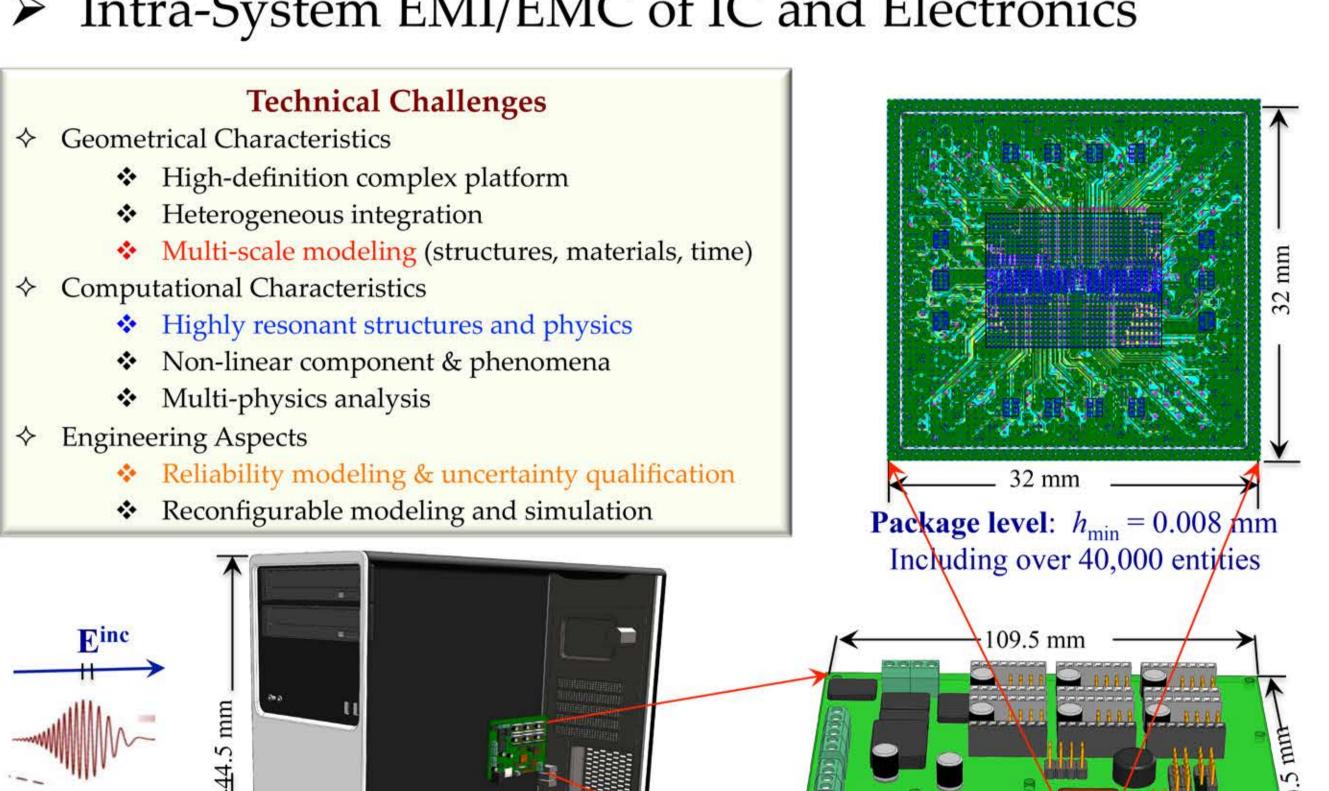
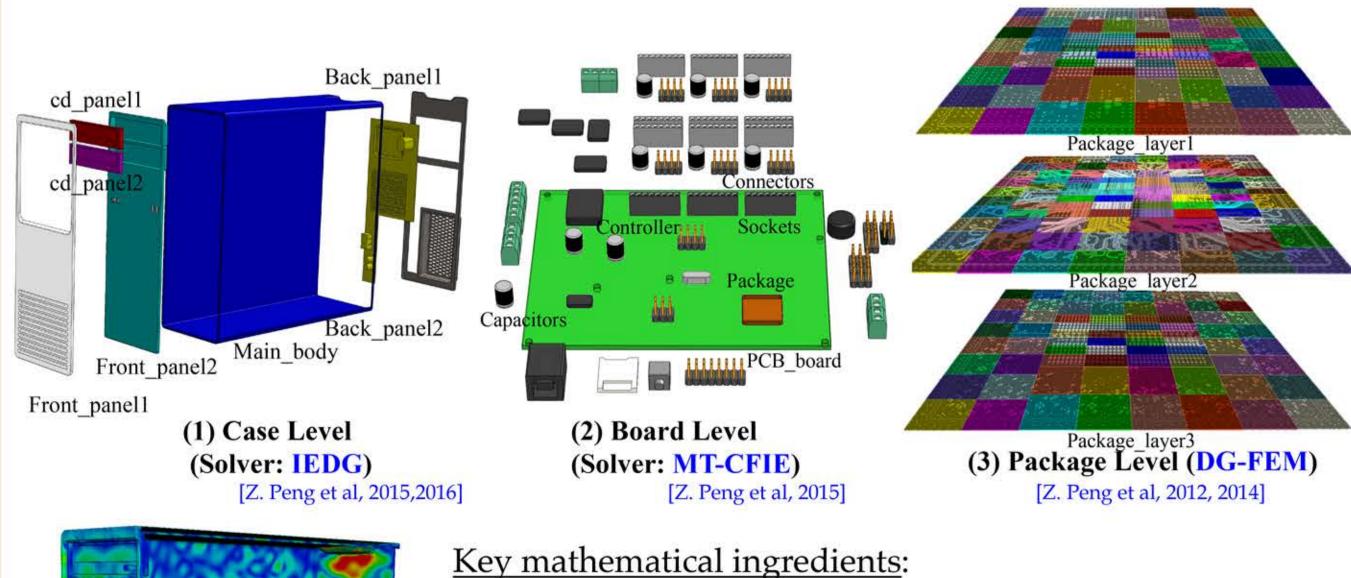
High-Fidelity, High-Performance Algorithms for Intra-System EMI Analysis of IC and Electronics


Shen Lin, Hong-Wei Gao and Zhen Peng (pengz@unm.edu)

Department of Electrical and Computer Engineering, University of New Mexico

Problem Statement


➤ Intra-System EMI/EMC of IC and Electronics

Contribution & Overview

Case level: $h_{\min} = 3 \text{ mm}$

Scalable computational algorithms on concurrent triplescale first-principles simulation for electronics ranging from IC package, board to system levels

Frequency band 10MHz -12 GHz

- ♦ GA-OSM-DDM: Geometry-aware domain decomposition method with optimized Schwarz Preconditioning
- ♦ Hybrid solution strategy: Schwarz preconditioned DDM system matrix with fast direct solver for local sub-domain matrices

Board level: $h_{\min} = 1.2 \text{ mm}$

Both linear and non-linear components

♦ Multi-scale analysis: An augmented multi-region multi-solver DD method via hierarchical skeletonization

Technical Ingredients

- 1) High-performance DD method for parallel computing
 - Perform for $p = 1, 2, \cdots$ the following subdomain iteration

$$\mathbb{A}_m \mathbf{u}_m^p = \mathbf{y}_m^{\mathrm{inc}} \qquad \qquad \mathrm{in} \ \Omega_m$$

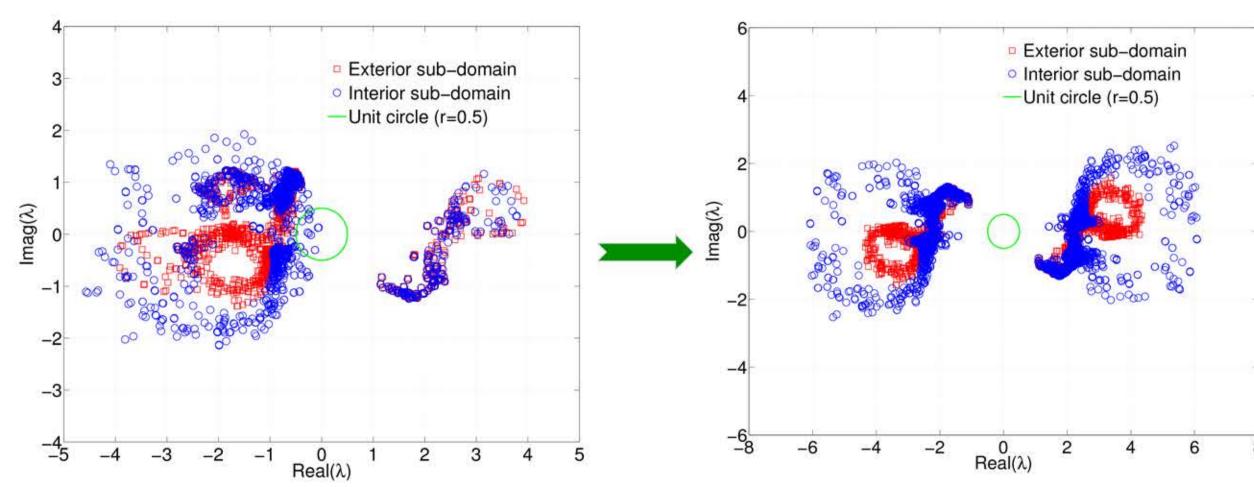
$$\mathcal{B}_{mn} \left\{ \mathbb{T}_m \mathbf{u}_m^p \right\} = \mathcal{B}_{mn} \left\{ \mathbb{T}_n \mathbf{u}_n^{p-1} \right\} \qquad \qquad \mathrm{on} \ \Gamma_{mn}, \forall \Gamma_{mn} \in \Gamma_m$$

- Γ_{mn} is for the interface between Ω_m and Ω_n
- \mathcal{B}_{mn} are tangential, possibly pseudo-differential interface operator on Γ_{mn}
- Define trace operator $\mathbb{T}_m := (\gamma_D^m \gamma_N^m)^T$, Dirichlet and Neumann traces
- Tangential field continuity enforced via transmission conditions

Convergence Results

Convergence analysis using the TE-TM decomposition, $\Omega_1=(-\infty,0) imes\mathbb{R}^2$ and $\Omega_2=(0,\infty) imes \mathbb{R}^2$

$$\rho(k_{\Gamma}, k, s^{tm}, s^{te}) = \left| \frac{\lambda - \imath k}{\lambda + \imath k} \right| \max \left\{ \left| \frac{\lambda - s^{te}}{\lambda + s^{te}} \right|, \left| \frac{\lambda - s^{tm}}{\lambda + s^{tm}} \right| \right\},$$


with
$$\lambda=\sqrt{|k_\Gamma|^2-k^2}$$
 and $k=\omega\sqrt{\varepsilon\mu}$.
$$\rho\lesssim 1-\frac{\sqrt{2}(k_+^2-k^2)^{1/4}}{\sqrt{k^{\sf max}}}$$

- 2) Coarse-grained DD system via hierarchical skeletonization
- Reduced system matrix equation with respect to skeleton surface unknowns:

$$\begin{bmatrix} \mathcal{I} & \mathcal{V}_{1}^{T}\bar{\mathcal{R}}_{1}\mathcal{A}_{1}^{-1}\bar{\mathcal{R}}_{1}^{T}\bar{\mathcal{V}}_{1}\mathcal{S}_{12} & \cdots & \mathcal{V}_{1}^{T}\bar{\mathcal{R}}_{1}\mathcal{A}_{1}^{-1}\bar{\mathcal{R}}_{1}^{T}\bar{\mathcal{V}}_{1}\mathcal{S}_{1M} \\ \mathcal{V}_{2}^{T}\bar{\mathcal{R}}_{2}\mathcal{A}_{2}^{-1}\bar{\mathcal{R}}_{2}^{T}\bar{\mathcal{V}}_{2}\mathcal{S}_{21} & \mathcal{I} & \cdots & \mathcal{V}_{2}^{T}\bar{\mathcal{R}}_{2}\mathcal{A}_{2}^{-1}\bar{\mathcal{R}}_{2}^{T}\bar{\mathcal{V}}_{2}\mathcal{S}_{2M} \\ & \cdots & \cdots & \ddots & \cdots \\ \mathcal{V}_{M}^{T}\bar{\mathcal{R}}_{M}\mathcal{A}_{M}^{-1}\bar{\mathcal{R}}_{M}^{T}\bar{\mathcal{V}}_{M}\mathcal{S}_{M1} & \mathcal{V}_{M}^{T}\bar{\mathcal{R}}_{M}\mathcal{A}_{M}^{-1}\bar{\mathcal{R}}_{M}^{T}\bar{\mathcal{V}}_{M}\mathcal{S}_{M2} & \cdots & \mathcal{I} \end{bmatrix}$$

$$\begin{bmatrix} \bar{\mathbf{u}}_{1} & \bar{\mathbf{u}}_{2} & \cdots & \bar{\mathbf{u}}_{M} \end{bmatrix}^{T} = \begin{bmatrix} \bar{\mathbf{y}}_{1} & \bar{\mathbf{y}}_{2} & \cdots & \bar{\mathbf{y}}_{M} \end{bmatrix}^{T}$$

- The original unknown coefficients can be calculated by $\mathbf{u}_m = \mathcal{A}_1^{-1} \sum_{m=1}^M \mathcal{R}_1^T \mathcal{V}_1 \mathcal{S}_{1m} \mathcal{V}_m^T \mathcal{R}_m \mathbf{\bar{\bar{u}}}_m$.
- The computational complexity: O(N) for both Memory & CPU time
- Hybrid solution strategy: Schwarz preconditioning with local direct solve
- 3) Novel multi-trace formulation for resonance structures

- Well-conditioned sub-domain matrices immune from the cavity resonances
- Novel transmission conditions provably convergent at sub-domain interfaces

Numerical Results Experiment conducted at Applied EM Group, UNM S-Parameter 흥 0.7 -Measurement-S11 Measurement-S12 ≥ 0.5 ã 0.3 Computer Case: 7 subdomains PCB Board: 23 sub-domains IBM Package: 587 sub-domains Total num. of DoFs: 75 millions Operating Frequency: 10 GHz Number of Iterations: 8 Simulation Time: 42 hours IBM Plasma Package Package Layer 2 Package Layer 1