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Abstract—Trusted Execution Environments are quickly becom-
ing a preferred method for providing isolation between secure
and non-secure execution environments. The protection of these
environments, as well as their software structure, is still a primary
area of interest and research. The abililty to use a Physically
Unclonable Function to generate a unique-per-device AES key
provides an excellent mechanism for protection of a Trusted
Execution Environment at rest through encryption. These keys
can also be used to manage modification of the TEE during
execution. In this paper, we present an new methodology for
how this protection can be achieved, as well as a framework
for the incorporation of Physically Unclonable Functions into
cryptographic engines.
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I. INTRODUCTION

The use of mobile processors continues to expand at an
almost alarming rate. These processors are finding uses in a
variety of applications, such as cellular, automotive, and health
care. While none of these applications are the same, they do
often share common requirements. One such requirement is the
need to ensure isolated execution of specific code elements in
order to perform critical tasks.

For instance, many users of smart-phones today perform
an array of banking transactions, from transferring funds to
making small purchases. Because the applications used to
perform these tasks are not guaranteed to be running on a
”safe” system, banking institution are begining to require some
level of assurance that their respective applications execute
securely on the target device. Not only does this protect the
user from financial loss, but it lowers the liability taken on by
the bank.

Additionally, while the owner of the device may not be
concerned about all the internal security mechanisms in their
device, there are several parties who are very concerned about
this area. Cellular and internet providers want to ensure that
devices connected to their networks are always functioning
in accordance with their required policies. This is especially
true of corporate IT departments who want to provide secure
functionality on these devices (such as VPN connections).
Before providing these services, they need some form of
assurance that not only is the device functioning according

to policy, but that the information stored on the devices to
facilitate these types of connections is not accidentally or
maliciously modified.

To address the need for secure exection, the Global Plaform
group began creating a Trusted Execution Environment (TEE)
specification that details the required element necessary to
create and ensure an isolated execution environment [1]. The
TEE can be used to run trusted applications that function
outside the execution space of the on-device operating system,
or Rich-OS. By providing this isolation, a vulnerability in the
Rich-OS does not translate to compromise of secure data or
unauthorized access to secure components.

While these TEEs do provide sufficient isolation in order
to ensure secure execution, the code that runs inside the TEE
must at all times be protected. The Secure-Boot process is a
manditory element for any TEE in order to verify that the code
to be run inside the TEE has not been altered. Performing a
full secure-boot requires the use of a secret or private key for
encrypting the required software while on disk, and decrypting
it prior to execution from memory. A popular approach at
this time is to make use of eFuse or secureROM elements
to store the necessary keys. Recent exploits however, such
as GeoHot’s limera1n exploit for Apple A4 processors [2],
have shown that these elements are not above attack. Although
Apple does not appear to store any encryption keys inside
the secureROM, the vulnerability allowed attackers to gain
execution, decrypt firmware packages, and jailbreak devices
using the A4 processor.

The use of eFuses or secureROM to store encryption keys
also presents another security concerns. If the key for a
single device is ever compromised, that could result in the
compromise of all other devices in that family. This would be
especially true if the key is stored in the secureROM. If the key
is stored in the eFuses, the key value may be different from
device to device, but this is not always the case. Is has often
been recommended that the eFuses be used to store a hash
of a needed public key, rather than the key itself. This would
imply that software would need some means of retrieving the
values from the eFuses in order to verify the validity of the
key it received. This being the case, if an attacker could gain
access on the device, it would potentially be possible for them
to read all data stored in the eFuses from software. While



simply reading a hash may not be very helpful, it is unlikely
that a hash would be the only useful information stored in the
eFuse array.

To address these concerns, we present a methodology that
can be used to leverage a PUF generated AES key to not only
protect the TEE, but provide a mechanism for its expansion
and customization. In section two, we will present information
on background work that has been done to prove the feasibility
of PUF generated AES keys and their applications in system
security. In section three, we will present information on the
structure of TEEs and the decisions that are necessary to deter-
mine what should, and should not, be included. In section four,
well will present our method for bringing these two element
together to provide enhanced security and expandability to
TEEs. In section five, will present our conclusions and how
we plan to proceed.

II. USING PUFS TO GENERATE CRYPTO KEYS

Physically unclonable functions provide an electrical path
through a collection of decision nodes that result in a 0 or 1
value based upon the manufacturing characteristics of the de-
vice. A PUF is provided with a challenge, which represents the
decision values for each of the decision nodes, and produces
a set of responses. Because of variations in the manufacturing
process, each device will produce different responses to the
same challenge.

As a result, many researchers have claimed that such results
could be used as keys for cryptographic operations. The
primary concern up to this point has been the stability of the
result generated by the PUF, as it can be impacted in various
ways, such as temperature and voltage levels. As the primary
purpose of this paper is not to prove that the stability needed
to consistently regenerate a cryptographic key is possible, such
research will not be discussed in detail and it will be assumed
that a stable and reliable 256-bit AES key can be provided.
For more information on some of the methods used to provide
this stability, please see [3] [4].

The concept of using a PUF to generate a crypto key is
not new. In 2007, Suh and Devadas presented the concept
of using a PUF to generate a secret key that could be used
to provide device authentication [5]. Their research provided
several methods for attempting to stabilize the results of a
PUF in order to provide consistent and repeatable results that
would be used to generate a cryptographic key. Once stabilzed,
the authors proposed the ability to use this key in device
authentication mechanisms, such as IC identification. They
also proposed the use of the data as a seed for a random
number generator, as well as using the data as a key that
could be tightly coupled with the processor in order to enable
a physically secure processor. The inherant weakness of this
approach is that if the key is successfully tied to the processor,
an attacker may gain the ability to execute on the processor
and then read back the resulting key.

Using a similar idea, Bohm et.al. proposed the use of a
SRAM-PUF to generate a stable PUF that would then be read
in by the processor and used for cryptographic purposes [6].

However, as the authors noted, the ability of software to read
the contents of the SRAM would prove critical to the security
of the generated key. While the ability to use the SRAM to
create a stabilized key may be a solid method, from a security
standpoint it would be difficult to ensure that no attacker was
every able to gain execution privileges or code access to the
secureROM.

Ibrahim and Nair also discussed the ability to generate a
key and use it to aid in the development of a Cyber Physical
System, or CPS [4]. In this paper, the authors discussed the
abililty to incorporate multiple PUFs into a system in order to
create a paradigm called security fusion. Although details of
how this new paradigm would permeate into software were not
included, the authors presented a system architecture wherein
multiple elements, equipped with their own PUFs, would
communicate with a reader to provide results for generation
of a system response. The collated results from each of the
elements would be compared with a known result to ensure
each element is functioning properly. A match would indicate
that all systems are verified, while an incorrect value would
cause the system to track down and identify the malfunctioning
element. This approach does seem feasible for helping to
ensure overall hardware security, but as it currently stands does
nothing to ensure secure execution of software.

The usage of PUF results in cryptographic application has
also been discussed. To date, most of the applied uses involve
using PUF generated results with RFID elements [7] [8].
While this is a valid and useful application for PUFs, our
primary concern is the security of the TEE executing on the
processor, an approach that to date has not been formally
defined by any research groups.

III. TEE ARCHITECTURES

A TEE is defined as an isolated execution space where code
can be run outside the influence of the standard operating
system, referred to as the Rich-OS Execution Environment
(REE). Making use of hardware enforced barriers, the execu-
tion space for a system can be partitioned into a non-secure
and secure world. A software API must then be included
that provides access between these two worlds, allowing
applications running the REE to interact with trusted elements
in the TEE.

While the existence of a TEE does not guarantee the security
of the code executing therein, it does attempt to guarantee
isolation from the REE. It is still the responsibility of the de-
veloper of TEE elements and applications to ensure their code
is sufficiently hardened against attacks, such as malformed
input strings. Sanity checks of this kind are paramount to
the security of the TEE, as the kernel executing in the REE
cannot be trusted to provide the necessary screening of this
information. Further, because of the enhanced privileges that
come with execution in the TEE, an attacker gaining access
inside the TEE could prove catastrophic to the overall security
of the system.

The Trusted Platform Group has provided an architecture
document to give both manufacturers and developers an overall



Fig. 1. TEE System Architecture

picture of how both hardware and software must be structured
and how they should interact [1]. This is shown in Figure 1.
Using this architecture as a guide, manufacturers have been
able to begin designing and releasing chips that adhere to
the TEE architecture specifications. An example of one such
architecture is ARM TrustZone.

A. ARM TrustZone

Identifying the need to provide a TEE on mobile devices,
ARM developed a set of hardware and software modifications
to their ARM core architecture to support the use of a TEE.
This suite is called TrustZone and is supported in all ARMv6
based architectures and newer [9]. Although TrustZone was
originally released in 2003, it has only recently seen broad
adoption with its 3.0 specification. The hardware architecture
supported by this specification is shown in Figure 2.

TrustZone creates a TEE by making use of three changes
made to the ARM core architecture [10]. The first change
is partitioning all hardware and software elements on the
SoC such that they can function in either a secure or non-
secure mode. Alterations to the AMBA3 AXI bus fabric makes
this possible in hardware, while development of a TrustZone
API faciliatates the isolation in software. The most evident
change is the addition of the NS-bit, a 33rd bit added to each
internal address and data element that labels it as belonging to
either the secure or non-secure world (external memory must
make use of a TrustZone-aware memory controller or wrapper
in order to provide similar partitioning of memory between
secure and non-secure areas). This bit was also added to the
Secure Configuration Register (SCR) in CP15, the system
control co-processor, and is used to indicated the current
execution mode of the processor.

The second set of changes involve the addition of TrustZone
extensions, allowing a single processor to execute in both
modes, controlled in a time-sliced manner. The changes that
were necessary to allow this to happen include the use of
two independent interrupt controllers (one for each mode),
a banked set of CP15 registers, and the addition of a new
instruction called the Secure Monitor Call, or SMC. The SMC

Fig. 2. ARM TrustZone Software Architecture

instruction can be used by the REE to trigger a transition into
the secure world, thus allowing REE applications to request
the services of secure elements. Execution can also move into
the secure world via a secure world interrupt, enforced by
the separate interrupt controllers. A manufacturer may also
make use of a TrustZone aware interrupt controller that can
securely maintain the interrupt vectors for each world, rather
than requiring two independent controllers.

The last collection of changes affect the debug infrastruc-
ture. Debugging in the REE kernel would typically provide
a user with a high degree of access rights to the underlying
system. In order to maintain the necessary isolation, while still
providing debugging capabilities, the debugging infrastructure
is security-aware. This means that it is capable of restricting
access to secure element even when the REE is running in
debug mode.

B. Implementation Issues

Despite the great promise provided by a TEE, they are still
almost entire controlled by the manufacturer. This is mostly
due to the standard implementation of the secure-boot process.
Using secureROM inside the Soc as the initial root-of-trust,
each subsequent element of code is measured and verified
prior to being executed. Because the TEE is one of these
elements, and because the measured values are typically stored
in some form of one- time programmable memory, there is no
mechanism available that provides for the abililty to change
the TEE.

Because of this restriction, all code that needs to be in-
cluded in the TEE must be present at manufacturing time.
As one might imagine, such a restriction is not feasible for
broad application in the mobile arena where user needs vary
dramatically. In such circumstances, it is virtually impossible
to predict beforehand everything that a user will need that
might make use of the TEE.

Further, device manufacturers often have special needs for
a TEE that are dependent upon their specific applicatiom.
Such applications include femtocells, automobiles, healthcare
systems, and military devices [?]. Because chip manufacturers
are not going to roll out an entirely new design to support



Fig. 3. PUF Supported Crypto-engine

changes in the TEE for each application, a method must be
developed to provide flexibility and alteration of the TEE after
the manufacturing process.

IV. PUF PROTECTED TEE

Having now presented background information on both
PUFs and TEEs, it is time to put these two technologies
together. In order to better understand why this needs to be
done, remember that the TEE is typically stored in external
non-volatile memory. As such, if not properly protected, it
is subject to attack. While standard encryption helps protect
the TEE from these attacks, there is still a concern about
insider attacks as well as damage control if the TEE is
ever decrypted. Further, there must be a method provided to
prevent an attacker from simply overwriting the entire TEE.
As presented previously, if a TEE cannot be customized to
the needs of the implementer or user, its functionality may be
irrelevant.

To address these concerns, we propose the incorporation
of a PUF inside the crypto-engine of modern SoC devices.
By using a PUF to generate a secret AES key, we alleviate
the concern of an insider-attack or a disgruntled employee
revealing information about the location or value of the key.
Further, because not even the manufacturer will know what
the key is, no single entity will have greater control over the
device than any other. Mobile devices typically have multiple
entities of interest and they all want some element of control
on the device without having to worry about being restricted
by anyone else.

In addition to securing the TEE while on disk, the PUF
generated key will be used to encrypt a measurement of
the TEE that will also be stored on the disk. During each
boot process, the TEE will be decrypted and measured. That
measurement will then be compared with the measurement
stored on disk. If these two do not match, then the system will
know that the TEE on disk has been modified. Otherwise, it
can assume the data is valid and continue the boot process.

This approach also provides a means of modifying the TEE
without requiring any changes to the underlying hardware
or software. Any time an element of the TEE is added or
removed, a new measurement can be made, encrypted by the

crypto-engine using the PUF generated key, and stored on
disk. Because all measurements are encrypted by the PUF
generated key, whose value is unknown to any entity and as
such, any accidental or malicious alteration of this information
is currently impossible.

To help visualize how this modification would fit into
a typical SoC architecture, consider the design shown in
Figure 3. In this figure, we present a fairly standard crypto-
engine for an SoC. You have a primary controller which
handles the flow of information through the engine, a set of
control registers that are often memory-mapped by the CPU to
provide a command interface, and then several cryptographic
accelerators for specific operations, such as AES, RSA, and
DES. Also included are interfaces for providing DMA and
FIFO memory transactions.

The final piece added to this design in a small amount
of volatile RAM, or V-RAM. This will serve as a storage
location for the AES key generated by the PUF. This key
should never be stored at any time in any form of non-
volatile RAM. It should also not be stored in any way that
would make it accessible by the Host CPU. In other words,
this memory element should not be memory-mapped like the
control registers. Rather, it should provide a direct input to the
cryptographic accelerators that can be muxed together with any
other key that the system might use. To support this, we will
add bits to the control registers that may be used to determine
exactly which key should be used during each operation.

A. Boot Process

The primary use of this implementation can be seen during
the boot process. This process would start by loading and
executing memory stored within the secureROM. Once the
secureROM performs its standard initialization of the system,
it would send the challenge to the PUF and inform the crypto-
engine to lock in the result. Once the key is obtain, the first
sector of the flash would be read and decrypted. This would
provide the location, size, and measurement of the TEE on the
flash device. From here, the secureROM can load, decrypt,
and measure the TEE for the system. Once validated, the
secureROM would transfer execution to the TEE and the
secure-boot process would continue. (Use of an additional
bootloader could also be supported prior to loading the TEE
if necessary to support additional system initialization)

B. TEE expansion

Because the measurement for the TEE is stored encrypted
on the flash, the TEE has the ability to expand or contract
without requiring any major modifications to the underlying
system. The primary purpose in supporting such alterations
is based upon the need of entities such as corporate IT
departments to have a presence on mobile devices without
emparing the usability of the device. When a new employee
starts at a company, rather than having to use two separate
mobile devices, one for personal and one for corporate, the
employee could provide his mobile device to the company
IT department who could then load authentication and policy



information onto the device. This code would most likely run
as a trusted-application inside the TEE. As such, it would not
affect the overall operation of the device, but rather would
be accessed only at times when the user needed to connect
to the corporate network or provide authentication of his
identity. Should the employee ever leave the company, the IT
department would simply remove the elements from the TEE
and the device would continue to operate.

A scenario such as this is currently non-existent in any
environment that we have discovered. Most corporate envi-
ronments require a device to be completely re-flashed with
their own version of the operating system. This method does
not require the device to be re-flashed, or does it alter in any
way the user’s data or applications. While this is only one use
case for this new architecture, we can easily see this fitting
into other applications, such as femto-cells, healthcare devices
on a internal hospital network, vehicular systems, and may
more. Even on the mobile platform, this has ramifications for
financial institutions, celullar providers, device manufacturers,
and application developers. And because the key generated by
the PUF is unique, even if an attacker was able to determine
the key being used on a specific devices, that key would not
transfer to any other device. This would make discovery of
keys extremely expensive, if at all possible.

C. Implementation Platform

Because the creation of a custom ASIC is very costly,
we propose the use of an FPGA platform to provide the
initial proof-of-concept for this design. Utilizing the ability
to instantiate soft-core processors on Xilinx FPGA, we will
create a design that implements two independent CPUs that
mimic the isolation provided by TEE compliant hardware. We
will then create a custom crypto-engine and interface this logic
to CPU-0, which will serve as the secure world. In addition,
based upon prior work demonstrating the ability to instantiate
a PUF inside an FPGA, we will create a PUF and tie its results
into the crypto-engine. The final component will be an external
sd-card that contains a theoretical TEE.

Using this hardware platform, we will develop software
to run on both the secure and non-secure processors. The
secure processor will interact with the crypto-engine and sd-
card to provide access to the TEE, as well as making all
modifications and updates to the TEE. The non-secure world
will be responsible for interfacing with the secure world to
making requests for alternations to the TEE. It will then be
the responsibility of the secure world to re-measure the update
TEE and provide new measure data.

Follow-on work will include a detailed analysis of the
appropriate mechanisms necessary for implementing the up-
dating process. Simply allowing any application to load any
amount of code into the TEE is obviously not a feasible
solution. A certification process will be needed to validate that
requested TEE code in compliant with some security metric.
Such a process could be used in a manner similar to a cer-
tificate authority wherein the secure-OS requests confirmation
from a centralized authority that the code is compliant prior

to installation. This is still an area of research we are planning
to pursue and show not be considered the defacto method that
will be used.

V. CONCLUSION

In this paper, we presented a new idea for the use and
incorporation of PUF generated AES keys on mobile pro-
cessors. We discussed how modern advances have made it
possible to create a trusted and isolated execution environment.
By protecting this environment with a unique-per-device key,
we can alleviate concerns about manufacturer attacks and
device family vulnerabilities. This approach also provides a
strong method for the expansion and contraction of the TEE
as needed by user applications. Dynamic expansion provides
manufacturers, carriers, OS providers, and even employers, a
method for securly storing code and data on a users device
without altering the underlying operating system or making
drastic changes to the device.

Using the results of this reseach, we can ensure the security
of the TEE. However, this leaves the question of how the TEE
should be structured. The best structure for the TEE is our
next research step. Identifying how the device should respond
if no TEE is found, how the TEE should support adding
and removing trusted elements, and how to store verification
information within the TEE are some of the questions we
intend to address over the next four months. Our final area
of reseach will involve creating an actual TEE kernel and
porting an Android build to our platform. We will use this
platform to prove the feasibility of this approach and show
how it provides a greater security framework than any current
implementations.
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