso-
lution measurements of path delays as shown on the left side
of Fig. 1. A series of launch-capture operations are applied in
which the vector sequence that defines the input challenge is
applied repeatedly using the Launch row flip-flops (FFs) and
the output responses are measured using the Capture row
FFs. On each application, the phase of the capture clock,
Clk2, is incremented forward with respect toClk1, by small
∆ts (approx. 18 ps), until the emerging signal transition is
successfully captured in the Capture row FFs. A set of XOR
gates connected between the inputs and outputs of the Cap-
ture row FFs provide a simple means of determining when
this occurs. When an XOR gate value becomes 0, then the
input and output of the FF are the same (indicating a suc-
cessful capture). The first occurrence in which this occurs
during the clock strobing operation causes the current phase
shift value to be recorded as the digitized delay value for this
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path. The current phase shift value is referred to as the
launch-capture-interval (LCI )1. TheClock strobemodule is
shown in the center portion of Fig. 1.

The digitized path delays are transferred by theStorage
module into an on-chip block RAM (BRAM). Each digitized
timing value is stored as a 16-bit value, with 12 binary digits
serving to cover a signed integer range of [-2048, 2047] and
4 binary digits of fixed point precision to enable up to 16
samples of each path delay to be averaged. The upper half of
the 16 KB BRAM shown in Fig. 1 allows 4096 path delays
to be stored.

The challenges for HELP are defined as a set of 2-vector
sequences,Path-Select-Masksand offsets. ThePath-Select-
Masks and offsets are also constructed by the verifier, along
with the 2-vector sequences. APath-Select-Maskis associ-
ated with each 2-vector sequence, and is used to select a sub-
set of the delays produced for paths tested by the 2-vector
sequence. The selected delays are stored in the BRAM for
subsequent processing. The offsets are described below and
are the focus of this paper. HELP configures the challenges
to test 2048 paths with rising transitions and 2048 paths with
falling transitions. The digitized path delays are referred to
as PUFNums orPN.
3.1  PN Processing

Once the PN are collected, a sequence of mathematical
operations are applied as shown on the right side of the Fig.
1 to produce the bitstring and helper data. ThePNDiff mod-
ule creates unique, pseudo-random pairings between the ris-
ing and falling PN using two 11-bit linear feedback shift
registers (LFSRs). Two 11-bitLFSR seedsare used to initial-
ize the LFSRs, and are referred to asconfiguration parame-
ters. The two 11-bit LFSR seeds (as well as several other
configuration parameters described below) are derived from
an XOR’ed nonce using two nonces generated separately by
the token and verifier during authentication [1]. The PN dif-
ferences (PND) are defined as (rising PNLFSR1(i) - falling
PNLFSR2(i)), wherei = 0 to 2047. The PND are stored in the
lower portion of the BRAM.

Changes in the temperature and supply voltage (TV)
negatively impact bitstring reproducibility. HELP uses aTV
compensation(TVComp) process to reduce variations in the
PND introduced by changes in TV conditions (called TV

1. Table 3 at the end of this paper defines all of the acro-
nyms used in this document.

noise).TVCompis applied to the set of 2048 PND stored in
BRAM. The TVCompprocedure first converts the PND to
‘standardized’ values. Eq. (1) represents the first transforma-
tion which makes use of two constants,µchip and Rngchip,
obtained by measuring the mean and range of the histogram
distribution defined by the PND. The second transformation

is represented by Eq. (2), which translates the standardized
zvalsto a new distribution with meanµref and rangeRngref.
Theµref andRngref constants are alsoconfigurationparame-
ters of the HELP algorithm. TheTVComp’ed PND are
referred to asPNDc.

The variations that remain in the PNDc are those intro-
duced by within-die variations (WDV ) anduncompensated
TV noise (UC-TVNoise). UC-TVNoise sets the low bound
on the range of suitable moduli as discussed earlier, while
WDV defines the upper bound. The offset method described
below is designed to extend the range of suitable moduli
upwards while maintaining or improving the randomness,
uniqueness and reproducibility statistical quality metrics of
the generated bitstrings.

The offset and modulus operations are applied as the 3rd
and 4th operations by theOffset & Mod.module shown on
the right side of Fig. 1. The offsets are computed by the
server and transmitted to the token as a component of the
challenge. Offsets are added to the PNDc to producePNDco.
The modulus operator computes the positive remainder after
dividing the PNDco by the modulus value. The final values,
referred to asmodPNDco, are used by theBitGenmodule to
generate the bitstring.
3.2  Bitstring Generation

TheBitGenmodule uses a fifthconfigurationparameter,
called themargin, as a means of improving reliability. As an
example, the curves labeled PNDco in Fig. 2(a) plot 18 of the
2048 PNDco from Chip1 along the x-axis. The red curve
line-connects the data points obtained underenrollment
conditions (25oC, 1.00V) while the black curves line-con-
nects data points under a set of 12regenerationTV corners,
which in our experiments, is all combinations of tempera-
tures -40oC, 0oC, 25oC, 85oC with supply voltages 0.95V,

Eq. 1.zvali
PNDi µchip–( )

Rngchip
------------------------------------=

PNDci zvaliRngref µref+= Eq. 2.

Fig. 1. Block diagram of the HELP Entropy source (left) and HELP processing engine (right).
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1.00V and 1.05V.

The curves plotted in the center of Fig. 2(a) show the
modPNDco values after a modulus of 20 is applied. Fig. 2(b)
enlarges this region and includes a set of margins of size 2
surrounding two strong bit regions of size 6. HELP classifies
the modPNDco as strong (s) andweak (w) based on the
region in which it is located. Designators along the top given
as ‘s0’, ‘s1’, ‘w0’ and ‘w1’ indicate the classification status
and bit value of the enrollment modPNDco (red points). Data
points that fall on or within the hatched areas are classified
as weak.

The margin method improves bitstring reproducibility
by eliminating data points classified as weak in the bitstring
generation process. For example, the data points at indexes
14 and 16 would introduce bit flip errors at one or more of
the TV corners during regeneration because at least one of
the regeneration data points is in the opposite bit region than
its corresponding enrollment value. The termSingle Helper
Data (SHD) refers to the bitstring generated by this bit-flip
avoidance scheme because the classification of the modP-
NDco as strong or weak is determined solely by the enroll-
ment data.

A second technique, referred to as theDual Helper
Data (DHD) scheme, requires that both the enrollment and
regeneration modPNDco be in strong bit regions before
allowing the bit to be used in the bitstring during regenera-
tion by either the token or verifier. In the DHD scheme, SHD
is first generated by both the token and verifier and the SHD
bitstrings are exchanged. A DHD bitstring is created by bit-
wise ‘AND’ing the two SHD bitstrings. The DHD scheme
doubles the protection provided by the margin against bit-
flip errors because the modPNDc produced during regenera-
tion must now move (because of UC-TVNoise) across both a
‘0’ and ‘1’ weak region before it can introduce a bit-flip
error. This is true because both the enrollment and regenera-
tion modPNDco must be classified as strong to be included in
the bitstring and the strong bit regions are separated by
2*margin.

Fig. 2(b) highlights four cases where an enrollment-
classified strong bit would be reclassified as weak in the
DHD scheme. This occurs for only those regeneration mod-
PNDco that fall within a weak region. Therefore, the DHD
scheme also enables different bitstrings to be produced each
time the token authenticates even when using the same chal-
lenges andconfiguration parameters. The bitstrings con-
structed using only strong bits are referred to asStrongBS.

4  Population-Based Offset Method
The modulus operation described earlier removes most,

but not all, of the bias associated with the paths of different
lengths. The offset method is designed to remove the remain-
ing component of this bias. It accomplishes this by shifting
the individual PNDc upwards. The shift amount, which is
always less than 1/2 the modulus, is computed by the server
using the enrollment data associated with a subset of the
tokens stored in its database.The objective of the popula-
tion-based offset method is to increase Entropyby adjust-
ing the population associated with each PNDc such that the
number of tokens which generate 0 is nearly equal to the
number that generate a 1. The best results are obtained when
data from the entire database is used. However, significant
improvements in Entropy can be obtained using smaller, ran-
domly selected subsets of tokens in cases where the database
is very large. Note that the offset method adds a third compo-
nent to the challenge (beyond the 2-vector sequences and
Path-Select-Masks).

In a typical authentication round, a token (fielded chip)
and verifier (secure server) exchange nonces to decide on the
set of HELPconfigurationparameters to be used. The veri-
fier selects a set of 2-vector sequences and then randomly
chooses 2048 rising PN (PNR) and 2048 falling PN (PNF)
from those generated by the 2-vector sequences. The server
constructs a set ofPath-Select-Masksas a means of convey-
ing this information to the token. For each PNR and PNF, the
server also computes an offset (discussed below). The chal-
lenges, which include the 2-vector sequences,Path-Select-
Masks and offsets, are then transmitted to the token.

The server computes the population-based offsets using
the PNR and PNF stored in its enrollment database. Fig. 3
shows an example Enrollment database with rows corre-
sponding to tokens, Tx, and columns corresponding to PNR/

Fig. 2. (a) Conversion from PNDc to modPNDc and (b) Strong/Weak PNDc classification using margining.
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PNF. As noted earlier, the offsets are applied to the token’s
PNDc and not to the PNR and PNF. Therefore, software ver-
sions of thePNDiff andTVCompmodules need to be applied
to the enrollment data to generate PNDc from the PNR and
PNF stored for each of the tokens in the database. Once
PNDc are available, the population-based offset method
computes the ‘median’ value of each PNDc. The medians
split the token population into two halves and enable the off-
set method to skew each PNDc individually to meet the goal
of maximizing Entropy.

The availability of the enrollment data makes it possible
for the server to pre-compute the median PNDc in advance
of authentication requests, thereby reducing server-side
delays. Unfortunately, the HELP authentication protocol
makes this intractable. As we noted earlier, the LFSR seeds,
andµref and Rngref configuration parameters used to create
the PNDc are selected from an XOR combination of token
and server generated nonces, and are not known in advance.
Moreover, thePath-Select-Masksgenerated by the server are
also derived on-the-fly using a random process. Therefore,
the number of median PNDc that the server would need to
compute in advance is exponential to the number of stored
PNR and PNF.

We developed two alternative techniques that address
this issue. The first approach, called the Fast-Pop-Offset
Method, computes the medians of the PNR and PNF from
the database in advance (addressing the compute time bur-
den on the server) and then applies thePNDiff operation to
these precomputed median PNR and PNF after the LFSR
seeds become available during authentication.TVCompis
then applied to the set of median PND to obtain the median
PNDc. An illustration of this method, labeled Fast-Pop-Off-
set Method, is provided along the top of Fig. 4. The benefit
of this approach is that it is fast because the precomputed
median PNR and PNF are leveraged and only onePNDiff
and TVCompoperation is required to obtain the median
PNDc. The drawback is that it is only able to approximate
the true median values of the PNDc. This is true because this
technique is defined mathematically as shown by the left-
hand side of Eq. 3 while the HELP algorithm implements the
operation on the right-hand side. Here,medis an operation

that computes the median using data from all tokens.

The second approach waits for the authentication
parameters to become available and then applies the standard
HELP algorithm processes to the enrollment data using soft-
ware versions of thePNDiff and TVCompprocesses (as
given by the expression on the right-hand side of Eq. 3). As
indicated earlier, only the enrollment data from a subsets of
the tokens is required to obtain good estimates of the popula-
tion medians. This requiress applications of thePNDiff and
TVCompoperations, once for each of thes tokens. The
median PNDc can then be computed from these sets of
PNDc. An illustration of this second method, labeled Accu-
rate-Pop-Offset Method, is provided along the bottom of Fig.
4. This approach requires more compute-time by the server
but provides higher levels of Entropy in the resulting bit-
strings. The Accurate-Pop-Offset Method is used to generate
the results presented in subsequent sections of this paper.

Once the 2048 median PNDc are available, the popula-
tion-based offsets are computed for each of the token’s 2048
PNDc used in the authentication round. The offsets are inte-
gers that discretize the vertical distance from each median
PNDc to the nearest 0-1 line located above the median PNDc.

The integer range for each offset is 0 to 2OB, with OB repre-
senting the number of offset bits used for each offset (OB is a
server-defined parameter). The token and server multiply
these integers by the Offset Resolution (OR) defined below
to obtain the actual (floating point) offsets added to the
PNDc.

LargerOBprovide higher resolution but also have larger
overhead. Eq. 4 expresses the offset resolution as a function

TVComp med(PNR) med(PNF)–( ) med(TVComp(PNR-PNF))≠

Eq. 3.

Fig. 4. Two methods for computing population-based median PNDc
values. Method #1 leverages precomputed PNR and PNF medians
from Enrollment database while Method #2 computes population-

based median PNDc from individual token stored data values.

Fig. 3. Example Enrollment database (DB) stored on server showing
rising PN (PNR) and falling PN (PNF) in a set of columns for a set of

tokensTx in the rows. A larger setn = 5000 PNR and PNF are collected
to allow the server to randomly select a smaller setk = 2048, i.e., ann-

select-k operation, of PNR and PNF for an authentication round.
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of the number of Offset Bits (OB). For example, using a 4-bit
offset indicates that the offset data transmitted to the token is
4*2048 = 8192 bits in length. If a modulus of 20 is used,
then the offset resolution is 20/24+1= 20/32 = 0.6250. There-
fore, offsets specified using 4 bits vary from 0 to 15 and
allow upward floating point skews of 0.0000, 0.6250, 1.2500
... 9.3750 to be added to each of the 2048 PNDc. The PNDc
with offset applied are referred to as PNDco.

Fig. 5 provides an example illustration of the process
using one PNDc. The points in the vertical line graph repre-
sent a PNDc derived from 500 PNR and PNF token data sets
stored in the Enrollment database. The median PNDc value
is shown as a horizontal dotted line. The server computes the
distance between the median and the center-located 0-1 line
as 4.375, which is encoded as an offset of 7 using a 4-bit off-
set scheme (7*0.625 = 4.375). The token adds this offset to
the corresponding PNDc it computes.

Under the condition that this same offset is used by all
tokens for this particular PNDc, the shift ensures that half of
the tokens place this PNDc above the 0-1 line and half place
it below. Note that this does not guarantee an equal number
of 0’s and 1’s because it is possible the spread of the distribu-
tion exceeds the width of the modulus (Fig. 5 illustrates this
case). The distribution of points would need to be uniform
and/or symmetric over the width of the distribution to guar-
antee equality. Although such ‘ideal’ distributions are rare in
practice, most PNDc distributions possess only minor devia-
tions from this ideal case, and therefore, nearly a full bit of
Entropy is obtained as we show in the results section. Fig. 6
shows a set of 10 PNDc (black) and PNDco (red) superim-
posed, each obtained from our FPGA experiments, to better
illustrate the small magnitudes associated with the actual
floating point offsets.

Note that the offsets leak no information about the cor-
responding bit that is assigned to the PNDco (bits are
assigned after the modulus is applied as shown in Fig. 2(b)).
This is true because the offsets are computed using the PNDc

OR Modulus

2
OB 1+

---------------------= Eq. 4.

from the token population and therefore, no chip-specific
information is present in the offsets computed and transmit-
ted by the server to the token.

Also note that it is possible to insert the offsets into
unused bits of thePath-Select-Masks, reducing the transmis-
sion overhead associated with the offset method. Unused bits
in the Path-Select-Maskscorrespond to functional unit out-
puts that do not produce transitions under the applied 2-vec-
tor sequence. These bit positions in thePath-Select-Masks
can be quickly and easily identified by both the server and
token, allowing the offsets to be transparently inserted and
removed in these masks.
4.1  Population-based Offset Statistical Results

We applied the offset method to the data collected from
a set of 500 Xilinx Zynq FPGAs. The results are shown in
two rows of bar graphs in Fig. 7 to make it easy to visualize
the improvements provided by the offset method. The first
row gives results without offsets while the second row gives
the results when using a 4-bit offset.Mean scalingrefers to
values that are assigned toµref and Rngref in the TVComp
processing. Results using other scaling factors are similar.

The first two columns of Fig. 7 present bar graphs of
Entropy and minEntropy for moduli 10 through 30 (x-axis).
Entropy is defined by Eq. 5 and minEntropy by Eq. 6. The
frequencypij of ‘0’s and ‘1’s is computed at each bit position
i across the 500 bitstrings of size 2048 bits, i.e, no margin is
used in this analysis. The height of the bars represent the

average values computed using the 2048-bit bitstrings from
500 chips, averaged across 10 separate LFSR seed pairs.
Entropy varies from 1200 to 2040 for the ‘No Offset’ case

Eq. 5.H X( ) pij log2 pij( )

j 0=

1

∑
i 0=

2047

∑=

H∞ X( ) log2 max pij( )( )–

i 0=

2047

∑= Eq. 6.

Fig. 5. Illustration of an offset calculation using one set of PNDc from
500 chip-instances and a 4-bit offset. Original distribution on left

shows population median is not coincident with a 0-1 line. The offset
method shifts all curves upwards to the nearest 0-1 line at -70. A

modulus of 20 is used in this example.
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shown in the first row and between 2037 to 2043 with the 4-
bit offset. The results using offsets are close to the ideal
value of 2048 and are nearly independent of the modulus.
Similarly, for minEntropy, the ‘No Offset’ results vary from
approx. 700 for large moduli up to approx. 1750 for a modu-
lus of 10. On the other hand, minEntropy using the 4-bit off-
set method vary from 1862 at moduli 12 up to 1919, which
indicates that each generated bit has between 91% and
93.7% of a full bit of Entropy in the worst case.

The third column gives the results for inter-chip Ham-
ming distance (InterChipHD), again computed using the bit-
strings from 500 chips, averaged across 10 separate LFSR
seed pairs. Hamming distance is computed between all pos-
sible pairings of bitstrings, i.e., 500*499/2 = 124,750 pair-
ings, for each seed and is then averaged.

The values for a set of margins of size 2 through 4 (y-
axis) are shown for each of the moduli. Fig. 8 provides an
illustration of the process used for dealing with weak and
strong bits under HELP’s margin scheme in the InterchipHD
calculation. The helper data bitstringsHelpD and raw bit-
stringsBSfor two chips Cx and Cy are shown along the top
and bottom of the figure, resp. TheHelpD bitstrings classify
the corresponding raw bit as weak using a ‘0’ and as strong
using a ‘1’. The InterchipHD is computed by XOR’ing only
thoseBSbits from Cx and Cy that haveboth HelpD bits set
to ‘1’, i.e., both raw bits are classified as strong. This process
maintains alignment in the two bitstrings and ensures the
same modPNDco from Cx and Cy are being used in the Inter-
ChipHD calculation.

InterChipHD is computed using Eq. 7. The symbolsNC,
NBa andNCC represent ‘number of chips’, ‘number of bits’
and ‘number of chip combinations’, resp. (NCC is 124,750

as indicated above) This equation simply sums all the bit-
wise differences between each of the possible pairing of bit-
stringsBSas described above and then converts the sum into
a percentage by dividing by the total number of bits that
were examined.Bit cnterfrom the center of Fig. 8 counts the
number of bits that are used forNBa in Eq. 7, which varies

for each pairing of chipsa. The InterChipHD is computed
separately for each of the 10 seed pairs and the average value
is given in Fig. 7(c). The InterChipHD vary from approx.
10% to 48% without the offset (first row) and between
49.4% to 51.2% with the offset (second row), again showing
the significant improvement provided by the offset method,
particularly for larger moduli.

The bitstrings used as input for the InterChipHD analy-
sis are also subjected to the NIST statistical tests [23]. The
size of the bitstrings allowed 10 of the 15 tests to be run.

InterChipHD
1

NCC
-------------

BSi k, BSj k,⊕( )
k 1=

N Ba

∑
 
 
 
 

N Ba
--------------------------------------------------------------

j i 1+=

NC

∑
i 1=

NC

∑

 
 
 
 
 
 
 
 
 

100×=

Eq. 7.

Fig. 7. Entropy, minEntropy and InterChipHD bar graphs for moduli 10 through 30. Top row shows results using the original data while 2nd row
shows results using a 4-bit offset. Mean scaling refers to values that are assigned toµref and Rngref in the TVComp processing. Results using other

scaling factors yield similar results. For moduli 10 and 12, the offset method provides only a small benefit. As the value of the modulus increases, the
Entropy-enhancing characteristic of the offset method becomes increasingly significant.
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NIST requires that at least 488 bitstrings of the 500 (one for
each chip) pass each of the tests in order to qualify as an
overall pass. The bitstrings pass all but two of the tests, but
the fails occur by a narrow margin with 487 and 482 bit-
strings passing.
5  Chip-specific Offset Method

As discussed earlier, the population-based offset method
described above leaks no information regarding the bit value
encoded by the modPNDco, and adds significantly to the
Entropy of the bitstring. Although not presented, the proba-

bility of a bit-flip error varies from 10-3.4 to 10-7 and is
nearly the same with or without the offsets. However, the
size of the strong bitstrings decreases by approx. 2x to 5x
when compared to the ‘no offset’ case because the center of
PNDc populations are moved over the 0-1 line, and the den-
sity of the PNDc is largest at the center of the distributions.
Therefore, the bits generated by a larger fraction of the
PNDc are classified as weak.

The chip-specific offset method presented in this section
addresses these issues.The objective of the chip-specific
offset method is to reduce bit-flip errors and increase the
length of the strong bitstrings.Unlike the population-based
offset method, the chip-specific offset method is applied to
the PNDc for each chip, and therefore has the potential to
leak information regarding the value of the corresponding
bits. The amount of leakage is related to the size of the mod-
ulus, with moduli smaller than the range of within-die varia-
tions eliminating leakage completely. Therefore, larger
moduli need to be avoided. In particular, the average range
of within-die variations in our 500 chip sample is 23. The
analysis presented in the following restricts the modulus to
be <= 20.

The chip-specific offset method is orthogonal to the
population-based method and can be used in combination
with it to produce the best results as we show in this section.
Note that the combined method requires only one set of off-
sets to be transmitted to the token and is therefore similar in
overhead to either of the individual methods.

The objective of the chip-specific method is illustrated
in Fig. 9(a) using a small subset of the modPNDco produced
by chip C1 under Enrollment conditions. The black curve
represents the modPNDco after population-based offsets are
applied (pop. offset). The chip-specific method applies a sec-
ond offset to these modPNDco to shift them to one of two
regions labeledsuper strong regions. The blue curve depicts
the modPNDco with both offsets applied. The super strong
regions are located in the center of the 0 and 1 regions, i.e., at
vertical positions furthest from the 0-1 lines, and therefore
they represent the positions that maximally protect against
bit-flip errors. The server adds the population-based offsets
to the chip-specific offsets to produce a final set of offsets.
Although not apparent from this analysis, the Offset Resolu-
tion (OR) given by Eq. 4 is doubled in magnitude to allow
the server to specify offsets that traverse the entire modulus
range. For example, the offset resolution for a 4-bit offset
and a modulus of 20 is increased to 20/24 = 20/16 = 1.25.

During regeneration, the server transmits the offsets to
the token as a component of the challenge and the token
applies them to the regenerated PNDc. The red curves in Fig.
9(b) show the modPNDco using population-based offsets
only while the green curves show the modPNDco under the
combined scheme. There are 12 curves in each group, one
for each of the 12 temperature-voltage corners used in the
hardware experiments. The combined offset scheme pro-
vides additional resilience against bit-flip errors (several bit-
flip error cases under a zero margin scheme are identified in
the figure).

Note that the enrollment helper data under the chip-spe-
cific offset (and combined) methods is all 1’s, i.e., all enroll-
ment modPNDco are in strong bit regions, and therefore it
does not need to be transferred to the token in the DualHelp-
erData (DHD) scheme. However, the helper data generated
by the token commonly has both 0’s and 1’s because the
regenerated modPNDco can fall within a weak region. There-
fore, the DHD scheme can be layered on top of the offset
methods to further improve reliability.

Fig. 9. Illustration of modifications made to modPNDco before and after the chip-specific offset is applied, showing improved resilience to bit flip
errors. (a) Black curve is derived from chip C1 after population-based offset is applied while the blue curve adds chip-specific offsets. (b)

Regeneration modPNDco which use population-based and chip-specific offsets. Red curves show modPNDco from chip C1 at 12 regeneration TV
corners using only population-based offsets while green curves show modPNDco for 12 TV corners after applying both population-based and chip-

specific offsets and several examples of bit-flip errors that are avoided.
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5.1  Population-based and Chip-specific Offset Methods
The statistical results presented in Fig. 10 are derived

using data collected from 500 copies of the Xilinx Zynq
7020 tested under Enrollment and 12 temperature-voltage
corners from -40oC to 85oC and +/- 5% supply voltage. The
Probability of Failure (POF) is reported as an exponentx
from 10-x with a value of -6 indicating 1 chance of a bit-flip
error in 1 million bits generated. The smallest bitstring size
is the length of the smallest bitstring produced by one of the
chips under the DHD scheme.

A probability of a bit-flip error is less than 10-5.9 for
moduli 18 and 20 and a margin of 2 and for all moduli using
a margin of 3. The probability of failure without offsets (not
shown) is nearly the same at small moduli but decreases by
more than 10x as the moduli increases. The benefit of the
offset scheme are universally better than the results without
offsets with regard to the smallest bitstring size. For exam-
ple, the smallest bitstring size is lower bounded by 500 bits
in Fig. 10. The smallest bitstring sizes for the analysis that
does not use offsets are 10 to 20 times smaller.
6  Comparative Overhead Analysis
6.1  PUF bits required per full bit of Entropy

The overhead associated with ECC methods is typically
reported as the number of PUF bits required to generate a
fixed size bitstring. Colombier et al. collate the results reported in
previous work for a variety of ECC techniques[12]. A subset of
their analysis is replicated in the first 4 columns of Table 1
for comparison with the HELP results. Only those tech-
niques with failure rates similar to those obtained for HELP
are included (ECC techniques from [12] that report failure
rates of 10-9 are excluded). Wenormalizedthe values shown
in column 4 by dividing the corresponding values from [12]
by 128 and instead report the number of PUF bits required to
generate a full bit of Entropy. The HELP algorithm
described in previous sections always processes 2048 PND
and produces final bitstrings that are always larger than 128
bits (see Fig. 10(b)). Therefore, the normalization to ‘PUF
bits required per full bit of Entropy’ allows the overhead of
all techniques to be directly compared.

The right side of Table 1 gives the results for 7 margin
(Mar.) and modulus (Mod.) combinations for HELP. The
Probability of Failure (POF) data shown in column 7 is

obtained from Fig. 10(a). Column 8 reports the correspond-
ing ‘minEntropy per bit’ results for each of the margin/mod-
ulus combinations (note that the minEntropy results shown
in Fig. 7 are computed across chips and not across bitstrings,
and therefore cannot be used). The ‘PUF bits required per
full bit of Entropy’ values in column 9 are computed by mul-
tiplying the smallest bitstring sizes shown in Fig. 10(b) by
the minEntropy values from column 8, inverting these prod-
ucts and then multiplying by 2048. The values range from
approximately 1.1 to 2.4 bits, which are smaller than all the
values shown in column 4 for the ECC methods.
6.2  Helper data bits required per full bit of Entropy

The 10th column of Table 1 reports the number of bits
of helper data that are required to generate a full PUF bit of
Entropy. Thebit-flip-avoidancescheme implemented within
HELP creates 2048 bits of Helper data for each group of
2048 PND that are processed. The population-based and/or
chip-specific offset techniques require 2048*4 = 8192 offset
bits (using an offset resolution of 4 bits). Therefore, the
Helper data overhead for the 2048 PUF bits is 10,240 bits, or
5 Helper data bits per PUF bit. The values in column 10 can
be obtained directly by multiplying the values from column
9 by 5.
6.3  Overhead Associated with Hardware

Implementation of HELP
The hardware resources for the individual modules of

the HELP engine implemented on Xilinx Zynq 70x0 FPGAs
are reported in Table 2. The offset methods are implemented
within the Modulus module, which is labeled “Offset and
Modulus’ in column 5. The technique is trivially imple-
mented on the token, adding less than 20 LUTs to original
Modulus-only module. The resources are reported as the
number of LUTs, FFs and nets. Many papers report slices
instead of LUTs, as in [12]. The number of slices can be
obtained by dividing the number of LUTs from Table 2 by 4.
7  Conclusions

Population-based and chip-specific offset methods are
described in this paper. The population-based offset method
improves Entropy significantly by shifting path delay distri-
butions such that the generated bitstrings have nearly equal
numbers of 0’s and 1’s. The tuning is designed to center the
populations over the 0-1 lines used during the bitstring gen-
eration process, as a means of increasing the Entropy per bit

Fig. 10. (a) Probability of Failure (left) and Smallest Bitstring Size (right) results using the combined population-based and chip-specific offset
methods with the DualHelperData scheme. Probability of failure is less than 10-5.9 for moduli 18 and 20 using a margin of 2 and for all moduli using
a margin of 3. Results obtained from 500 copies of the Xilinx Zynq 7020 tested under Enrollment and 12 temperature-voltage corners from -40oC to

85oC and +/- 5% supply voltage. (b) The range of smallest bitstring sizes is between 450 and 1850 bits.
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toward the ideal value of 50%. The chip-specific offset
method, on the other hand, is designed to reduce bit-flip
errors and to increase the length of the strong bitstrings.
Both offset methods are low in overhead and their effective-
ness is demonstrated using hardware data collected from a
set of FPGAs.
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