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The general problem of electromagnetic wave scattering by thin inhomogeneous circular cylinders
is completely formulated. An integral equation for the induced axial current distribution is derived
and solved for an incident plane wave of arbitrary direction of propagation. A knowledge of this in-
duced current allows the determination of the scattered fields as well as the scattering cross section.

For convenience the conductivity is only considered to vary axially. Numerical results are pre-
sented for the induced axial current and scattering cross section. An important application of this
work is in missile vulnerability studies. To this end numerical results are presented for a missile
having an ionized exhaust trail. The conductivity of the exhaust trail is considered to taper exponen-
tially along its axis.

1. Introduction

The general problem of electromagnetic wave scattering from an inhomogeneous circular
cylinder is solved for an electrically thin cylinder, i.e., koa <€ 1, where a is the cylinder radius and
ko is the propagation constant of the incident radiation. In this formulation the cylinder is con-
sidered to have only axial variations in its constitutive properties. Also it is assumed that an
internal impedance per unit length may be defined for the cylinder. However, outside of thege
restrictions, the formulation is completely general.

By deriving and solving an integral equation, an expression is obtained for the current dis-
tribution induced on an inhomogeneous cylinder immersed in a general electromagnetic field. The
inhomogeneous scatterer is represented by a circular cylinder with an internal impedance per unit
length having an axial variation. This representation is also used by Wu and King (1965) in a very
specialized theory treating a transmitting antenna with a particular axial variation of the internal
impedance. The solution presented here, which is quite general, requires that the current dis-
tribution be represented by a finite Fourier series; the expansion coefficients are obtained by fore-
ing the series representation to satisfy the original integral equation. A proposed method for
aiding the convergence is also presented. An accurate solution for the induced current distribu-
tion that is analytically tractable may be used to obtain the scattered fields as well as the back-
scattering cross section.

In the present day missile studies it is necessary to know accurately the electromagnetic wave
scattering characteristics of finite-length cylinders. When the missile ionized exhaust plume is
present, a knowledge of the scattering characteristics of inhomogeneous cylinders is needed.
Typical parameters for a missile-plume study are used to obtain numerical results. The incident
field is considered to be a plane wave with an arbitrary direction of propagation.

2. Analysis
2.1. Integral Equation for the Current Distribution

Consider a cylindrical structure of length 2k extending from z=—~5% to z=Fh (see fig- 1). Pro-
vided that the cylinder is electrically thin, the illumination ‘may be considered to be rotationally

' The research reported here was supported by USAF - contract:AFSWC Order (29-601)-64—457.
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symmetric about its surface. It is easily shown that the scattered vector potential A¥(a, 2) at the
surface of the cylinder satisfies the differential equation

kg

(&+ ) 4210, 9=) & [Eda, 9~ Ela, ) &

dz?

where the assumed (but suppressed) time dependence is exp (jwt); E{a, 2) is the total electric field
at point z; and Ei(a, z) is the incident field at point z. It should be pointed out that (1) requires

=3 .
grad div A5(r, z) =z Fye) i(r, 2), 2

where z is the unit vector in the z direction.
If it is assumed that an internal impedance per unit length, zi(z), may be defined for the cylin-
drical structure of varying conductivity, then it is correct to write as the defining equation for z(z),

EYa, 2)=2Z(@)(2), &)

where I(z) is the total axial current at point z. Of course, (3) requires that rotational symmetry
obtains. Combining (1) and (3), defining Ei(z) = Ei(a, 2),

2 2
(;’—22+ /ﬁ) As(a, 2) —j%zi(z)lz(z) =—f§9Ei(z)~ )
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w. For an electrically thin cylinder

{ As(a, z) =ﬁ f_"h dz'I,(z)K(z, '), (5)

where K(z,z')=exp [—jko V(z—2')2+a?]/V (z—2')2+ a2 (6)

Using (5) in (4) yields the integral equation for the current distribution

n s darky darky
[ #LEIKG )~ TR L) = T B, @
- 0
where { is the characteristic impedance of free space and
resented
‘ d K(z z)-'( +k2> K(z,2'). 8)
§ Since kia <1, K(z, 2'} is a highly peaked function about z—z'=0 [even-more so than_ K(z, z')].
;
2.2. Solution for the Current Distribution
It is observed that the kernel is an even function of (z—z'} and therefore may be represented
Kz, 2")=k3 ’g A, cos g—z (z—2z") ©)]
where
. nw\2 [2h
at the kg?K’(h, — h) _<2k ,h) f
o DS ) Jypg  \EROTE . ’
Ay Fohe, (—D=+ Fohe, . d(z—z")K(z, z') cos 2h (z z'), (10)
(1) gt — )= — L ikoRR) ik
ky2K'(th, — h) R (2koh)e—i*oRn
ic field Rn=Vak2+ a2 an
uires
e=2 n=0
(2)
=1 n=l
e cylin- A general representation for the current distribution that satisfies the boundary conditions I.(%)
- =L(—h)=01is
or (), 4wl 2m+1
L@)=—j == [If,, cos =% I z+I‘,’,, sin =L z] 12
3) s mgo 2 h h (12)
mmetry The constant U (in volts) will be chosen later to simplify the mathematics.

. nw nir
Since cos 25 (z—z') =cos 2L z cos “oe- +sm zsin~r 7, < (13)

@) 2h 2h 2h 2h 2k
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then

h
i [ arneRe 2)

= , nw 2m+17w ,
=k} hn; {A,,I,,, cos 22X 2h f dz' cos o z' cos 5 °
m=0

+A.09 sm—zf daz' sm—z smTﬂ-z} (14)

It is convenient to break up the sum over n to a sum over odd n plus a sum over even n;

;o f " LRz, 2)
]447'U —h ~ ?

=kh

Mx

{Az" [ S YSum COS nh z+I188,m sin 2% 5 ]

=
Il
=)

:
O

+ Azni1 [If,,&,m cos 2n2+ L %z-i—[‘,‘n');g,, sin Zntl %z]}, (15)

where

4@mt 1) (=1

Yim= ot Omt 1 —dn?] (16)
8m(_ ]_)m +n
a —
Yim= @n+ 1P — dm?]’ (a7
Snm= 0 n# m} . (18)
=1 n=m
It is also convenient to express zi(z) as a sum of odd and even functions, i.e.,
2i(z) =z{(z) + zi(2), (19
where zi2) =[2i(z) + Z(— 2)}/2, (20)
zi(z) =[2(z) — 2(— 2))/2. @y
Substituting (15) into (7), multiplying the result by cos pfﬂ z, and integrating over z yields
S {[(koh)epdop+ Aom s Yy + ol +Bimd 8} =S5, @2)
m=o0
A (b 2m+1
where O =—]—§0— j_h zi(z) cos 2 7—}:z cos pTﬂ- zdz, 23)
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Bsm=—1J 4;:[,1 zi(z) sin%z cos%zdz, 24)
Sy== f 1.(2) cos 2Z zdz, (25)
Ei()=[Eiz)+ Ei(—2))2. (26)

Also, using sin (2p+ 1/2)(7/2)z instead of (p7/h)z in the foregoing procedure yields

3 (kb entan+ Azp o Yom Bnllf+ gl 1} = 55, @7
. L 2m+1 . 2p+1

where a‘,‘,m=—1% f_hzg(z) cos m2 l’:‘zsm Pz %:zdz, 28)

o o AT i inPT i LT _
Bgn=—1J 2 f_hze(z) sin==zsin=— hzdz, 29

ol [" g ysin2t1lT

Sp—Uf_hEzo(z) sin—5 hzdz, (30)
Eiz) =[E¥z)— E{—2))2. (1)

The foregoing equations show that the symmetric and asymmetric components of the current
are coupled, and that this coupling is due to the asymmetry of the internal impedance of the
structure.

Because the current distribution is expected to be an extremely well behaved function, the

infinite series expansion given by (12) may be truncated at some high order NV, where N2> (k;_h) .

and yet maintain reasonable accuracy. The effect of this truncation is the truncation of the series
in (22) and (27) at order N (Duncan and Hinchey, 1960).

Although the series given by (12) is expected to be reasonably convergent for %ok < 10 and for
fairly smooth conductivity variations, the convergence may be improved by use of a good approxi-
mation to I,(z). Instead of using (12), one might use

L= f(z)—]M 3 [Is cos 2L T2 4 I, sin T ] (32)

where f(z) = I.(z). As yet no candidates for f(z) exist; however, an investigation is being conducted.
Consider that the cylindrical structure is irradiated by a plane wave where kwa<<1. The
z component of the incident electric field may be represented in the general form

Ei(z)= Eo sin { sin 0 exp [—jkoz cos 8], (33)

where the direction of propagation is at an angle  with the positive z axis, and the electric field
is directed at an angle § with the normal to the plane determined by the z axis and direction of
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propagation. Therefore,

Ei(z)=Fsin ¥ sin 0 cos [kez cos 0] } . (34)
Ei (zy=—jE, sin s sin 0 sin [koz cos 6]
2 sintkoh cos ) (—1)?
s = 35
Then from (25) S5 T— (pr/koh cos O 605 6” (35)
but if 8=7/2, S§ = 2koh8po, (36)
or if koh cos 8=¢m, where ¢ is an integer, then
Sf; = koha(p, (37)
where the constant U is defined
1 . .
=k—osm ¥ sin 0 Ey; (38)
P 2 cos (koh cos 6) (=1
and, from (30), Sp=J 1—[(2p+ 1)7w/2ksh cos 6 cos @’ 9)
but if §=1/2, S§=0, or if koh cos §=(2¢ 4+ 1)/2, where ¢ is an integer, then
Sp = —jkohﬁfp. (40)

2.3. Internal Impedance per Unit Length

For a general treatment of the internal impedance per unit length of uniform cylindrical
conductors, the author defers to King (1963). However, it is necessary in this study to consider
inhomogeneous conductors. For convenience, the permittivity and permeability of the conductors
are considered to be uniform and are, respectively, € and . The conductivity is considered to
vary axially, i.e., 0=0(z2). A heuristic argument is now used to obtain the expression for the
internal impedance per unit length.

According to King, if a cylinder that is long compared to its radius (2h > @) is a sufficiently
good conductor (g/we > 1), its internal impedance may be written

zl =—2'n'_ka; 5—:&—3, (41)

where k=15 (42)
Suppose now that the cylinder has an axial variation in conductivity such that

a{z+10a) — o(z) < g(z), . 43)

or % g(z) <€ l—(l)a. a(2), (44)
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m at some point z on the structure. ‘Under the considerations made in obtaining (41), it is seen that
(34) [ the internal impedance for the section between z and z+ 10q is
e kD) Jdkz)a]
(35) Z() 2mao(z) Ji[k(z)a] (45)
If the conditions given by (43) and (44) hold over the whole structure, then it follows that (45) pre-
(36) dicts the variation of the internal impedance for the cylindrical structure with an axial variation
in conductivity.
2.4. Scattered Fields
37) .
Because of the azimuthal symmetry of the scattering, the scattered field components may be
written
rt: Es — . CO k ’ N7 ’
S Hp,2)=—J y— dz'I(z")K+z, z'), (46)
(38) 4 o -
_z ’ ].+ k r a ’
=i [Mar W g 21, )
(39) i
: 1+ jkoR - ,
Hyp, 9= £ f L) (—M Kiz, 2), 48)
3 where (p, @, z) are the usual cylindrical coordinates and
40) ; .
J , _e"-’"ORr
@ Kz, z )__Rr 49)
s
2
; R, =V(z—z'f+p? (50)
adrical 1
92
msider ‘ Kr(Z, z)= ( +k2) K.z, 2). (51)
luctors H
>red to % In the far zone of the cylinder, i.e., kor > 1, (48) reduces to
for the
: =~ ~k°_5inﬁe__jk_°rfh 1T (") adko €OS 8,2
ciently Hs(r, 6,) =] = N dz'I(z')é . (52)
Here, r and 6, represent the radial distance and the polar angle, respectively, specifying the field
point. Using (12) in (52) yields
(41)
—jkor
Hs(r, 0 == (BRSO S (145 6,) +I5s (001, 63)
0
(42)
where, in general
4(2m—+ 1) cos (koh cos 8;) (—1)"*!
s =
43) A0 =T k) cos? 6, — (@m+ D)7 4
. 2marsin (koh cos 6;) (—1)™

() A%(6:) =j Choh)? cos? By — mim® (5
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but if koh cos 6, = (2¢ +1)m/2 for some integer ¢, then
$:(0y) = d¢m, (56)
or if koh cos 6:= ¢, then
AL (61) =jdem. 6Y))

Of course, the electric field component in the far field is simply

Ej(r, 61) = LoH(r, 64). ((58)

It is also of interest to obtain the radar or backscattering cross section of the cylindrical scat-
terer. According to King (1956), it is

Exr,0) . ,

asc=4mr? Ei(a,2) sin? {, (59)

provided the scatterer is in the far zone of the observer2 If |Ei(a, z)|2 is taken as E2 and Ei(r, 6)
as given by (58), then (59) expresses the conventional backscattered cross section where the back-
scatter polarization is taken to be in the same direction as the incident. Therefore,

Ed

>, [15.A45,(0) +15.45.(6) 112 (60)

m=0

O sc = dar(koh)2ky 2 sint 0 sint

Note that gs=0 for =0 or $y=0. This occurs because the cylindrical scatterer is considered
to be electrically thin.

2.5. Numerical Results

As stated earlier, the infinite series expansion for the unknown cwrent distribution may be
truncated at order V. Figure 2 shows the variation in the obtained center current, I;(0), on a per-
fectly conducting cylinder for various values of N. Harrison (1966) has been able to effect an ac-
curate solution for the current induced on a perfectly conducting cylinder. He uses an iterative
solution technique iterating over 100 times when necessary to obtain highly accurate results.
To make a comparison, his result for the center current is also given in figure 2. Inspection of this
figure shows that when N=230, acceptable accuracy is obtained. Therefore, N is taken to be 30

to generate the data which will be presented subsequently.
In order again to verify the solution technique, a uniformly conducting rod was treated. The

results are presented in figure 3 and compared with the results of Taylor, Harrison, and Aronson
(1967). Good agreement is shown; furthermore, this curve shows that the simple shifted-cosine
trial function used in variational solutions of resistive antennas is not correct for this example.
This phenomenon is discussed in detail by Taylor, Harrison, and Aronson.

An important application of the electromagnetic scattering from an inhomogeneous cylinder
is in missile vulnerabjlity studies. Figures 4 through 7 represent typical cases of interest in these
studies. The scatterer is shown in figure 1. For convenience the ionized exhaust plume is con-
sidered to have the following exponential variation in conductivity:

o(z)=0o(£—h)e=¢-h=a), (61)

2 [t should be pointed out that ¥ as defined here is the 1 of the \ defined by King.



orne D. Taylor

(36)

67

((58)

scat-

59

wr, 0)
back-

(60)

dered

ay be
a per-
an ac-
rative
esults.
of this
be 30

. The
ronson
-cosine
ample.

ylinder

n these
is con-

(61)

Scattering by Inhomogeneous Cylinders

e

3.50 -8.70
ITERATIVE SOLUTION
-T! =T
L;(0)=I'3{01+i 173 (0) _
3 =3.346-j8.408 =
> 340 -860 >
a2 a
1/,0
g 334 |/ 7 &
o - @
£ 330 m—Co /-a.so g
2 < S
T -8.42 {ﬁ/ i E
£ L - et R 1 (0) =
g 320 840 B
H =
31% 502 004 006 008 0.0°0°
I/N
FIGURE 2. The center current on a perfectly conducting rod

as a function of the number of terms used in the solution

with keh=1m. Q=2¢n 2hja=10, Es=ko and 8=y =m/2.
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FIGURE 3. Current distribution on a uniformly conducting
rod with keh=1, Q=2 ¢n 2hja=10, =0.1 mhos/m, f=5.6
meg Hz, Eg=ko. §=y=m[2.
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FIGURE 4. “Current distributions on a missile and exhaust
plume for keh=1.0, 3=2 ¢n 2h/a=10, £=h, f{=2.8 meg
Hz, 6=y=m]2, Ey=ko and o(¢ —h)=0.1 mhos/m.

Note: I'(z) € 1 mA per volt for the “no plume” case.
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FiGURE 6. Current distributions on a missile and exhaust
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meg Hz, 0=¢=m/2, Eo=ko and o{¢—h)=0.1 mhos/m.
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738

Clayborne D. Taylor

Although only a few cases are presented, some significant trends may be observed.

The electrical length of the missile in figure 4 is fairly short. The effect of the plume, even
one of low conductivity, is to increase the electrical length thereby increasing the induced current
on the missile. In figure 5, the missile is near a resonant length and the effect of the plume is
again to increase the electric length. However, in this case the increased length is further from
the resonant length, thereby decreasing the current on the missile. Note that for @=0.5393 m?
the induced current in the plume essentially goes to zero near z=—0.4h.. Figure 6 gives the cur-
rent distribution on a relatively long structure demonstrating again the aforementioned effects.

The principal effects of the presence of an ionized exhaust plume are most clearly shown in
figure 7. Here the backscattering cross section is plotted as a function of frequency. It is seen
that the resonances of the missile having an ionized exhaust plume are considerably damped.
Moreover, the resonant frequency is decreased by the presence of an ionized exhaust plume.

3. Conclusion

The general problem of electromagnetic scattering from a thin circular cylinder has been
formulated so as to include cylinders of axially varying conductivity. Admittedly the methodology
is approximate; however, an exact treatment of this problem is virtually impossible. The ap-
proximations made are not altogether new, but have been borne out as reasonable from previous
work and experience.

A low-frequency solution to the problem of electromagnetic scattering from a missile with its
plume has been obtained by Harrison, Taylor, and Ruquist (1965). Their work is accurate, but
quite restricted as compared to the formulation presented here. However, the paper contains
much qualitative information that could not be included in the present article.

From the numerical results of this study it is clear that the presence of the ionized exhaust
plume has a surprisingly large effect upon the induced current in the missile for low-plume con-

ductivities. Another interesting result that is obtained is the damping effect upon the resonant
current buildup.

The author is grateful to Dr. Charles Harrison, Jr. for reading this paper and offering useful
suggestions for its improvement, to Barbra Ford for typing the manusecript, and to R. E. Domres
for writing the program for the digital computer.
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