
Hardware Design with VHDL VHDL Introduction ECE 443

ECE UNM 1 (8/19/15)

Programming Languages (PL) vs. Hardware Description Languages (HDL)

Programming languages such as C or Java cannot serve as HDLs (unless modified

significantly).

Programming languages are modeled after a sequential process, where operations are

performed in a sequential order (order matters).

This is amenable to the human thinking process, in which an algorithm is

unfolded into a recipe or step-by-step process

HDLs such as VHDL (VHSIC (Very High Speed Integrated Circuit) HDL) and Ver-

ilog were developed to support the underlying characteristics of hardware

• Connections of parts

• Concurrent operations

• Concept of propagation delay and timing

These characteristics cannot be captured by traditional PLs



Hardware Design with VHDL VHDL Introduction ECE 443

ECE UNM 2 (8/19/15)

Hardware Description Languages (HDL)

HDLs serve several roles in the design process

• Formal documentation

• Input to a simulator

• Input to a synthesizer

The fundamental characteristics of a digital circuit are captured using the concepts:

• Entity: a self-contained, basic building block of a real circuit

• Connectivity: models the connecting wires among the circuit components

• Concurrency: models parallel operations carried out by interconnected components

• Timing: models starting and ending of each operation and defines an order

HDLs can be used to describe a design at the gate level and RT level, in either a

structural or behavioral view.

Other highlights of a modern HDL include:

• Sequential execution constructs (similar to PLs) for modeling behavior

• A set of mathematical, Boolean and other special purpose operations, e.g., shifting

• Constructs to support hierarchical design process



Hardware Design with VHDL VHDL Introduction ECE 443

ECE UNM 3 (8/19/15)

Hardware Description Languages (HDL)

VHDL and Verilog are the industry standards

• Syntax and ‘‘appearance’’ of the two languages are very different

• Capabilities and scopes are quite similar

• Both are supported by most software tools

VHDL initially sponsored by DoD as a hardware documentation standard, early 80s

Transferred to IEEE and ratified it as IEEE standard 1176 in 1987 (known as

VHDL-87)

Major modification in ’93 (known as VHDL-93), but revisions continue

IEEE Extensions

• IEEE standard 1076.1 Analog and Mixed Signal Extensions (VHDL-AMS)

• IEEE standard 1076.2 VHDL Mathematical Packages

• IEEE standard 1076.3 Synthesis Packages

• IEEE standard 1076.4 VHDL Initiative Towards ASIC Libraries (VITAL)

• IEEE standard 1076.6 VHDL Register Transfer Level (RTL) Synthesis

• IEEE standard 1164 Multivalue Logic System for VHDL Model Interoperability

• IEEE standard 1029 VHDL Waveform and Vector Exchange (WAVES)



Hardware Design with VHDL VHDL Introduction ECE 443

ECE UNM 4 (8/19/15)

VHDL Introduction

VHDL introduction through an example: Even parity detection circuit

library ieee;

use ieee.std_logic_1164.all;

-- entity declaration

entity even_detector is

port(

a: in std_logic_vector(2 downto 0);

even: out std_logic

);

end even_detector;

Input:

a(2), a(1), a(0)

Output:

even

SOP expr:



Hardware Design with VHDL VHDL Introduction ECE 443

ECE UNM 5 (8/19/15)

VHDL Introduction

-- architecture body

architecture sop_arch of even_detector is

signal p1, p2, p3, p4 : std_logic;

begin

even <= (p1 or p2) or (p3 or p4);

p1 <= (not a(2)) and (not a(1)) and (not a(0));

p2 <= (not a(2)) and a(1) and a(0);

p3 <= a(2) and (not a(1)) and a(0);

p4 <= a(2) and a(1) and (not a(0));

end sop_arch;

Entity declaration

• Specifies I/O ports

One input port, an array a of three components and one output port, even.

Architecture body specifies internal operation of the circuit

• Signal declaration: defines a set of ’wires’ p1 through p4



Hardware Design with VHDL VHDL Introduction ECE 443

ECE UNM 6 (8/19/15)

VHDL Introduction

• The concurrent (signal assignment) statements

Are the circuit components

• Architecture body can be thought as a "collection of five circuit parts"

Signal name on both right and left indicates a wire connecting these components

Component order does NOT matter!

Conceptual Interpretation:



Hardware Design with VHDL VHDL Introduction ECE 443

ECE UNM 7 (8/19/15)

VHDL Introduction

More efficient architecture which uses xor operator (entity declaration is the same):

architecture xor_arch of even_detector is

signal odd: std_logic;

begin

even <= not odd;

odd <= a(2) xor a(1) xor a(0);

end xor_arch;

Structural Description

In structural view, a circuit is constructed of smaller components

A structural description specifies the types of parts and connections

Essentially a textual description of a schematic



Hardware Design with VHDL VHDL Introduction ECE 443

ECE UNM 8 (8/19/15)

Structural Description

A structural description can also be done using the concept of ’component’

• First declared (make known)

• Then instantiated (used)

Consider the even-parity detector again

Assume there is a library of predesigned parts, xor2 and not1:



Hardware Design with VHDL VHDL Introduction ECE 443

ECE UNM 9 (8/19/15)

Structural Description

architecture str_arch of even_detector is

component xor2 -- declaration for xor gate

port(

i1, i2: in std_logic;

o1: out std_logic

);

end component;

component not1 -- declaration for inverter

port(

i1: in std_logic;

o1: out std_logic

);

end component;

signal sig1,sig2: std_logic;



Hardware Design with VHDL VHDL Introduction ECE 443

ECE UNM 10 (8/19/15)

Structural Description

begin

-- instantiation of the 1st xor instance

unit1: xor2

port map (i1=>a(0), i2=>a(1), o1=>sig1);

-- instantiation of the 2nd xor instance

unit2: xor2

port map (i1=>a(2), i2=>sig1, o1=>sig2);

-- instantiation of inverter

unit3: not1

port map (i1=>sig2, o1=>even);

end str_arch;

Architecture body consists of three statements

Each statement consists of three parts:

The unit1 label serves as a unique id for this part

The xor2 identifies the instantiated component

The port map specifies the mapping between the formal and actual signals



Hardware Design with VHDL VHDL Introduction ECE 443

ECE UNM 11 (8/19/15)

Structural Description

The mapping indicates that formal signals i1, i2 and o1 are connected to actual sig-

nals a(0), a(1) and sig1

Component instantiation is one type of concurrent statement, and can be mixed with

other types

When the architecture body consists of only component instantiations (as above), it is

just a textual description of a schematic

A schematic is a more natural representation but this textual description enables

schematics to be embedded with other VHDL coding styles

The definition of the actual components are ’decoupled’ and ’hidden’ from the archi-

tecture and can be defined (and later changed) in a library

library ieee;

use ieee.std_logic_1164.all

entity xor2 is

port(

i1, i2: in std_logic;



Hardware Design with VHDL VHDL Introduction ECE 443

ECE UNM 12 (8/19/15)

Structural Description

o1: out std_logic

);

end xor2;

architecture beh_arch of xor2 is

begin

o1 <= i1 xor i2;

end beh_arch;

library ieee;

use ieee.std_logic_1164.all

entity not1 is

port(

i1: in std_logic;

o1: out std_logic

);

end not1;



Hardware Design with VHDL VHDL Introduction ECE 443

ECE UNM 13 (8/19/15)

Structural Description

architecture beh_arch of not1 is

begin

i1 <= not o1;

end beh_arch;

The use of components facilitates

• Hierarchical design (divide a system into smaller components, each designed indi-

vidually)

• IP incorporation (use of complex, third party, predesigned circuits that can be black

boxes)

Behavioral Description

Human reasoning and algorithms resemble a sequential process

VHDL provides language constructs that resemble sequential semantics

The process: a language construct to encapsulate ’sequential semantics’

The entire process stmt is a concurrent statement



Hardware Design with VHDL VHDL Introduction ECE 443

ECE UNM 14 (8/19/15)

Behavioral Description

Syntax:

process (sensitivity_list)

variable declaration;

begin

sequential statements;

end process;

The process has a sensitivity list, which is a set of signals

When a signal in the sensitivity list changes, the process is "activated"

Inside the process, the semantics are similar to that of a PL, e.g., variables can be

used and execution of the statements is sequential

Consider the even-parity detector:

architecture beh1_arch of even_detector is

signal odd: std_logic;

begin



Hardware Design with VHDL VHDL Introduction ECE 443

ECE UNM 15 (8/19/15)

Behavioral Description

-- inverter

even <= not odd;

-- xor network for odd parity

process(a)

variable tmp: std_logic;

begin

tmp := ’0’;

for i in 2 downto 0 loop

tmp := tmp xor a(i);

end loop;

odd <= tmp;

end process;

end beh1_arch;

The xor network is described by a process that utilizes a variable and a for loop

Unlike signal assignment in a concurrent statement, the variable and loop constructs

do NOT have a direct hardware counterpart



Hardware Design with VHDL VHDL Introduction ECE 443

ECE UNM 16 (8/19/15)

Behavioral Description

The process should be treated as one indivisible part, whose behavior is specified by

sequential statements

A second example:

architecture beh2_arch of even_detector is

begin

process(a)

variable sum, r: integer;

begin



Hardware Design with VHDL VHDL Introduction ECE 443

ECE UNM 17 (8/19/15)

Behavioral Description

sum := 0;

for i in 2 downto 0 loop

if a(i)=’1’ then

sum := sum + 1;

end if;

end loop ;

r := sum mod 2;

if (r=0) then

even <= ’1’;

else

even <= ’0’;

end if;

end process;

end beh2_arch;

Note that this is easy to understand, but there is no clue about the underlying structure

and how this will be actually implemented

The code describes the behavior of the component, not the structure.



Hardware Design with VHDL VHDL Introduction ECE 443

ECE UNM 18 (8/19/15)

Behavioral Description

Conceptual diagram

Testbench

A ’virtual’ experiment setup, consisting of

• The circuit to be tested

• The input stimuli (e.g., pattern generator)

• An output monitor (e.g., logic analyzer)



Hardware Design with VHDL VHDL Introduction ECE 443

ECE UNM 19 (8/19/15)

Testbench

Testbench for even-parity detector

library ieee;

use ieee.std_logic_1164.all;

entity even_detector_testbench is

end even_detector_testbench;

architecture tb_arch of even_detector_testbench is

-- declaration of component to be tested

component even_detector

port(

a: in std_logic_vector(2 downto 0);

even: out std_logic

);

end component;

signal test_in: std_logic_vector(2 downto 0);

signal test_out: std_logic;



Hardware Design with VHDL VHDL Introduction ECE 443

ECE UNM 20 (8/19/15)

Testbench

begin

-- instantiate the circuit under test

uut: even_detector

port map(a=>test_in, even=>test_out);

-- test vector generator

process

begin

test_in <= "000";

wait for 200 ns;

test_in <= "001";

wait for 200 ns;

test_in <= "010";

wait for 200 ns;

test_in <= "011";

wait for 200 ns;

test_in <= "100";

wait for 200 ns;



Hardware Design with VHDL VHDL Introduction ECE 443

ECE UNM 21 (8/19/15)

Testbench

test_in <= "101";

wait for 200 ns;

test_in <= "110";

wait for 200 ns;

test_in <= "111";

wait for 200 ns;

end process;

--verifier

process

variable error_status: boolean;

begin

wait on test_in;

wait for 100 ns;

if ((test_in="000" and test_out = ’1’) or

(test_in="001" and test_out = ’0’) or

(test_in="010" and test_out = ’0’) or

(test_in="011" and test_out = ’1’) or



Hardware Design with VHDL VHDL Introduction ECE 443

ECE UNM 22 (8/19/15)

Testbench

(test_in="100" and test_out = ’0’) or

(test_in="101" and test_out = ’1’) or

(test_in="110" and test_out = ’1’) or

(test_in="111" and test_out = ’0’))

then

error_status := false;

else

error_status := true;

end if;

-- error reporting

assert not error_status

report "test failed."

severity note;

end process;

end tb_arch;



Hardware Design with VHDL VHDL Introduction ECE 443

ECE UNM 23 (8/19/15)

Testbench

Two concurrent process statements are given, and both processes run simultaneously

Note the use of non-synthesizable statements such as wait for and assert not

Since testbenches are NOT synthesized to logic (only used in simulations), this is not

a problem

Conceptually:



Hardware Design with VHDL VHDL Introduction ECE 443

ECE UNM 24 (8/19/15)

VHDL in Development Flow

Behavioral description
written first, simulated

Synthesis-oriented code
developed

It is also simulated, many

times using the same

testbench to confirm

it meets specification

Once synthesized, the result

is a gate-level netlist

represented by a structural

VHDL description

It is also simulated, and

and timing analyzed

Place and route produces

a GDS for ASICs or

a bitstream for FPGAs
Final simulation w/ accurate

timing information



Hardware Design with VHDL VHDL Introduction ECE 443

ECE UNM 25 (8/19/15)

Coding for Synthesis

Execution of VHDL code

• For Simulation:

Design is ’realized’ in a virtual environment, the simulation software

All language constructs can be ’realized’ here

• For Synthesis

Design is ’realized’ by hardware components

• Many VHDL constructs can NOT be synthesized, e,g, file operation, floating-

point data type, division

• Also realize that although any VHDL code is ’easy’ to simulate, it may be diffi-

cult to synthesize

VHDL code that contains 10 additions needs to be mapped to 10 adders

(unless resources are shared), a fairly complex set of hardware components


