Self-Healing Algorithms for Reconfigurable
Networks

Iching Boman!, Jared Saia!, Chaouki T. Abdallah®, and Edl Schamiloglu!

University of New Mexico, Albuquerque, NM 87131, USA,
Contact Author: Jared Saia, saia@cs.unm.edu

Abstract. We present an algorithm to self-heal reconfigurable networks.
This algorithm reconfigures the network during an attack to protect
two critical invariants. First, it insures that the network remains con-
nected. Second, it insures that no node increases its degree by more than
O(logn). We prove that our algorithm can successfully maintain these
invariants even for large networks under massive attack by a computa-
tionally unbounded adversary.

1 Motivation and Model

Many modern networks, such as peer-to-peer, are reconfigurable in the
sense that their topology can change dynamically. We design self-healing
algorithms that specifically exploit the reconfigurable nature of these
networks. In contrast to many previous results, our algorithms: provide
more protection: for example, we can guarantee that all nodes in the
network stay connected instead of just almost all of the nodes; and con-
serve resources: for example, our algorithms devote no resources to
defending the network until the time when an attack occurs.

Model: We assume an initially connected network over n nodes where
every node knows not only its neighbors in the network but also the
neighbors of its neighbors i.e. neighbor-of-neighbor (NoN) information.
In particular, for all nodes z,y and z such that x is a neighbor of y and y is
a neighbor of z, x knows z. We further assume that there is an omniscient
and computationally unbounded adversary that is attacking the network.
This adversary knows the network topology and our algorithms, and has
the ability to delete carefully selected nodes from the network. However,
we assume the adversary is constrained in that in any time step it can
only delete a small number of nodes from the network. We further assume
that after the adversary deletes some node x from the network, that the
neighbors of become aware of this deletion and that they have a small
amount of time to react.

When a node z is deleted, we allow the neighbors of x to react to this
deletion by adding some set of edges amongst themselves. We constrain
these edges to only be between nodes which were previously neighbors
of . This is to ensure that, as much as possible, edges are added which
respect locality information in the underlying network. We assume that
there is very limited time to react to deletion of x before the adversary
deletes another node. Thus, the algorithm for deciding which edges to
add between the neighbors of x must be fast and localized.

2 Our Results

Our main results are summarized in the following two theorems. The
theorems are proven in the full version of this paper (available at
http://wuw.cs.unm.edu/ saia/sss06.pdf). We also include below a
centralized version of the Line algorithm that is used to prove Theo-
rem 1. We omit the discussion of how to make the algorithm distributed
due to space limitations.

Theorem 1. There exists an algorithm, which we call the Line algo-
rithm with the following properties:
— Insures that the network is always connected
— Increases the degree of any vertex by at most log, n where n is the
number of vertices in the network before attack
— Is locality aware in the sense that it adds edges only between nodes
that have just had a neighbor deleted.

Theorem 2. Any locality aware algorithm that insures network connec-
tivity can be forced to increase a node’s degree by at least logs n.

2.1 The Line Algorithm

We first define several variables to aid with the description of our algo-
rithm. For a fixed time step we define the following;:

— Let G(V, E) be the actual network at the given time step

— Let E’ be the edges that have been added by the algorithm up to

that time step. (note E' C E).

— Let G' = (V, E'). (We note, without proof here, that G’ is a forest)

— Let each vertex v have a weight, w(v).

— Let T'(v,z) be the tree in G’ — x that contains v.

— For vertices v and z, let W(v,z) = . w(v')

v/ €T (v,x)

Line Algorithm:

Initialize each vertex v to have weight w(v) = 1 before the first timestep. Then,

for each timestep:

Let G, G’ be the graphs at a fixed timestep as defined above, and let x be

the node deleted by the adversary at the timestep.

Let N*(x) be a maximal set of neighbors of x that are unconnected in G — z.

Let v1,v2 be vertices in N*(x) with maximal W (%, z) values, i.e. W (v, z) >

W (v2,x) and Vj € N*(z) s.t. vj # v1, W(ve,z) > W(v;,x)
w(v1) — w(vi) + w(z).

Add edges to connect the vertices in N*(z) in a line, L, such that v1 and v2

are the endpoints of L.

Fig. 1. The Line Algorithm

