
New Design Strategy for Improving Hardware Trojan Detection and

Reducing Trojan Activation Time

Hassan Salmani and Mohammad Tehranipoor

ECE Department

University of Connecticut

{salmani h,tehrani}@engr.uconn.edu

Jim Plusquellic

ECE Department

University of New Mexico

jimp@ece.unm.edu

ABSTRACT

Hardware Trojans in integrated circuits and systems have
become serious concern to fabless semiconductor industry
and government agencies in recent years. Most of the pre-
viously proposed Trojan detection methods rely on Trojan
activation to either observe a faulty output or measure side-
channel signals such as transient current or charge. From the
authentication stand point, time to trigger a hardware Tro-
jan circuit is a a major concern. This paper analyzes time to
(i) generate a transition in functional Trojans and (ii) fully
activate them. An efficient dummy flip-flop insertion proce-
dure is proposed to increase Trojan activity. Depending on
authentication time and circuit topology, a transition proba-
bility threshold is selected so that inserted dummy flip-flops
would moderately impact area overhead. The simulation re-
sults on s38417 benchmark circuit demonstrate that, with a
negligible area overhead, our proposed method can signifi-
cantly increase Trojan activity and reduce Trojan activation
time.

1 Introduction

Outsourcing design and fabrication process has become
a trend in Integrated Circuit (IC) market due to econom-
ical profit. Such trend, however, provides an opportunity
for adversary to tamper IC supply chain by maliciously im-
planting extra logic as Hardware Trojan circuitry into an IC
[1]. This raises serious concerns about security and truth-
worthiness of imported products employed in mission crit-
ical applications. An attacker can change a design netlist
or subvert the fabrication process by manipulating design
mask, without affecting main functionality of the design. [2]

Hardware Trojan detection is an extremely challenging
problem and traditional structural and functional tests do
not seem to be effective in targeting and detecting Tro-
jans. Automatic Test Pattern Generation (ATPG) methods
used in manufacturing test for detecting defects do so by
operating on the netlist of the Trojan-free circuit. There-
fore, existing ATPG algorithms cannot target Trojan acti-
vation/detection directly [3]. Trojan circuits have stealthy
nature and are triggered in rare conditions. Trojans are de-
signed such that they are silent most of their life time and
have very small size relative to their host design, with featur-
ing limited contribution into design characteristics. These
suggest that they most likely connect to nets with low con-

trollability and/or observability [3][4]. It is expected that
Trojan inputs are supplied by nets with low transition prob-
abilities to lessen its impact on side-channel signals such as
power and delay.

Trojan detection makes efficient pattern generation nec-
essary to disclose Trojan impact on design characteristics
beyond process and environmental variations. Trojan de-
tection methods using transient power analysis [5][6] require
patterns that increase Trojan activity whereas keep circuit
activity low to magnify Trojan contribution into the circuit
power profile. Methods that are based on delay analysis
[7][8] require patterns that generate transition on nets that
supply Trojan inputs to reveal wiring and input gate resis-
tance and capacitance impact of Trojan on the design delay
characteristic. From authentication stand point, it is critical
to (i) analyze time to generate a transition at Trojan input
and in Trojan circuit and (ii) reduce authentication time.

In this paper, we develop a methodology to increase the
probability of generating a transition in functional Trojan
circuits and analyze the transition generation time. Transi-
tion probability is modeled using Geometric Distribution [9]
and is estimated based on number of clock cycles needed to
generate a transition on a net. To increase transition prob-
ability of nets whose transition probability is lower than a
specific probability threshold, an efficient dummy flip-flop
insertion procedure is proposed. The procedure identifies
nets with low transition probability and insert dummy flip-
flops such that it increases the transition probability. It
should be noted that dummy flip-flops are inserted in a way
that will not change the functionality of design. The effec-
tiveness of dummy flip-flop insertion is examined by evalu-
ating different transition probability thresholds for various
Trojan circuits. The relation between authentication time,
the number of required transitions in Trojan circuit, and
tester clock is studied. These parameters would help deter-
mine the transition probability threshold of a design. The
transition probability threshold, in turn, provides an estima-
tion of area overhead induced by inserted dummy flip-flops.

The paper is organized as following: Section 2 describes
prior work on Trojan detection. Analyzing Trojan activa-
tion time is presented is Section 3. The proposed dummy
flip-flop insertion procedure is presented in Section 4. Tran-
sition probability threshold analysis and simulation results
are presented in Sections 5 and 6. Finally the concluding
remarks are presented in Section 7.

1

2 Prior Work

Authors in [5] present a method to generate a power fin-
gerprint of genuine ICs considering various types of noise
in the circuit. Random patterns are applied to IC-Under-
Authentication (IUA) to generate a measurable difference
between the power profile of the genuine IC and IUA. In [8],
using the same basic procedure as in [5], path delay finger-
print of a design is generated. From an IC design, many
chips are selected and high coverage input patterns are run
on these sampled chips and a series of delay fingerprints are
generated. To detect Trojans, the same input patterns are
applied to IUA and compared with the delay fingerprints.

The proposed method in [6] is based on analyzing local
IDDT current measured from power ports on the target chip.
To alleviate process variations impact during measurement,
a calibration process is performed for each IUA before ac-
tual measurement. Trojan-inserted designs are distinguished
using outlier analysis. In [10], a multiple supply transient
current integration method is presented to detect hardware
Trojans in IUA. The current is measured locally from vari-
ous power pads or controlled collapse chip connections (C4s)
on the die. Random patterns are applied to increase the
switching in the circuit in a test-per-clock fashion [11].

In [12] [13], two methods are presented to detect and local-
ize Trojan circuits. The methods are based on a test pattern
generation technique to generate transitions in a target re-
gion while keeping other regions at minimum activity. In the
first method [12], a region is defined as a group of a number
of flip-flops. To induce activity in a region and keep other
regions in low switching (i.e. quiet), random patterns are
generated and applied. Those patterns that meet a certain
switching threshold are selected and used for Trojan detec-
tion. In the second method [13], a region is formed from a
group of flip-flops and gates which are logically related to a
particular function. Random patterns that limit activity in
a target region are selected. The presented results compared
the effectiveness of selected test patterns with the random
patterns. In [4], the authors present a sustained vector tech-
nique. A vector is applied to the circuit and for several clock
cycles (up to 25) primary inputs are kept unchanged. In this
way all transitions in the circuit would be induced because
of state bits and it is expected after some clock cycles activi-
ties converge to a specific portion of the circuit. By applying
the next vector another portion of circuit will be targeted.

A randomization based probabilistic approach to detect
Trojan is presented in [14]. The authors show that it is pos-
sible to construct a unique probabilistic signature of a circuit
using specific probability on its inputs. Input patterns are
applied based on a specific probability to IUA and outputs
are compared to design circuit. In case of a difference, Tro-
jan infection is reported. Otherwise, after applying a set
of N vectors if the IUA and circuit give the same output,
using statistical reasoning, it is reported that the IUA is
Trojan-free with a confidence interval.

A comprehensive taxonomy of Trojan circuits is presented
in [3]. Trojans are classified based on physical, activation,
and action characteristics. The physical characteristic stud-
ies type, size, distribution, and structure of a Trojan. In
terms of type, Trojan can be functional or parametric.

Functional Trojans are realized through adding or deleting
of transistors or gates, while parametric ones are realized
through modification to physical geometry designed to sabo-
tage reliability. The number of gates or transistors which are
added or deleted defines Trojan size. Distribution refers to
the locations of Trojan components in physical layout of the
chip. They can be tight (i.e. placed close to each other) or
loose (i.e. dispersed across the layout.) Trojan insertion can
affect chip dimension, delay characteristic and power profile
of a circuit. Trojan activation characteristics refer to the
criteria that causes the Trojan to become active and carry
out its disruptive function. The types of disruptive behavior
introduced by Trojan determines Trojan action characteris-
tics. For more details on Trojan taxonomy, reader is referred
to [3]. In this work, we focus on functional Trojans and tar-
geting parametric Trojans will be part of our future work.

3 Trojan Activation Time Analysis

Since there is no information about Trojan circuit in
terms of size, type, or location, from authentication stand-
point, it is crucial to analyze Trojan activation time (par-
tially or fully). In this paper, fully activation of Trojans
refers to patterns that activate a Trojan so that they impact
the circuit output and cause malfunction. However, par-

tial activation refers to generating one or more transitions
inside the Trojan circuit so that it improves the effective-
ness of transient power-based methods [5][6][10]. In general
a functional Trojan consists of two parts: Trigger and Pay-
load [15]. The Trigger circuit is mostly inactive by nature
with no Payload effect. Under certain rare conditions or
events, the Trojan is activated (triggered) and then Payload
injects an error to the circuit. Generating transition in Tro-
jan circuit depends on its implementation. Switching at the
first level gates of Trojan circuit depends on its preceding
cells. The next levels of Trojan circuit are similar to the
first level; therefore, in the following we focus on generating
switching in one Trojan cell at the first level of a Trojan cir-
cuit to carry out our detailed analysis. However, the results
in Section 6 will be presented for the entire Trojan circuit.

In general, the transitions in a circuit are induced by tran-
sitions in scan cells and primary inputs [16]. We define a
Trojan cone as logic circuit connecting to the inputs of a
Trojan gate. Note that in this section, we present one Tro-
jan gate for our analysis, however, a Trojan may contain
more than one gate. Also, note that we do not assume the
location of Trojan is known to us. The procedure developed
in this work is independent of location and size of hardware
Trojan in integrated circuits. Trojan cone can determine
the required time to generate transition in the Trojan cell.
The number of gates, gate types and the structure of Trojan
cone can define time to generate transition in a Trojan cell
as well. Figure 1 shows two example Trojan cones. Trojans
are named as Trojan 1 and Trojan 2. Trojan 1 contains three
gates and two levels while Trojan 2 contains seven gates and
three levels. Tg1 in Trojan1 is connected to the cone shown
in Figure 1(a) and Tg3 is connected to the cone in Figure
1(b). Other gates in the two Trojans are assumed to be
connected to other parts of the circuit.

In Figure 1(a), Trojan cone consists of 17 gates in 11

2

Figure 1: Two Trojan cone examples: (a) Trojans 1 and (b) Trojan 2

levels. Trojan cone contains all gates in original circuit im-
pacting the Trojan cell and the Trojan cell itself (here Tg1).
Simulation results show that after applying 1000 random
test vectors in test-per-clock fashion, there are 67 transitions
at Tg1 output.

In Figure 1(b), Trojan cone consists of 7 gates in 2 levels.
The simulation results show that there are 421 transitions at
Tg3 output after applying the same number of test vectors,
i.e. 1000. Since random vectors are applied to the above
circuits, the results can be slightly different from one random
vector set to another. As seen from the results, the number
of transitions in the two Trojan cells vary significantly. This
is mainly due to the difference in Trojan cone structure,
number of levels, and number of inputs (scan flip-flops and
primary inputs) and the Trojan gate type.

Probability can represent characteristics of a circuit since
it considers gates functionality and interconnections among
the cells. The probability of switching at a node in the
circuit provides a good estimation of the time to generate
switching on that node. Trojan cone determines switching
probability at the Trojan cell output, e.g. Tg1. Suppose the
probabilities of having ‘1’ and ‘0’ at Trojan output are Pt1
and Pt0, respectively, the probability of switching from 0 to
1 or 1 to 0 at the output of a Trojan gate will be Ptgi = Pt1×
Pt0, where gi is the ith gate at the first level of a Trojan.
For example, with assumption of applying random patterns
through inputs, with probability of 1/2, the probability of
generating a transition at the output of Trojan gate Tg3

(PtTg3) is 0.25 as shown in Figure 2. The circuit shown in
this figure is the same as one depicted in Figure 1(b).

To obtain transition probability, a transition (i.e. success)
can be modeled using Geometric Distribution (GD) [9]. The
Geometric Distribution is a discrete distribution for n =
0, 1, 2, · · · with the probability function p(n) = P ×(1−P)n.

Figure 2: Transition probability for a target cone.

Figure 3: Comparing mathematical and simulation results.

The probability function states that after n clock cycles,
finally in the (n+1)th clock cycle, there will be a transition,
i.e. (n + 1)th trial is the first success. The average number
of experiments is (P−1 − 1) which indicates the number of
required clock cycles, on average, to generate a transition.

For the Trojan cell shown in Figure 2, the calculation
based on Geometric Distribution shows that on average
three clock cycles are required to generate a transition at
the Trojan cell (Tg3) output. This is demonstrated by our
simulation results since, on average, in each 2.37 clock cycles
a transition was generated after applying 1000 test vectors.
Note that the 1000 random test vectors are generated with
the probability of 1/2 for ‘0’ and ‘1’.

Figure 3 presents two new Trojan cones and compares
the average clock cycles per transition using GD (i.e. prob-
ability analysis) and simulation. Figure 3(a) shows that the
simulation result of applying 1000 random patterns is very

3

Figure 4: The number of required clock cycles versus tran-
sition probability based on geometric distribution.

close to that of GD. Trojan cone in Figure 3(b) consists only
of NAND gates such that the probability of generating ‘1’ at
Trojan cell Tgj output is much less than that of ‘0’ therefore,
there is a small transition probability for Tgj . Any transition
to ‘1’ will most likely follow immediately by a transition to
‘0’ since Trojan cone mostly provides ‘0’ at the output of Tgj .
The simulation results by applying 1000 test vectors show
that each 250 clock cycles there is one transition at Trojan
output and probability analysis show that every 255.6 clock
cycles, one transition can be generated at the output of Tgj

gate.
It is seen from both analyses (GD and simulation) that

as P0 or P1 of a net becomes too large or small, the tran-
sition probability reduces significantly. Therefore, to maxi-
mize transition probability in a net, it would be preferred to
ensure that P0 and P1 values are close. The maximum tran-
sition probability on net can be 0.25 and it happens when
P0 = P1 = 1/2. Given a cone structure and various gate
types used in the cone, equalizing the transition probabili-
ties would seem impractical but by improving controllability
by inserting dummy flip-flops, we would be able to increase
transition probability for both 0 → 1 and 1 → 0 transitions.
This is validated by the analysis preformed using Geometric
Distribution as shown in Figure 4. As seen, as the transition
probability decreases, the number of clock cycles to generate
transition increases exponentially.

4 Dummy Flip-Flop Insertion

When the probabilities for ‘0’ and ‘1’ of nets on a path in
a cone becomes unidirectional, i.e. P1 ≫ P0 or P0 ≫ P1
similar to the example shown in Figure 3(b), transition prob-
ability of the nets (Pi0 × Pi1) rapidly decreases. To ensure
that P0 and P1 are greater than a specific threshold, dummy

Figure 5: The dummy flip-flop structures when (a) Pi0 ≪
Pi1 and (b) Pi0 ≫ Pi1.

flip-flops can be inserted to keep probabilities of ‘1’ and ‘0’
for the nets closer to each other. Note that in this paper
both terms “dummy flip-flop” and “dummy scan flip-flop”
refer to the increased controllability (transition probability)
in a circuit.

Figure 5 shows the structure of dummy scan flip-flop
(dSFF) in addition to an extra gate (AND or OR). If proba-
bility of inducing ‘0’ on target net Neti, Pi0, is less than the
probability of ‘1’, Pi1, as in Figure 5(a), an AND gate is be-
ing used to increase Pi0. However, if Pi1 is less than Pi0, as
in Figure 5(b), an OR gate is being used to increase Pi1. In
this work, dSFF-AND and dSFF-OR represent dummy scan
flip-flops with AND and OR gates, respectively. Adding a
dSFF to a net with low transition probability would increase
the net’s and following nets’ transition probability. When
Test Enable (TE) is active, the output of scan flip-flop is
supplied by Scan Input (SI). The inserted dummy scan flip-
flop has no impact on the functionality of the circuit. In
normal functional mode, the output of scan flip-flop is sup-
plied by either ‘0’ or ‘1’ depending on the gate type at the
output of scan flip-flop to avoid changing the functionality
of Neti.

The probabilities of ‘0’ and ‘1’ at the output of scan flip-
flop are 1/2. Thus, by supplying internal nets with such high
probability, the ‘0’ and ‘1’ probabilities on target nets can
become closer and their respective transition probabilities
can be increased. Assume that Pi0 of Neti is much greater
than its Pi1, where

Pi0 =
K

N
and Pi1 = 1 −

K

N

where K and N are cardinal values. The denominators of
probabilities would be the number of clock cycles in an expe-
rience and their numerators are the number of desired value.

By inserting proposed dummy flip-flop as in Figure 5(b),
new probabilities are

P ′

i0 =
K

2N
, and P ′

i1 = 1 −
K

2N

As a result, P ′

i0 will be smaller than Pi0 and P ′

i1 will be
greater than Pi1. Thus, after dummy flip-flop insertion, the
transition probability of the target net and its following nets
would be greater as

P ′

i0 × P ′

i1 > Pi0 × Pi1

K

2N
× (1 −

K

2N
) >

K

N
× (1 −

K

N
)

2N − K > 4K − 4N ⇒ K/N < 6/5

which is true because Pi0 = K/N and is never greater than
1.

Using same analysis, it can be demonstrated that by in-
serting AND gate when Pi0 of a net is much lower than its
Pi1, the transition probability of the net can be increased.
Figure 6 shows a modified version of circuit shown in Figure
3(b) by inserting a dSFF-OR.

4

Figure 6: Increasing transition probability by inserting
dSFF-OR.

4.1 Removing Rare Triggering Conditions

An able adversary would ensure that Trojans are acti-
vated only under very rare conditions. It could be a rare
circuit state, certain temperature or noise, etc. This is nec-
essary to avoid Trojan detection accidentally using struc-
tural or functional patterns. As an example, for functional
Trojans [3], a Trojan can have q ≫ 1 trigger inputs which
can be nets with (i) very low transition probabilities and (ii)
rare combinations. When the transition probability of Neti
is low, either Pi0 is much greater than Pi1 or vice versa, as
discussed in Section 3. With q number of trigger inputs, the
probability of generating a specific trigger vector is

Ptrigger−vector =

q∏

i=1

{Pi0|Pi1} (1)

It is expected that Ptrigger−vector to be very low if Pi0 or
Pi1 is low. By inserting dummy scan flip-flop, the transition
probability of nets would increase since Pi0 and Pi1 values
becomes closer. As a result, Ptrigger−vector also increases
and the trigger vector will not be a rare event anymore. By
increasing the transition probability of nets with low transi-
tion rate, we will eliminate hard-to-activate sites in a design.
This would result in increasing the probability of switching
in Trojan circuit. If fully activated, Trojan’s output can im-
pact design functionality and it will be detected. In case of
increasing switching in the Trojan, called partial activation

in this paper, the Trojan can be detected much easier using
transient power or charge-based analysis methods [5][6][10].
This method eliminates the need to focus on rare conditions
as proposed in [15].

For example, Table 1 shows probability of two nets
in s38417 benchmark before and after scan dummy flip-
flop insertion. Assuming that Trojan needs trigger vec-
tor {01} on Net1 and Net2, as seen in the table, the
probability of the trigger vector would be Ptrigger−vector =
PNet10 × PNet21=4.079e-06 in the original circuit without
dummy flip-flop. However, the probability increases to 0.094
after dummy flip-flop insertion.

4.2 Dummy Scan Flip-Flop Insertion Proce-
dure

Figure 7 shows the proposed dSFF insertion procedure.
To increase transition probability of nets in the circuit, we
set a threshold as PTH to select nets that are slightly above
this threshold to increase the transition probability of nets
that are below PTH . After setting PTH and original design
as CurrentDesign (Lines 1-2), the procedure will calculate
transition probability of all nets in the design (Line 3). Nets
are then divided into two groups: 1) nets with transition
probability higher than PTH , and 2) nets with transition
probability less than PTH . Nets in the first group are stored
permanently in HighTransition array (Line 4). Nets in
HighTransition array are sorted based on their transition
probabilities in an increasing order (Line 5). The number
of nets in the second group is stored in #MinLowTranNet
variable. The procedure, in Line 7, selects an Unchecked net
with the lowest transition probability from HighTransition
array. It modifies the net by inserting dSFF (dSFF-AND or
dSFF-OR depending on target net’s P0 and P1 values) and
set the design as UpdatedDesign. The selected net is re-
moved from HighTransition array. Transition probabilities
of nets in UpdatedDesign are then calculated in Line 10.
If the number of low transition nets decreases, the inserted
dummy flip-flop is considered to be effective and kept in
the database and UpdatedDesign is set as CurrentDesign.
If there is no reduction in the number of low transition
nets, CurrentDesign is used again and the next net from
HighTransition is selected. The procedure terminates in
two cases (Lines 12-13): 1) the number of nets with transi-
tion probability less than PTH is zero, or 2) there is no any
unchecked net left with transition probability higher than
PTH (HighTransition = ∅).

We acknowledge that inserting dummy scan flip-flop in-
creases the delay of paths and can impact design perfor-
mance. Note that it is unlikely that adversary uses nets on
critical paths as input since it can impact the path delay and
can be easily detected using path delay fault test patterns.
Using the above procedure, it is possible to avoid inserting
dummy flip-flops on critical paths by eliminating nets on the
critical paths from HighTransition.

5 Transition Probability Threshold Analy-

sis

Inserting dummy flip-flops to increase transition proba-
bility of nets would increase circuit area. The area overhead
mainly depends on transition probability threshold (PTH).
By setting a PTH , our proposed procedure ensures that all
nets in the circuit have transition probability greater or
equal to this threshold. PTH would impact both area over-
head (i.e. the number of dSFFs) and Transition generation
time in hardware Trojan cells. In general, setting smaller
PTH would result in smaller number of dSFFs but would
require more time, on average, to generate switching in Tro-
jan cells. However, setting larger PTH would require more
number of dSFFs but reduces the transition generation time
in hardware Trojan cells.

From above discussions, it is clearly seen that there are
several parameters that should be taken into consideration

5

Table 1: Probability of two nets in s38417 benchmark before and after dSFF insertion.
Before dSFF insertion After dSFF insertion

P0 P1 PNet10 × PNet21 P0 P1 PNet10 × PNet21

Net 1 0.999995317077 4.6e-06 4.079e-06 0.989 0.011 0.094
Net 2 0.999959170737 4.08e-06 0.905 0.095

01: Set transition probability threshold (PTH).
02: Set original circuit as CurrentDesign.
03: Calculate transition probability of nets in CurrentDesign.
04: Identify nets with transition probability greater than PTH , store them in HighTransition array and mark them as Unchecked.
05: Sort nets in HighTransition array nets based on their transition probability in an increasing order.
06: Store the # of nets with transition probability less than PTH as #MinLowTranNet.
07: Select an Unchecked net with the lowest transition probability in HighTransition array called TargetNet.
08: Insert dSFF.
09: Update CurrentDesign (called UpdatedDesign.)
10: Calculate transition probability of nets in UpdatedDesign.
11: Calculate the # of nets with transition probability less than PTH as #LowTranNet.
12: If #LowTranNet is less than #MinLowTranNet, #MinLowTranNet = #LowTranNet and set UpdatedDesign as CurrentDesign.
13: If #MinLowTranNet is zero, return CurrentDesign and #MinLowTranNet.

Otherwise, if there is any net in HighTransition array marked Unchecked, go to Step 6.

Figure 7: dSFF insertion procedure.

when setting PTH . They can be grouped into two main cat-
egories namely authentication and circuit parameters. Au-
thentication parameters are of authentication characteristics
and consist of two sub-parameters: 1) authentication time
of each integrated circuit, TAu, and 2) the clock period of
tester, TTester . Circuit parameters represent circuit charac-
teristics and consist of two sub-parameters: 1) the number
of required transitions in Trojan circuit, NTr, and 2) the
average number of clock cycles per transition which can be
modeled using Geometric Distribution. Note that NTr is an
important parameter when using transient power analysis
methods for detecting hardware Trojans since it indicates
the contribution that Trojans power makes to the total cir-
cuit power. The larger the NTr the easier the detection of a
Trojan would be.

Equation 2 shows how authentication and circuit param-
eters are related to each other.

TAu = NTr × (P−1

TH − 1) × TTester (2)

TAu is a user-defined parameter that depends on time-to-
market and criticality of the application in which the circuit
will be used. The equation is based on the time-to-generate
a specific number of transitions in a Trojan cell. From Ge-
ometric Distribution analysis, on average, (P−1

TH − 1) clock
cycles are required for each transition, and each clock cycle
takes TTester time unit.

In the following, the impact of each parameter is studied
in more details. Assume that the clock frequency of tester
is 250MHz (TTester=4×10−3 second). Further, assume that
user sets TAu=120 seconds. If NTr=100, then using Equa-
tion 2, PTH is 0.0033. Inversely, if the user sets PTH=0.002,
then the authentication time TAu=199.6 seconds. This anal-
ysis shows that decreasing PTH would increase TAu since
lower number of dummy scan flip-flops would be inserted.
When the number of dummy flip-flops decreases, more time

is needed to generate the same number of transitions on low
transition nets. Similarly, by increasing PTH to 0.004, the
TAu decreases to 99.6 seconds.

We believe that, for high-risk and secure applications, it
would be possible to devote more time to each chip for au-
thentication and that the area overhead may not be a big
concern. Continuing with the above analysis, assuming that
TAu=3 minutes, PTH would decrease to 0.0022. This means
that with increasing authentication time (TAu), the overhead
can be reduced by reducing PTH . Figure 8 shows that for a
target authentication time, PTH increases by the number of
required transitions at Trojan output; therefore, area over-
head increases. Further, PTH decreases at any specific num-
ber of transitions by increasing authentication time. The
minimum PTH is obtained when the number of transitions
is minimum and authentication time is maximum.

Figure 8: Probability threshold versus authentication time
and the number of transitions.

6 Simulation Results

We apply our dummy flip-flop insertion procedure to
s38417 benchmark which contains 1564 flip-flops and 4933

6

Figure 9: Trojan circuits.

Table 2: Trojans activity analysis before dSFF insertion.
TP In1 TP In2 TP In3 TP In4 Average Ncycle per

Trigger output change
NTr Trigger

transition
count

Payload transi-
tion count

POC count

Trojan 1 4.6e-06 2.4e-05 - - 100 3629 3593 26 0
Trojan 2 4.6-e06 2.4e-05 4.6e-06 - 91 7554 3935 26 0
Trojan 3 4.6e-06 2.4e-05 4.6e-06 4.5e-05 100 7186 3592 0 13

gates. Two different transition probability thresholds are ex-
amined in this work (PTH=10e-05 and 10e-04). The amount
of area overhead (number of dSFFs) to ensure all nets have
transition probabilities lower than PTH is evaluated. Fur-
ther, three small Trojan circuits, presented in Figure 9, are
inserted into the benchmark circuit. Nets with lowest transi-
tion probability are selected to be connected to the Trojans.
Each Trojan circuit consists of two parts: Trigger and Pay-
load. The Payload inputs come from Trigger output and
data input which is part of the original circuit. Based on
‘0’ and ‘1’ probabilities at Trigger output and Payload data
input, an AND gate is selected as Payload for each of the
three Trojans. Dash lines above Trojans in the figure repre-
sent the connection in the original circuit which is assumed
to be restitched through Trojan’s Payload by adversary. The
simulation results show the average number of clock cycles
to generate a transition at Trigger output. The total number
of transitions in Trojan circuit and the number of transitions
on Trigger output that can potentially cause functional fail-
ure are reported. Additionally, the number of transitions on
Payload output is also obtained and we will investigate the
difference between payload output and its data input to fur-
ther analyze the number of erroneous logic values injected
into the circuit.

When the value of Trigger output is dormant (i.e. ‘1’
for AND/NAND Payloads and ‘0’ for OR/NOR Payloads),
the Payload output is the same as Payload’s data input;
otherwise, the Payload output depends on values of both
Trigger output and data input. If both are the same, then
the output will be similar to the both inputs. However, a
different Payload input combination assuming the Trigger is
active would mean that the Payload output is due to Trigger
input. This is called Fully Activation of Trojan since the
Payload output change (POC) can cause functional failure.

The POC rate depends on transition rate of Trigger out-
put and Payload data input. It is expected when both Pay-
load inputs have low transition probability the POC rate
to be unpredictable (small or large). For example, if Pay-
load is an AND gate and data input and Trigger output
have high ‘1’ probability, low POC rate is expected. On the
other hand, if one of the Payload inputs has higher transition

probability than the other, larger POC rate is expected. If
Trigger output is active for many clock cycles, a large Pay-
load output change is expected.

The proposed method can help Trojan detection in two
ways:

1. Transient Power Analysis: By increasing the num-
ber of transitions in Trojan circuits, the proposed
method can help improve the previously proposed
power-based methods [5][6][9][11]. In this case, the vec-
tors are applied in a test-per-clock (TPC) fashion since
no observation is made by the flip-flops. In fact, the
power pads and C4s are the observation points since
transient current is being measured. Suppose Nsff

is the number of scan flip-flops and Nvec tpc is the
number of vectors, the total number of clock cycles
Ntotalcycle = Nvec + Nsff − 1. When Nvec ≫ Nsff ,
the total number of clock cycles equals the number of
test vectors Ntotal cycle tpc = Nvec.

2. Fully Activation: By increasing the probability of
fully activation of a Trojan (making the data input
to be different from Payload output) the probability
of observing an incorrect response to the applied vec-
tors would also increase. In this case, the test vec-
tors are applied in a test-per-scan (TPS) fashion since
the response of a test vector pair must be captured
and scanned-out. The test vectors are applied sim-
ilar to launch-off-shift (LOS) method used for delay
testing with no requirement on at-speed scan enable
signal. The second vector is only 1-bit shifted ver-
sion of the first vector (i.e. initialization vector). If
Nsff is the number of scan flip-flops and Nvec tps is
the number of vectors, the total number of clock cycles
Ntotal cycle tps = (Nsff + 1) · Nvec tps.

6.1 Without Dummy Flip-Flop

Simulations are run for Nvec tpc = Nvec tps = 360000 test
vectors. Selecting a large numner of random test vectors pro-
vides a good average for the results we report. It also makes
the results comparable to what is obtained using probabil-
ity analysis such as Geometric Distribution. However, as the

7

Table 3: Trojans activity analysis after dSFF insertion with PTH = 10e-5.
TP In1 TP In2 TP In3 TP In4 Average Ncycle per

Trigger output change
NTr Trigger

transition
count

Payload transi-
tion count

POC count

Trojan 1 0.04 2.4e-05 - - 17 20429 20389 40 2
Trojan 2 0.04 2.4e-05 0.04 - 17 40820 20389 42 1
Trojan 3 0.04 2.4e-05 0.04 0.24 17 40768 20374 4 20

Table 4: Trojans activity analysis after dSFF insertion with PTH = 10e − 4.
TP In1 TP In2 TP In3 TP In4 Average Ncycle per

Trigger output change
NTr Trigger

transition
count

Payload transi-
tion count

POC count

Trojan 1 0.1 0.009 - - 3 105362 105330 32 4
Trojan 2 0.1 0.009 0.24 - 4 203097 97733 34 2
Trojan 3 0.1 0.009 0.24 0.08 3 213138 107797 10 15

results show, a much lower number of test vectors would be
needed in practice. Table 2 shows the results for Trojans
switching activity for the original circuit. Columns 2 to 5
show the transition probabilities for the Trojans inputs. Tro-
jan 1 has two inputs, Trojan 2 has three inputs and Trojan
3 has four inputs. Column 6 shows the number of clock cy-
cles, on average, needed to generate a transition at Trojan’s
Trigger output. The seventh column in the table indicates
the total number of transitions in the Trojan circuits. The
number of transitions on Trigger output is reported in the
eighth column. The number of transitions at the Payload
output and the number of difference between Payload data
input and output (POC count) are presented in the Columns
9 and 10, respectively.

Simulation results show that for all Trojans, on average,
almost 100 clock cycles are needed to generate a transition at
the Trojans Trigger output. Trigger transition count is part
of the total number of transitions in a Trojan circuit. As
seen, Payload outputs of Trojan 1 and Trojan 2 experience
more number of transitions than that for Trojan 3. Studying
Payload data input and Trigger output in the circuit, when
there is a transition at Payload output, shows that in all
cases the logic values for both are same, thus no Payload
output change occurs. However, because of Trigger output
value of Trojan 3, 13 Payload output change (POC) has been
observed which could cause circuit malfunction.

6.2 PTH = 10e-05

After running our dSFF insertion procedure considering
PTH = 10e-05, it has been observed that there are four nets
in s38417 benchmark with transition probability lower that
PTH . Using our procedure, 4 dSFFs are inserted to increase
transition probabilities of these nets. The 4 dSFFs induce
an area overhead about 0.2%. Table 3 shows the transition
probability of Trojans inputs after dSFF insertion. Compar-
ing with Table 2, the transition probability of inputs 1, 3,
and 4 are increased to above PTH .

The simulation results in Table 3 show that the number
of clock cycles to generate a transition at Trojan output is
reduced in all cases by about 6 times. The number of Tran-
sitions in Trojan circuits and Trigger outputs are increased
by about 5 times in all cases. There is also increase in the
number of transitions on Payload output and POC count.

Same argument can be made about the Payload transition
and Payload output change as in Table 2. Also note that if
Trojan’s inputs are connected to nets with transition proba-
bilities greater than PTH , the average number of clock cycles
is assumed to be within the acceptable range defined by user
which can be estimated using Geometric Distribution.

6.3 PTH = 10e-04

When PTH = 10e-04, the dSFF insertion procedure iden-
tifies 28 nets with transition probability less than PTH . In
this case, 16 dSFFs are inserted to ensure these nets have
greater than PTH transition probability. Dummy flip-flop in-
sertion causes 0.82% area overhead. The simulation results
in Table 4 show that in all cases the number of clock cycles to
generate a transition at Trojan output reduces significantly
by about 30 times. Similarly, the number of transitions in
the Trojan circuits and Trigger outputs have increased.

Inserting dSFF causes area overhead in the circuit. In
fact, PTH determines the amount of area overhead; the
higher the threshold the more the area overhead. Table 5
shows the number of nets with lower than PTH transition
probability and the respective number of inserted dSFFs.
As PTH increases, the number of target nets increases and
as a result the number of dSFFs increases. The total num-
ber of dSFFs depends also on the circuit topology. If the
nets lower than PTH are not connected to each other, more
dSFFs are needed. However, if a net in the middle of a path
has lower than PTH transition probability and so are the
following nets on the same path, then adding one dSFF can
not only increase the transition probability of all these nets
but also could impact those nets that branch out to other
paths.

Also, note that large PTH does not seem to be necessary.
Even with PTH=10e-4 and PTH=10e-5, the number of tran-
sitions in the Trojans are very large that can help transient
power-based analysis methods detect them easily. Thus, for
larger designs, the area overhead would stay reasonably low.

Table 5: PTH analysis.
Pth 10e-05 10e-04 10e-03

nets 4 28 129
dSFFs 4 16 54

8

• Comment: Please note that we are currently running our
procedure on a larger benchmark circuit from ITC’99, called
b19 which contains 230K gates and 7K flip-flops. If the paper
gets accepted in HOST-2009, we include the results in the
final version of the paper for various transition probability
thresholds.

7 Conclusion

In this paper, we developed a novel dummy flip-flop in-
sertion procedure to increase the probability of Trojan de-
tection using transient power-based analysis or fully activa-
tion. The transitions are modeled using geometric distribu-
tion and we analyzed time to generate a transition in Trojan
circuits or fully activate them. The dummy flip-flop insertion
procedure is aim at reducing authentication time by increas-
ing switching activity in Trojan circuits. The area overhead
has been analyzed for various transition probability thresh-
old. Simulation results for s38417 benchmark demonstrated
that with negligible area overhead it is possible to signifi-
cantly increase switching activity in the Trojan circuits and
reduce time required to generate transitions.

Acknowledgements

The work of Hassan Salmani and Mohammad Tehra-
nipoor was supported in part by the National Science Foun-
dation Grant CNS-0716535. The work of Jim Plusquellic
was supported in part by NSF grant CNS-0716559.

References

[1] U.S.D. Of Defense. “Defense science board
task force on high performance microchip sup-
ply,” http://www.acq.osd.mil/dsb/reports/2005-02-
HPMS Report Final.pdf

[2] S. Adee “The Hunt for the Kill Switch,”
http://www.spectrum.ieee.org/print/6171

[3] X. Wang, M. Tehranipoor and J. Plusquellic, “Detecting mali-
cious inclusions in secure hardware: Challenges and solutions,” in
Proc. of the IEEE International Workshop on Hardware-Oriented
Security and Trust(HOST 2008), pp. 15-19, 2008.

[4] M. Banga and M. S. Hsiao “A Novel Sustained Vector Technique
for the Detection of Hardware Trojans,” in Proc. of the Interna-
tional Conference on VLSI Design, pp. 327-332, 2009.

[5] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi and B. Sunar,
“Trojan Detection using IC Fingerprinting,” in Proc. of the Sym-
posium on Security and Privacy, pp. 296-310, 2007.

[6] R. Rad, X. Wang, J. Plusquellic and M. Tehranipoor, “Power
Supply Signal Calibration Techniques for Improving Detection
Resolution to Hardware Trojans,” in Proc. of the International
Conference on Computer-Aided Design (ICCAD08), pp. 632-639,
2008.

[7] J. Li and J. Lach, “At-speed delay characterization for IC
authentication and Trojan Horse detection,” in Proc. of the
IEEE International Workshop on Hardware-Oriented Security
and Trust(HOST 2008), pp. 8-14, 2008.

[8] Y. Jin and Y. Makris, “Hardware Trojan detection using path
delay fingerprint,” in Proc. of the IEEE International Workshop
on Hardware-Oriented Security and Trust(HOST 2008), pp. 51-
57, 2008.

[9] D. D. Wackerly, W. Mendenhall III and R. L. Scheaffer, “Mathe-
matical Statistics with Application, 7th edition” Thomson Learn-
ing, Inc., 2008.

[10] X. Wang, H. Salmani, M. Tehranipoor and J. Plusquellic, “Hard-
ware Trojan Detection and Isolation Using Current Integration
and Localized Current Analysis,” in Proc. of the International
Symposium on Fault and Defect Tolerance in VLSI Systems
(DFT08), pp. 87-95, 2008.

[11] M. Bushnell and V. Agrawal, “Essentials of Electronics Testing,”
Kluwer Publishers, 2000.

[12] M. Banga, M. Chandrasekar, L. Fang and M. Hsiao, “Guided Test
Generation for Isolation and Detection of Embedded Trojans in
ICs,” in Proc. of the Symposium on Very Large Scale Integration,
pp. 363-366, 2008.

[13] M. Banga and M. Hsiao, “A Region Based Approach for the De-
tection of Hardware Trojans,” in Proc. of the IEEE International
Workshop on Hardware-Oriented Security and Trust, pp. 43-50,
2008.

[14] S. Jha and S. K. Jha, “Randomization Based Probabilistic Ap-
proach to Detect Trojan Circuits,” in Proc. of the IEEE High
Assurance Systems Engineering Symposium(HASE08), pp. 117-
124, 2008.

[15] F. Wolff, C. Papachristou, S. Bhunia and R.S. Chakraborty, “To-
wards Trojan-Free Trusted ICs: Problem Analysis and Detection
Scheme,” in Proc. of the Design, Automation and Test in Eu-
rope(DATE ’08), pp. 1362-1365, 2008.

[16] R. Sankaralingam, R. R. Oruganti and N. A. Touba, “Static Com-
paction Techniques to Control Scan Vector Power Dissipation,” in
Proc. of the IEEE VLSI Test Symposium (VTS’00), pp. 35-40,
2000.

9

