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Summary. The motion of a group of nonholonomic mobile agents is synchronized
using local control laws. This synchronization strategy is inspired by the early flock-
ing model proposed by Reynolds [23] and following work [30, 9]. The control laws
presented ensure that all agent headings and speeds converge asymptotically to the
same value and collisions between the agents are avoided. The stability of this type
of motion is closely related to the connectivity properties of the underlying inter-
connection graph. Proof techniques are based on LaSalle’s invariant principle and
algebraic graph theory and the results are verified in numerical simulations.

1 Introduction

Technological advances in computation and communication have provided
efficient and inexpensive means to compute and share information. This
breakthrough facilitates the development of new multi-agent systems, that
promise increased performance, efficiency and robustness. Networked, large
scale multi-agent systems are currently been deployed in several fields, from
automotive and aerospace to wireless networks, and operate successfully at a
fraction of the cost of alternative centralized desings.

Nature is abundant in marvelous examples of coordinated behavior. Across
the scale, from biochemical cellular networks, up to ant colonies, schools of
fish, flocks of birds and herds of land animals, one can find systems that exhibit
astonishingly efficient and robust coordination schemes [1, 18, 32, 8, 5]. At the
same time, several researchers in the area of statistical physics and complexity
theory have addressed flocking and schooling behavior in the context of non-
equilibrium phenomena in many-degree-of-freedom dynamical systems and
self organization in systems of self-propelled particles [30, 29, 28, 16, 14, 25,
11]. Similar problems have become a major thrust in systems and control
theory, in the context of cooperative control, distributed control of multiple
vehicles and formation control; see for example [13, 2, 19, 22, 4, 15, 6, 26, 9, 17,
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3, 10, 31, 20]. The main objective in multi-vehicle control designs presented
in the above papers is to develop a decentralized strategy, so as to achieve
a common goal, such as a tight formation with fixed pair-wise inter vehicle
distances.

Synchronization phenomena in nature, engineering and social sciences have
always fascinated the research community [21]. One of the first popular ap-
plications of models for multi-agent coordination, was the field of computer
animation. In 1986 Craig Reynolds [23] made a computer model of coordinated
animal motion such as bird flocks and fish schools. He named the generic sim-
ulated flocking creatures “boids”. The basic flocking model consists of three
simple steering behaviors which describe how an individual boid maneuvers
based on the positions and velocities its nearby flockmates:separation, align-
ment, and cohesion:

• Separation: steer to avoid crowding local flockmates.
• Alignment: steer towards the average heading of local flockmates.
• Cohesion: steer to move toward the average position of local flockmates.

This work inspired significant efforts in this direction that culminated in the
birth of a new field in computer graphics called artificial life [27].

In 1995, a similar model was proposed by Vicsek et al. [30]. Under an
alignment rule, a spontaneous development of coherent collective motion is
observed, resulting in the headings of all agents to converge to a common
value. The first rigorous proof of convergence of Vicsek’s model (for the noise-
free case) was given in [9].

In this paper we introduce a set of local control laws that essentially realize
Reynold’s rules. In our interpretation of Reynold’s approach, we consider dy-
namic models of nonholonomic mobile agents steered by local control inputs
that enable them to avoid collisions with each other and move coherently in
a common direction. Each mobile agent is described by nonholonomic differ-
ential equations of the form:

ẋi = vi cos θi (1a)

ẏi = vi sin θi (1b)

θ̇i = ωi (1c)

v̇i = ai, (1d)

for i ranging from 1 to N , which is the total number of agents in the group.
In the above, ri = (xi, yi)

T is the position vector of vehicle i, θi its orientation
(Figure 1), vi its translational speed, and ai, ωi its control inputs. The relative
positions between the vehicles are denoted rij , ri − rj .

The control inputs are assumed to have two components. The first is re-
sponsible for synchronizing the headings and the speeds of the mobile agents,
while the second steers them so that they avoid collisions. Collision avoidance
is realized through local artificial potential fields. [12, 24]. For the system of
mobile agents we show that all agent headings converge to the same value,
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Fig. 1. Agent i and its control inputs.

and pairwise relative speeds are stabilized. As a result, the group maintains
its shape and moves uniformly in a common direction.

Our analysis is based on Lyapunov stability and algebraic graph theory.
Central to this analysis is the connectivity of the graph that represents control
interactions between the agents. If the interconnection graph is connected at
all times, then headings and speeds of all agents converge to the same value.
In fact, the higher the algebraic connectivity of the graph, the faster the
convergence. This result provides a direct link between the connectivity of
the interconnection network and the stability and robustness properties of
the group.

2 Algebraic Graph Theory

The stability results derived in this work rely heavily on the algebraic proper-
ties of a certain graph that represents control interconnections between agents
in the group. This section provides a brief introduction to basic graph-related
terminology and notation in order for the rest of the discussion to proceed
smoothly. For a detailed treatment of algebraic properties of graphs, see [7].
A reader familiar with graph theory may safely proceed directly to Section 3.

An (undirected) graph G consists of a vertex set, V , and an edge set E ,
where an edge is an unordered pair of distinct vertices in G. If x, y ∈ V ,
and (x, y) ∈ E , then x and y are said to be adjacent, or neighbors and we
denote this by writing x ∼ y. A graph is called complete if any two vertices
are neighbors. A path of length r from vertex x to vertex y is a sequence of
r+1 distinct vertices starting with x and ending with y such that consecutive
vertices are adjacent. If there is a path between any two vertices of a graph
G, then G is said to be connected.

An orientation of a graph G is the assignment of a direction to each edge,
so that the edge (i, j) is now an arc from vertex i to vertex j. We denote by Gσ
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the graph G with orientation σ. The incidence matrix B(Gσ) of an oriented
graph Gσ is the matrix whose rows and columns are indexed by the vertices
and edges of G respectively, such that the i, j entry of B(Gσ) is equal to 1 if
edge j is incoming to vertex i, −1 if edge j is outcoming from vertex i, and 0
otherwise. The symmetric matrix defined as:

L(G) = B(Gσ)B(Gσ)T

is called the Laplacian of G and is independent of the choice of orientation
σ. It is known that the Laplacian captures many interesting properties of
the graph. Among those, is the fact that L is always symmetric and positive
semidefinite, and the algebraic multiplicity of its zero eigenvalue is equal to
the number of connected components in the graph. For a connected graph,
the n-dimensional eigenvector associated with the single zero eigenvalue is the
vector of ones, 1n. The second smallest eigenvalue, λ2 is positive and is known
as the algebraic connectivity of the graph, because it is directly related to how
the nodes are interconnected.

3 Coordination Strategy

In a group of N mobile agents with dynamics given by (1), each agent i is
assumed to have access to state information from a subset of the agent group
called its neighbor set. This neighboring set, denoted Ni ⊆ {1, . . . , N} \ {i},
can include agents the state of which agent i can obtain through sensing
or through direct communication. The ability to exchange state information
thus define a neighboring relation between two agents. The topology of these
relations is represented by means of an acyclic graph:

Definition 1 (Neighboring graph). The neighboring graph, G = {V , E}, is
an undirected graph consisting of:

• a set of vertices (nodes), V = {n1, . . . , nN}, indexed by the agents in the
group, and

• a set of edges, E = {(ni, nj) ∈ V × V | ni ∼ nj}, containing unordered
pairs of nodes that represent neighboring relations.

In the sequel we will assume that the neighboring graph is connected and
time invariant. This implies that the neighboring sets remain the same for all
time.

For a pair of neighboring agents, (i, j) ∈ E we define an artificial poten-
tial function Vij that depends on the distance between these two agents. An
example of such function, given here for illustration purposes, is the following:

Vij(‖rij‖) =
1

‖rij‖2
+ log ‖rij‖2 .
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The potential of an agent i, is now defined as the sum of all artificial potentials
associated with every one of its neighbors:

Vi ,
∑

j∈Ni

Vij(‖rij‖).

The control law for agent i is now defined as follows:

ai = − k
∑

j∈Ni

(vi − vj) − 〈∇ri
Vi, (cos θi, sin θi)〉 |

∑

j∈Ni
(vi − vj)| (2a)

ωi = − k
∑

j∈Ni

(θi − θj) − 〈∇ri
Vi, (− sin θi, cos θi)〉 |

∑

j∈Ni
(θi − θj)|, (2b)

where k is a positive control gain and 〈·〉 denotes the dot vector product. For
the closed loop system we can now prove that the agent headings and speeds
are going to converge to the same value.

Proposition 1 (Flocking of Nonholonomic Agents). Consider the sys-
tem of N mobile agents with dynamics (1). Then, for a sufficiently large
control gain k, the agent headings and speeds converge to the same value.

Proof. Consider the positive semi-definite function

V =
1

2
θ

T
Lcθ +

1

2
v

T
Lcv, (3)

where θ and v are the stack vectors of the agent headings and speeds, re-
spectively, and Lc is the Laplacian of the complete graph with N vertices.
Denoting L the Laplacian of the neighboring graph and taking the derivative
of V with respect to time, we obtain:

V̇ = −θ
T
Lc






kLθ + |Lθ|







(∇r1
Vi)⊥ 0

. . .

0 (∇rN
VN )⊥













− v
T
Lc






kLv +







(∇r1
Vi)‖ 0

. . .

0 (∇rN
VN )‖












,

where (∇ri
Vi)‖ and (∇ri

Vi)⊥ are the components of ∇ri
Vi when expressed

in a body-fixed coordinate frame, aligned with the velocity of agent i. Using
the fact that Lc = N I − J, where I is the N × N identity matrix and J is the
N × N matrix of ones, the above simplifies to:

V̇ = −kN(θT
Lθ + v

T
Lv)

−|Lθ|θT
Lc







(∇r1
Vi)⊥ 0

. . .

0 (∇rN
VN )⊥






−|Lv|vT

Lc







(∇r1
Vi)‖ 0

. . .

0 (∇rN
VN )‖






.

(4)
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Components of v and θ along the direction of the vector of ones, 1, preserve

the value of V . To see this, decompose v and θ as θ = θ
1 ⊕ θ

1
⊥

and v =

v
1 ⊕ v

1
⊥

, respectively, Superscripts 1 and 1⊥ denote the components along
the direction of the vector of ones and its orthogonal. Then, (4) becomes

V̇ = − k(θ1
⊥

)T






NLθ

1
⊥

+ Lc

∥

∥

∥Lθ
1
⊥
∥

∥

∥







(∇r1
Vi)⊥ 0

. . .

0 (∇rN
VN )⊥













− k(v1
⊥

)T






kNLv

1
⊥

+ Lc

∥

∥

∥Lv
1
⊥
∥

∥

∥







(∇r1
Vi)‖ 0

. . .

0 (∇rN
VN )‖













≤− kNλ2‖θ1
⊥‖2 + ‖θ1

⊥‖ ‖Lc‖ ‖diag{(∇ri
Vi)⊥}‖

√
N‖Lθ

1
⊥‖

− kNλ2‖v1
⊥‖2 + ‖v1

⊥‖ ‖Lc‖
∥

∥diag{(∇ri
Vi)‖}

∥

∥

√
N‖Lv

1
⊥‖

≤ −N(kλ2 − N
√

Nfmax)‖θ1
⊥‖2 − N(kλ2 − N

√
Nfmax)‖v1

⊥‖2, (5)

where fmax is the magnitude of the maximum potential force. Choosing

k ≥ N
√

Nfmax

λ2

,

ensures that V will be decreasing. Any level set of V is invariant and from
(3) all speed and heading differences have to remain bounded. Given that

v
1
⊥

= θ
1
⊥

= 0 is an equilibrium configuration for (1), application of LaSalle’s
invariant principle shows that this configuration is asymptotically stable:

V̇ = 0 ⇒ ‖θ1
⊥‖ = ‖v1

⊥‖ = 0,

implying that θ and v are parallel to 1:

θ1 = · · · = θN = θ̄, v1 = · · · = vN = v̄,

and substituting in (2a) and (2b) we see that

ω1 = · · · = ωN = 0, a1 = · · · = aN = 0.

Thus, (1) is now

ẋi = v̄ cos θ̄, ẏi = v̄ sin θ̄.

ut

4 Simulations

Consider a group of 10 mobile agents. First assume that the neighboring graph
is complete, that is, every agent is interconnected to every other agent. The
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initial (x, y) coordinates of each agent are selected randomly in the interval
[−5, 5] m, its speed is taken in random within the interval [−1, 1] m/s and
headings belong [−π, π]. Control gain k is set to 1.

We depict the evolution of a set of N − 1 = 9 heading differences that
span the relative headings space in Figure 2. Figure 2 shows that the head-
ing differences have converged exponentially to zero after approximately 10
simulation seconds, resulting in all agents moving in the same direction.
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Fig. 2. Convergence of headings when the interconnection graph is complete.

Figure 3 shows the convergence of speeds. In Figure 3 the speeds of the
10 agents converge exponentially to the same value, which is approximately
0.5m/s.

Figures 4-5 refer to the case where the neighboring graph is not complete,
i.e. it does not have all possible edges, but it is nevertheless connected. The
evolution of same set of heading differences as in the previous case is now
depicted in Figure 4. The Figure shows that the headings still converge to the
same value, however the rate of convergence is smaller and it takes almost 15
simulation seconds to reach steady state. This is due to the fact that in this
case, the second eigenvalue of the graph Laplacian, λ2 is smaller. Recall from
(5) that λ2 is related to the convergence rate of the Lyapunov-like function.

The evolution of the agent speeds is given in Figure 5. Speeds converge
exponentially to a value close to 0.7m/s. Note once again that due to the
reduced value of λ2, the agent speeds take longer to reach their steady state
compared to the case of the complete interconnection graph.

In Figure 6 one can see the paths followed by the agents during another
simulation instance, starting again from random initial conditions. The agents
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Fig. 3. Convergence of speeds when the interconnection graph is complete.
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Fig. 4. Convergence of speeds when the interconnection graph is incomplete but
connected.

in this Figure are shown as dots whereas their paths are given by dashed lines.
Line segments connecting different agents denote constant neighboring rela-
tionships and the arrows attached to each dot correspond to their velocities.
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Fig. 5. Convergence of speeds when the interconnection graph is connected but not
complete.
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Fig. 6. Paths and steady state velocities of a group of ten agents.

5 Conclusions

In this work we show how a group of nonholonomic mobile agents can syn-
chronize their headings and speeds using local control laws. These control laws
are constructed as a combination of a synchronization term that drives each
agent speed and heading to the average over its set of neighbors and a sector
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bounded artificial potential term that steers the agent towards a direction
that minimizes its potential and keeps it from colliding with its neighbors.
Stability analysis makes use of Lyapunov theory and known results from alge-
braic graph theory. This is where the topology of interconnection is reflected
on the stability and robustness properties of the group. The dependence of
convergence speed to the degree of connectivity in the interconnection graph
becomes evident in simulation examples.
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