
HW/SW Codesign w/ FPGAs VHDL Essentials I ECE 522

ECE UNM 1 (8/19/17)

Fundamental Elements of VHDL

A VHDL program consists of a collection of design units, each of which is defined

using three components

Library and Package Declaration

library IEEE;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

Libraries and packages are collections of commonly used items, such as data types,

subprograms and components

The above two packages define std_logic and std_logic_vector data types, as

well as signed and unsigned

I also find it extremely useful to create a file with my own data types and constants,

that are then included declared below the ieee packages

library work;

use work.DataTypes_pkg.all;

HW/SW Codesign w/ FPGAs VHDL Essentials I ECE 522

ECE UNM 2 (8/19/17)

Fundamental Elements of VHDL

Entity Declaration

entity entity_name is

port(

port_names: mode data_type;

port_names: mode data_type;

...

port_names: mode data_type;

);

end entity_name;

port_names are the formal signal names of the design unit, which are used to connect

this design unit to pins on an FPGA or to other design units

The mode component can be in, out or inout (for bi-directional port)

ALWAYS use std_logic and std_logic_vector as the data_type in entity declarations

HW/SW Codesign w/ FPGAs VHDL Essentials I ECE 522

ECE UNM 3 (8/19/17)

Fundamental Elements of VHDL

A common mistake with mode is to try to use a signal of mode out as an input signal

within the architecture body

Consider:

library ieee;

use ieee.std_logic_1164.all;

entity mode_demo is

port(

a, b: in std_logic;

x, y: out std_logic);

end mode_demo;

architecture wrong_arch of mode_demo is

begin

x <= a and b;

y <= not x; -- ERROR!!!!

end wrong_arch;

HW/SW Codesign w/ FPGAs VHDL Essentials I ECE 522

ECE UNM 4 (8/19/17)

Fundamental Elements of VHDL

Port signals defined to be out can NOT be read

This code reads and writes x so it must be defined as inout to avoid a syntax error

But x is really not a bi-directional signal in the true sense of the word

The solution you will be forced to adopt is to create an internal signal as follows

architecture ok_arch of mode_demo is

signal ab: std_logic;

begin

ab <= a and b;

x <= ab;

y <= not ab;

end ok_arch;

HW/SW Codesign w/ FPGAs VHDL Essentials I ECE 522

ECE UNM 5 (8/19/17)

Fundamental Elements of VHDL

Architecture Body

The architecture body specifies the logic functionality of the design unit

architecture arch_name of entity_name is

declarations

begin

concurrent_stmt;

concurrent_stmt;

end arch_name;

The declaration part is optional and can include internal signal declarations or con-

stant declarations

There are several possibilities for concurrent_stmts, which we will cover soon

HW/SW Codesign w/ FPGAs VHDL Essentials I ECE 522

ECE UNM 6 (8/19/17)

Fundamental Elements of VHDL

Comments start with two dashes, e.g.,

-- This is a comment in VHDL

An identifier can only contain alphabetic letters, decimal digits and underscore; the

first character must be a letter and the last character cannot be an underscore

VHDL is case INsensitive, i.e., the following identifiers are the same

nextstate, NextState, NEXTSTATE, nEXTsTATE

Smart convention: Use CAPITAL_LETTERs for constant names and the suffix _n to

indicate active-low signals

Signal declaration

signal signal_name, signal_name, ... : data_type

HW/SW Codesign w/ FPGAs VHDL Essentials I ECE 522

ECE UNM 7 (8/19/17)

Fundamental Elements of VHDL

The std_logic_vector is an array of elements with std_logic data type

signal a: std_logic_vector(7 downto 0);

The downto syntax puts the most significant bit (7) on the left, which is the natural

representation for numbers (I rarely use the (0 to n) syntax)

std_logic constants are enclosed in single quotes: ’1’ and ’0’

std_logic_vector constants are enclosed in double quotes: "00101"

Constant declaration

constant const_name, ... : data_type := value_expr;

Another smart convention:

constant BUS_WIDTH_LB: integer := 5;

constant BUS_WIDTH_NB: integer := 2**BUS_WIDTH_LB;

...

signal cnt: unsigned(BUS_WIDTH_LB-1 downto 0);

... if (cnt = BUS_WIDTH_NB - 1) then ...

HW/SW Codesign w/ FPGAs VHDL Essentials I ECE 522

ECE UNM 8 (8/19/17)

Fundamental Elements of VHDL

Not automatically
synthesizable

Highest

Precedence

Note: and and or
have SAME
precedence -- use
parenthesis!

Operator

** abs not

* / mod rem

+ - (ident/neg)

& + - (add/sub)

sll srl sla sra rol ror

and or nand nor xor xnorLowest

HW/SW Codesign w/ FPGAs VHDL Essentials I ECE 522

ECE UNM 9 (8/19/17)

Fundamental Elements of VHDL

You will use std_logic_vector instead of bit_vector as defined in the table

Division by powers of 2 can be used in signal assignment stmts, e.g., a/16

This is implemented by the synthesis tool as a right shift operation

Division by other numbers requires a design unit that implements the division!

VHDL is a strongly-typed language, requiring frequent type casting and conversion

This is particularly evident with the shift operator

a <= resize(unsigned(b), 10) sll

 to_integer(unsigned(c));

Here, a is a unsigned of size 10 elements, and b and c are std_logic_vector

Bits or a range of bits can be referenced as

a(1)

a(7 downto 3)

HW/SW Codesign w/ FPGAs VHDL Essentials I ECE 522

ECE UNM 10 (8/19/17)

Fundamental Elements of VHDL

VHDL relational operations, >, =, etc, must have operands of the same element type

but their widths may differ

Avoid comparing operands of different widths, it’s error prone

Concatenation operator (&) constructs and/or extends operands on the right

Also used to force a match between width of the operands on left and right

y <= "00" & a(7 downto 2);

y <= a(7) & a(7) & a(7 downto 2);

y <= a(1 downto 0) & a(7 downto 2);

Also useful when defining a shift register as we will see later

Array aggregate

a <= (7|5=>’1’, 6|4|3|2|1|0=>’0’);

a <= (7|5=>’1’, others=>’0’);

a <= (7 downto 3 => ’0’) & b(7 downto 5);

a <= (others=>’0’);

Last assignment is very useful and works independent of the data type

HW/SW Codesign w/ FPGAs VHDL Essentials I ECE 522

ECE UNM 11 (8/19/17)

Fundamental Elements of VHDL

IEEE numeric_std package

Standard VHDL and the std_logic_1164 package support arithmetic operations only

on integer data types

signal a, b, sum: integer;

. . .

sum <= a + b;

But this is inefficient in hardware because integer does NOT allow the range (number

of bits) to be specified

We certainly don’t want a 32-bit adder when an 8-bit adder would do

The numeric_std package allows an array of 0’s and 1’s to be interpreted as an

unsigned or signed number, using these names as the data type

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

signal x, y: signed(15 downto 0);

HW/SW Codesign w/ FPGAs VHDL Essentials I ECE 522

ECE UNM 12 (8/19/17)

Fundamental Elements of VHDL

For signed, the array is interpreted in 2’s-complement format, with the MSB as the

sign bit

Therefore "1100" represents 12 when interpreted as an unsigned number but -4

as a signed number

The numeric_std package supports arithmetic operations, including those involving

integer constants

signal a, b, c, d, e: unsigned(7 downto 0);

...

a <= b + c;

d <= b + 1;

e <= (5 + a + b) - c;

Note that the sum "wraps around" when overflow occurs, so BE VERY CAREFUL

when choosing a size

HW/SW Codesign w/ FPGAs VHDL Essentials I ECE 522

ECE UNM 13 (8/19/17)

Fundamental Elements of VHDL

numeric_std

package definitions

HW/SW Codesign w/ FPGAs VHDL Essentials I ECE 522

ECE UNM 14 (8/19/17)

Fundamental Elements of VHDL

There are three type conversion functions in numeric_std package

to_unsigned, to_signed and to_integer

Use to_unsigned and to_signed when assigning constants to unsigned and signed sig-

nals

a <= to_unsigned(2048, 13);

Assumes a is unsigned and of width 13

a is assigned the constant 2048

a <= resize(unsigned(b), 10) sll

 to_integer(unsigned(c));

Looked at this earlier -- sll operator requires an integer type as last operand

a must be unsigned of width 10

a(to_integer(b)) <= ’1’;

Indexing into std_logic_vector requires an integer data type

Here b must be unsigned

HW/SW Codesign w/ FPGAs VHDL Essentials I ECE 522

ECE UNM 15 (8/19/17)

Fundamental Elements of VHDL

Type casting is also possible between ’closely related’ data types

signal u1, u2: unsigned(7 downto 0);

signal v1, v2, v3: std_logic_vector(7 downto 0);

signal sg: signed(7 downto 0);

u1 <= unsigned(v1);

v2 <= std_logic_vector(u2);

u2 <= unsigned(sg) + u1;

v3 <= std_logic_vector(unsigned(v1) + unsigned(v2));

Use resize to deal with width differences if they exist

Type casting

Type conversion

