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ABSTRACT

The problem under examination is the determination of the currents
induced by a distributed continuous-wave electromagnetic field in a

conducting wire buried in the earth.

Transmission line theory is shown to provide a suitable approximation
for studying this problem. A program for machine computation, utilizing
this theory, was written to calculate the induced current. The special
cases examined are: a bare wire with open circuit terminations, an
insulated wire with either open circuit terminations or grounded
terminations, and a wire encased in a high-conductivity coating with

open circuit terminations.

The theoretical calculations are compared with experimental results
obtained by Stanford Research Institute. The comparison of the
theoretical and experimental results indicates that predictions of

practical value can be made by using the transmission-line model.
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Abbreviations

Ccw
™
TE
EM
cps
ke, kcs
Mc, Mcs
pf

ABBREVIATIONS AND SYMBOLS

continuous wave

transverse magnetic field
transverse electric field
electromagnetic

cycles per second

kilocycles per second (103 cps)
megacycles per second (10° cps)

picofarad (1012 farad)

Coordinate Systems (all lengths in meters, all angles in radians)

X,V,2

r,0,z

r ,0 ,z
¢’ c*c

r
S

1 ]
Iy 6 s’¢s

Z z

o
X,¥,V

<N @
- |®

Constants

I

Y
i
n

rectangular coordinate system
cylindrical coordinate system used with wire analysis
cylindrical coordinate system used with antenna analysis

spherical distance coordinate used at antenna base or
wire termination

spherical coordinate system used in antenna analysis
cylindrical or rectangular coordinate along wire axis
used as dummy variables (for integrations, etc,)

partial derivative wrt time (second'l)

the spacial derivative vector (meter™1)

a differential line element along a given path

a differential area element with direction perpendicular to the
plane of thelsurface (meter?).

3.14159265
1.781

T

41 x 10”7 henries/meter

10-9/3611 farads/meter
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ABBREVIATIONS AND SYMBOLS (cont'd)

Known Dimensions (meters)

5= o Tp

wire radius

radius of the outer conductor of a coaxial transmission line
thickness of the insulation

radius of the grounding rod for the wire termination

length of the grounding rod for the wire termination

height of the monopole antenna

Electrical Characteristics of the Media

3=3

G

magnetic permeability (henries/meter)

conductivity {mhos/meter)

dielectric permittivity (farads/meter)

propagation constant for a given EM wave in the medium (meters-')
a skin depth for a given EM wave in the medium (meters)

pertains to air (or free space)

pertains to the metal of the wire

pertains to the earth material

pertains to the insulation (or covering) material

characteristics impedance of the earth (ohms)

Electrical Characteristics of the Wire

Z
o

Z

characteristic impedance of the equivalent transmission line
representing the wire (ohms)

the longitudinal impedance per unit length of the wire

(ohms/meter)
the transverse impedance of the wire (ohm-meters)

the transverse admittance per unit length of the wire
(mhos/meter)

the inductive impedance per unit length of the wire (ohms/meter)

the skin impedance (surface impedance) per unit length of
the wire (ohms/meter)

the propagation constant for the currents in the wire (meter ~!)
the inductance per unit length of the wire (henry/meter)

the total inductance per unit length of the wire, including
skin inductance (henry/meter)

the resistance per unit length of the wire (ohms/meter)

the total conductive admittance per unit length of the wire
(mhos/meter)

ix
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ABBREVIATIONS AND SYMBOLS (cont'd) <
c' the total capacitance per unit length of the wire (farad/meter) .
Ri the resistance of the wire covering (ohm-meters) o
Gy the conductive admittance per unit length of the wire covering
(mhos/meter) s
R the resistance to ground of the wire from outside its covering ~/
g (ohm-meter)
G the conductive admittance per unit length to ground of the wire
g from outside its covering (mhos/meter)
Ci the capacitance per unit length of the wire covering
(farads/meter)
C the capacitance per unit length to ground of the wire from
g outside its covering (farads/meter)
Ze the impedance of a given grounding technique at a wire
termination (ohms)
Zl’ZZ the given impedances at the two wire terminations, used to
determine the reflection coefficients (ohms)
K, L the reflection coefficients at each of the two wire -
terminations
Currents and Fields <
ﬁ, Hq the Hertz vector and its component in the q direction (volt-meters) _
B, B the magnetic flux density (webers/meter?)
ﬁ, Hq the magnetic field intensity (ampere-turns/meter)
E; Eq the electric field intensity (volts/meter)
E E the electric field component that induces the current on a given
%, 2zo wire (volts/meter) (this field is measured in the absence of
the wire)
o the magnetic flux per unit length generated by the wire current
(webers)
I,I the current in the wire at a given point (amperes)
v,V the voltage wrt ground of a point on the wire (volts)
I, the current at a given wire termination (amperes) (used to
determine Ze)
Ve the voltage wrt ground at a given wire termination (volts) ‘
(used to determine Ze)
Io the base current in the monopole antenna (amperes)
F(z) the integral term in the expression for induced cable currents
in a wire
~
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Others

w

i e
a, a
n n

dZn(x)

dx

the frequency of a given field or current (radians/second)

the constants for the nth order fields (internal and external
respectively) produced by a current in a wire

Yk.?% - h?
i
Ala
A a
2

an nth order cylinder function of argument x

an nth order Bessel function of argument x
an nth order Hankel function of the first kind, argument x

the exponential integral function of argument x

xi
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SECTION I

INTRODUCTION

Currents induced in conductors in the ground have long been a problem of
interest to those who must protect long power and communication cables from the
high-current pulses created by a lightning stroke (ref. 1). In recent years the
high-energy electromagnetic pulse created by a nuclear detonation has created
another source of danger to these cables, especially those power and communication
cables associated with a military defense system (ref. 2). To protect against
these highly disruptive currents adequately and economically, we must understand
the theory of the production of these currents. This study is the first step
of a theory to determine the currents induced in long cables by pulsed electro-

magnetic fields.

This paper will derive theoretically a general method for calculating the
currents induced in a finite length of conductor, which is lying on the surface
of the earth or buried approximately parallel to the earth-air interface, by a
continuous-wave (CW) distributed electric field parallel to the conductor. This
theory for CW field-induced cable currents will then be compared with data
obtained from current measurements on a cable in the field of a vertical dipole
antenna (ref. 3). The limitations in the practical use of this theory will be
presented, with examples of these limitations taken from the comparison of the

theory with the data.
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SECTION II

THEORY

A basic difficulty is encountered when we try to solve general classes of
electromagnetic boundary value problems involving time-varying fields. General
solutions to static-field boundary values problems governed by Laplace's equation
are found by the technique of separation of variables (ref. 4). However, with
time-varying fields, solving the vector wave equation using the separation of

variables technique in general is very difficult.

The Fields Near a Cylindrical Wire

The vector wave equation reduces to the more tractable scalar wave equation
when all of the electromagnetic fields are expressed in terms of their rectangular
components. Each field component independently satisfies the scalar wave equation.
This method will be used to determine the fields in and near a solid cylindrical
conductor of infinite length buried in a medium of infinite extent (ref. 5),

A convenient field variable to use as the unknown for finding the
fields around a conductor buried in the earth is the Hertz vector, ﬁ (ref 6).
There are two ways in which the electric and magnetic fields may be related to
the Hertz vector. 1In the first relation, the Hertz vector ﬁ(l) is related to the
fields B ) and ﬁ(l) by the equations

(1
B, =VxVxI
1 1
€] (1) (1)
> _ 9 ->
H(l) ——[c + 652)3 X H(l)
The second equally valid relation, among ﬁ(z)’ E(z)’ and ﬁ(z), is
_ i_—r >
Bioy = ael” X Tz
(2)
H ==$ X 3 x ﬁ
(2) (2)
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In source-free regions of space, both ﬁ(l) and ﬁ(z) satisfy the same vector wave

equation

Tt x T - F(EH) + e - o) =0 - 3)

If we represent ﬁ* in rectangular coordinates, then equation (3) reduces to the
scalar wave equation for each rectangular component of M. 1If we furthermore set
'Hx = Hy = 0, then each of the "partial" fields defined by equations (1) and (2)
becomes a function of a single scalar variable: H(l) for the first partial field,
and o)y for the second partial field. Linear combinations of these partial
fields are still of such generality that the boundary conditions for any highly
conducting cylinder of infinite length embedded in a homogeneous dielectric#**

of infinite extent can be satisfied. The demonstration of this fact follows.

Let us direct our attention to CW fields, and write HZ in the form#

i (wt+hz) (%)

Hz = R(r)o(0)e
the form of waves propagating along the cylinder. Then in the usual manner of

solution by separation of variables we obtain
I = [ z a elne Z (/EZ—:—HQEJ]ei(wt+hz) (5)
z L n n

where Zn is a linear combination of the Bessel and Neumann functions (ref. 4 and 5) .

Now we may find the fields by performing the operations indicated in equafions
(1) and (2). After we have performed these operations, we must remember that
inside the cylinder there must be no contribution from the Neumann function, since
Neumann functions diverge at the origin. Furthermore, to have the proper varia-
tion at large distances from the origin, the fields outside the cylinder must
involve the combination of the Bessel and Neumann functions which make up the
Hankel function of the first kind, Hél), representing outward-traveling cylindri-

cal waves.

*The unsubscripted il represents both ﬁ(l) and ﬁ(z)'

**By "'dielectric" we mean in general a medium described by both ¢ and 0; a lossy
dielectric.

ffAny solution to the scalar wave equation can be decomposed into a sum over w of
terms of the form shown in equation (4).

3
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Therefore, the fields must have the form inside the cylinder

1 ih : wen 1
E. = Z [" 3‘—1_ J;[Alr)a(i-)'n - r)\l2 Jn(>‘lr)a(2)n:|Fn

i nh i iwul 1
TR R SACONGNEE RO RN

i i
E, = z [Jn(xlr]a(l)n]Fn

(6)

o nk. 2
i 1 i ih i
i = nz_m [Alzwulr Jn()‘lr)a(l)n - TT Jé(Alr)a(2)%]Fn

% ik, 2
i 1 i nh i
Hy = ) I:— whqAq Jr'l(klr)a(l)n T 1?2 Jn(AlrJa(Z)n]Fn

©o

i1
Hz = 2 [Jn(xlr)a(?-)nJFn

- 00
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and, outside the cylinder,

where

and

ES = § - db H(l)' (A r)a ¢ - SEZ; H(1>[A r)a © -F
r neco Az n 2 (1)n rAZ n 2 (2)n| ' n
o iwu ' 7
e _ _ _nh 1 e 2 (1) e
E, nz_wl: e Hr(l)()\zr]a(l)n+ ) S (Azr)a(z)nan
e_ 7 [am e
E, nZ—oo [Hn (xzr)a(l)n]Fn (7)
® nk_ 2 .
e —2 _ z(1) e by e
Hr z WHoA,2 Hn (AZr)a(l)n A Hn (AZr)a(z)n Fn
HE = ozo _ikZ2 H(l)' [)\ ) e _ _nh H(l)()\ ) e F
e~ L. | wp, m 273 T X, 2r n V288 (2)n
- (1) e
-1 [Hn (Azr]a(z)n]Fn
2 = 2 _ Kh2
M2 =k2-h
2 2 _ K2
Xz = k2 h
k, = [—iwul(c1 + iwel)]llz, the propagation constant in the wire
k, = [-—iwuz(c2 + iwez)]l/z, the propagation constant in the surrounding
medium
d J (x)
' = —
Jn (x) =
(8)
) d 51 (x)
(D = —0n
HY (%) ix
Fn - ei(wt—hz-ne)
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The fields must satisfy the boundary conditions at the interface between the
cylinder and the surrounding medium. These boundary conditions require that the
tangential components of the electric field and the tangential components of the
magnetic field be continuous across the interface. These conditions are expressed

mathematically by the relations

iwu Uy
h i ' i
22 J (u)a(l)n " Jn(u)a(z) =37 H( )(v)a(l) - H( )(v)a( 2)n
9
ik, 2 ik, 2 .
' i nh i __2 ;@ e 1
whyu Jn(u)a(l)n + u2 Jn(u)a(Z)n B WH Hé )(v)a(l) v2 Hé )(v)a(z)

e
(u)a(z) r(ll)(\))a(z)n

where u = Ala
v = Aza
and a is the radius of the metal cylinder.
We shall now state without proof two facts essential to the development of
the solution. These facts are discussed at length elsewhere (ref. 5). Both of
the facts relate to the solutions we have found only if the cylinder is a good

conductor, such as a metal.

a. If the cylinder is a good conductor, then all fields resulting from

H(z) are highly attenuated and can be neglected for our purposes.

b. If the cylinder is a good conductor, all fields resulting from H(l)
are highly attenuated except ‘that mode for which n=o0, the axially symmetric mode.
From these approximations it can be seeg that H(l) generates a magnetic field

which only has components transverse to the axis of the cylinder (H(z) generates
a transverse electric field). H(l) fields are sometimes called TM, or transverse

magnetic, fields, and H(z) fields TE, or transverse electric, fields (ref. 5).
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* *%
With n=o0, and with thel&z) modes neglected , equations (9) reduce to

i_ ) e
Jo(u)ao = H0 (\))aO
(10)
k, 2 k,?
2
L Jl(u)ai = —— Hfl)(v)ae
uu 0 M,V o
Combining these equations we obtain
k2 3 (w) k2 H{D(v)
(11)

Hpu J_(u) - TR Hél)(v)

For large values of the wire conductivity o, it is usually a good approximation

that

lul = |kal>> 1 (12)

(this means that the cylinder radius is much greater than a skin depth in the
cylinder). With these approximations, we may use the asymptotic expansion of

the Bessel functions, giving

Jl(u)
Jo(u)

=4 (13)

Outside the cylinder, the approximations that may be made are somewhat
different. h is equal to k2 when the cylinder conductivity is infinite, and close
to k2 when the cylinder conductivity is large. Therefore, v = a/EZTf?j;f
in magnitude is usually << 1.

When this 1is the case, we may use the asymptotic expansion for small arguments,
(refs. 4 and 5)

*
From this point, we will denote a

dz (%)

*
Remember that -Ei——— = —Zl(x) for the above cylinder functioms.

(1)o by a,-

*
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(14)

OR R ™

where y = 1.781

Putting these expansions into equation (11) gives us the equation which determines

v and therefore hj

2
Uy k. ca
20, XV _ o L2
viin 57 i T (15)

This transcendental equation may be solved for v by interation, using for a good

initial guess the value -20 for
Xy z
ing = &n 21 (16)

and rewriting the equation in the form

gE4ng = n a7
2
2 H k_<“a
where n= - 1 xr_ L. 2
2 My k1

As will be shown later in this report a good first approximation for &nf is

a
2 4n
a+62

surrounding dielectric.

» where a is the conductor radius and §, is the skin depth in the

Thus we are able to find the propagation constant h, and the final remaining

problem is to determine the amplitude as a function of some applied excitation.

The Impedance Characteristics

We have determined that the form of the fields about the conducting cylinder

is
e . ¢ 1
E =a Hé )[Azr)Fo(z,t)

® = al i—: W (3, r)E_(2,0) (18)

2

e _ e 2 1)
He o wuzkz H§ (Azr]Fo(z’t)

V]
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the azimuthal magnetic field at the surface of the wire
5)

Knowledge of
immediately tells us that the current through the wire is (ref.

2u(1
o 2Mao u k, HE )(x,a)
2
AgHoky

I =a (19)

¥4 o

We will now define three impedances. These impedances will play an important

role in studying the effect of an axially directed electric field excitation and

will also be important in developing a model for the problem.

The first impedance is defined as

-E_(a)
e (20)
z
Using the approximation that Aza << 1 and equation (1l4), we find that
1+1 1 (“Mi\/2
ZS =75 3ia 'g;— ohms/meter (21)

This is just the value of the 'skin impedance" per unit length of the

conductor, the impedance to a high-frequency current caused by the finite con-

ductivity of the cylinder (ref. 7).

The next impedance is principally inductive.

of inductance Lo

Starting with the definition

LI, = (22)
where @ is the flux per unit cylinder length,
o=2 B drdz = B dr (23)
dz 8 6
a a
and by noting that
1 =L 4
y/ﬁ H(D (A, r)dr = 5= 1 (1,a) (24)
a 2
we find that
iwuz YAZa
ZL = iwLO = - 57 W\ 33 ohms /meter (25)
This impedance is called the longitudinal inductive impedance of the conductor.
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To find the third impedance, we first note that radial current per unit
length flowing out of the conductor is
dIz
Ir(a) =-T - thz . (26)
Furthermore, a potential Vr may be defined in any plane perpendicular to the

cylinder by the relation (ref. 8)

v_ = fErdr (27)
a

Then we shall define the transverse impedance, Zt’ by

Vr
Zt =T (28)
r
Calculations similar to those performed in finding ZS and ZL gives us
1 yAza
Zt = - 2H(02+im€2] n 51 ohm-meters (29)

External Excitation

To find the current induced by an external, axially directed field, we start

with the integral form of one of Maxwell's equations:

6t at--fZ.a

We integrate this equation around the path and over the area shown in figure 1.

z z+Az CONDUCTOR
- - ; )

Az

7

@ o)

Figure 1. The Path of Integration for Determining the
Effect of a Driving Field on a Bare Wire in the Earth.

10
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The equation then is

a z+dz
fE (z)dr+f E dz +

V4

>
dB

E (z +dz) dr = - [ —2 - d& (30)
r dt

P —g

If we divide this equation by Az and take the limit as Az - o, the equation

becomes

if __Af
1z 4 Erdr + EZ = at / Bedr (31)

From equations (26), (27), and (28) we find that

0

d f dzIz
d_z- ) Erdr = - Zt d22 (32)

From (22) and (23), we find that

4 f _
at 4 Bedr ZLIZ (33)

The only Ez that can exist at the surface of the conductor is that caused by Iz’
the current in the wire. If Ez were to be different from Iz Zs’ then, since
Ez is continuous across the interface at the cylinder, a current different from

IZ would flow in the wire, a contradiction.

Let us assume that there is an external source of axially directed electric
field which would cause a field Ezo to exist at the location in space where the

cylinder is were the cylinder not there. Furthermore, let us assume that the

introduction of the cylinder does not affect the source. From superposition we
can add the externally generated EZO to the EZl generated by the wire to obtain

the total Ez. This total Ez must be just IZZS; therefore we have

E__ +E =1 Z
zo z1 z s

Putting this all into equation (31) we have the equation which describes the flow

of current in the cylinder:

d?1
zZ
t dz2

z -(z +2 )1, =-E (34)

Z0
The solutions to this equation are known, but before we examine them, we shall

consider another physical situation which leads to this equation.

11
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An Analogous Problem:

The equation which governs the flow of current in the transmission line
shown in figure 2 is exactly the same as the equation which governs the flow of

current in the single conductor embedded in the dielectric (ref. 9).

_ zZ, }— z, Ezo | 2L Zs

Figure 2. The Equivalent Dispersive Transmission Line.

The dielectric acts as the other conductor of the transmission line by being the

return path for the current.

As a matter of fact, we can imagine a transmission line which has properties
very close to those of the single cylindrical conductor, but which is much simpler

to deal with, and much easier to generalize.

Since the problem we have been considering has cylindrical symmetry, the
model we shall consider is a cylindrical transmission line. We are principally
concerned with a poorly conducting dielectric surrounding the highly conducting
cylinder, and would expect that the fields produced by the conducting cylinder
would be considerably diminished a "skin depth" in the dielectric away from the
cylinder. A somewhat idealized version of the field pattern around the cylinder

excited by an external axially directed electric field is shown in figure 3.

E - ELECTRIC FIELD LINES

Figure 3. The Electric Field Near the Wire.

12
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If the field lines are still nearly perpendicular to the conductor a skin depth
away, then the cylinder r = 62 must be nearly an equipotential, and we would not
disturb the field distribution between the wire and r = 62 by inserting a conduc-
ting cylinder at this radius. In doing this, we have formulated a cylindrical
transmission line of inner radius a and outer radius §,, filled with a conducting

and o,.

dielectric characterized by the parameters Hos €55 2

The impedances which characterize this coaxial transmission line are

(refs. 7 and 9)

1 a
Z = - . in
t 21 0 ,+iwe, <a+62)

iwp
_ a
i T o <a+62) (35

An inspection of equations (21), (25), and (29) shows that the impedances which
characterize the cylindrical conductor imbedded in the dielectric differ from

those of the cylindrical transmission line only in the logarithmic factor.

Even in this factor, the difference is not very great, as the following

two examples will indicate.
Example I. Number 10 copper wire,

Wire Radius = 1.28 x 10=3m

Wire conductivity = 5.88 x 107 mho/m

Wire Magnetic Permeability = 41 x 1077 henry/meter

Ground Conductivity = 2.9 x 1072 mho/m

Ground Magnetic Permeability = 4I x 10~/ henry/meter

Even at 1 mc, the displacement current is <17 of the conduction current,

. 82 was set to zero.

13
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yxza
tn =7 -/
Frequency 2n aidz Real Imaginary )
-/
102 cps -12.34 -12.75 -1.25 ’
103 eps -11.19 -12.15 -1.23 <
104 cps -10.04 -11.55 -1.23
10° cps - 8.89 -10.95 -1.23
106 cps - 7.74 -10.34 -1.24
Example II. Lead Sheath Cable
Wire Radius = 2.07 x 1072m
Wire Conductivity = 4.45 x 10° mho/m
Wire Magnetic Permeability = 41 x 10~7 henry/m
Ground Conductivity = 2.9 x 102 mho/m
Ground Magnetic Permeability = 41 x 10~7 henry/meter N
e, £0
<
»
n Ziii
21
Frequency n aiéz Reai Imaginary
102 cps -9.56 -10.63 -1.24
103 cps -8.41 -10.02 -1.24
10% cps -7.26 - 9.42 -1.24
10° cps -6.11 - 8.81 -1.25
106 ¢ps -4.96 - 8.20 -1.25
Thus, it is easy to see that our simple model is similar to the single
conducting cylinder--conductive dielectric system, and may give a useful approxi-
mation to the more accurate, but more complicated, solutions.
Solution to the Transmission Line Equation )
If the transmission line or cylindrical conductor is of length d and .
terminated in impedances Z1 and ZZ*, with the definitions
—

*
The nature of the termination impedance will be discussed in section III.
14
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z. + 2 \'/?
S i V-
t
z, = [zt (z, + Zsi]l/z (37)
and
d
F(z) = 5%-— fEZO we T1EV g (38)
0O [e]
then

'z

I(z) = Ke + LeTZ

+ F(z) (39

where K and L are related to the reflected currents at the respective terminations

(see appendix II) (ref. 3). 1In general,

(z,-z )z,~2 ) F(d) - (2,42 )(z,-2 ] e’ 9F (o)

K =
, rd -Id
(zy42 ){z,42 ) e © - (2)-2_)(2,-2_) e
(40)
) (z,-z_)(z,-2 ) e T4 F(o) - (2,42 )(z,-2,) F(d)
- f Y _Id .\ —Id
(zp4z Jz,42 ) % - (272 )(2,~2,) e

Since the impedances used in quations (36) and (37) are complex, it is often
easier for the purpose of calculation to split the impedances into their real
and imaginary parts. The total longitudinal impedance Z and the transverse

admittance Yt are defined as follows:

= ._.l_.__ 1 . 1
Y, = Zt G' + iwC (41)

where G' is the conductive admittance per unit length, and C' is the transverse

capacitance per unit length; and

z = (2, +2,) =R+ dul! (42)

15
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where R is the longitudinal resistance per unit length and L' is the total
inductance per unit length. From equations (35), (41) and (42),

Mo,
G' =Y (real) = - -
t on a
. ‘a+62 )
Y (imaginary) 21le
C' = t = - 2
iw on a
a+62
(43)
L oy 1/2
R = ZS (real) = >75a ;:—
L' = & (imaginary) _ _ Eg on -2 + R
iw 21 a+62 w
Also, from equations (36), (37), (41) and (42)
r = [[R + 1uL')(G" + 1wc')]1/2 (44)
and
Z, = [(R + iwL']/(G' + iwC')]l/z (45)

From the above analysis, given the excitation field and the electrical
characteristics of the wire and the dielectric, we can find the current induced

in the wire by the excitation field.

Additional Properties of the Transmission Line Model

The transmission line model would be of limited value if it only allowed us
to solve approximately a problem which we could also solve exactly by other similar
means. But the transmission line model has the additional value of guiding us to

approximate solutions of problems which are much more difficult to solve exactly.

For example, we can observe that this theory should apply to curved conduc-

tors as well as straight conductors so long as the radius of curvature is large

16
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compared with 52. Furthermore, if the excitation electric field is not parallel
to the conductor, then only the parallel component of the field need be considered,

since the normal component of the field will generate only highly damped modes.

Other special cases of the transmission line model are considered in the

following sections.

17
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SECTION III

EXTENSION OF THE TRANSMISSION LINE MODEL

The previous section considered the fields and currents in an infinitely
long wire buried in a lossy dielectric of infinite extent. It was found that the
relation between the impressed field and the current in the wire was equivalent

to the relation for a driven coaxial transmission line.

In this section, the transmission line model will be used to determine the
currents induced by a CW electric field in wires of finite length, including the
effect of the termination reflections. These wires will be lying on the earth,
or buried within a distance §, of the surface. They may be bare wires, or they
may have coverings of some homogeneous material. By considering these variatioms,
the current relations for the ideal configuration of the previous section will be

converted into current relations for practical wire configurations.
A Wire at the Earth-Air Interface

The transmission line equation, discussed in the previous section for the
long underground wire, will now be further exploited as an approximation to solve
some specialized wire current problems. Specialized problems may be solved in
terms of the transmission-line current solution, equation (39), by determining
the equivalent impedance characteristics and propagation constant for the given
earth-wire configuration. 1In particular, the problem of a wire lying on the

surface of the earth will now be studied.

This problem is very difficult to solve exactly, since there are a
multiplicity of interfaces which must be considered. However, by use of the
transmission~line model and several basic assumptions, the problem in the geometry

of figure 4 can be solved approximately.

Assume that the wire is the inner conductor of a coaxial transmission line
(outer conductor has radius b, as in figure 4) which is half-filled with earth,
the remaining half being air-filled. It will be assumed that the electric field

18
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lines will maintain their radial direction, even near the earth—air interface,
and not have any appreciable 6 components. The general relations between the

electrical characteristics of the air and the earth are:

My = H

o
g =0

0

£, = CEO where C > 5 for most earth.
/—_\\ AlIR (}LO,‘O)

OUTER CONDUCTOR\f/

\ ]
\ //J / EARTH (;u2 LA ez)

/
WIRE (AXIAL vnswy—/(\ /

Figure 4. A Wire at the Surface of the Earth.

The transverse admittance will be the sum of the admittance through the

earth and the admittance through the air as shown in figure 5.

O—0

Il
i

Figure 5. The Impedance of a Wire at the Surface of the Earth.

Y, (AIR) ==

ih—o

But the high conductivity of the earth produces an admittance which heavily out-
weighs that of the air. Therefore, the transverse admittance may be calculated

as half the transverse admittance of a dirt-filled transmission line:
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. b
Y, =-% [zn(oz + iwez]/ln(;)]

Since the magnetic characteristics of the air are the same as those of the earth
the magnetic field lines show no appreciable deviation from those of a trans-

mission line filled with a single medium. Therefore, we have the inductance per

u
2 b
L = 7n 2n(a)

The skin impedance is the same as previously calculated for a wire in equation (21),

unit length:

and, for the frequency range of interest, iwLo >> ZS. Therefore, from equation

(36), the propagation constant for the wire 1is given by:

1/2
I = _[zs + 1uL,_) Yt]
(46)

"iwu 1/2

22 [02 + iwsz):l

I

the latter equation which is independent of the outer radius of the transmission

line.

In these approximations it was assumed that, for a wire at the surface of

the earth,

[

LO (surface) L0 (infinite depth)

(47)

Yt (surface) 1/2 Yt (infini;e‘depth)

where the values for infinite deoth are given by equations (22), (25), and (41).
The values for the impedances of a wire given above will be used in theoretical
current predictions for a wire that 1s near the surface of the earth (that is, when

the depth of burial is less than 62).

A Covered Wire

In this section, an infinitely long wire with a concentric cylindrical

covering will be studied using the transmission line approximation.

20
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This covering will be homogeneous, constant thickness throughout, and will

have a conductivity much less than that of the wire metal. Also, the attenuation

of the fields through the covering will be negligible; that is, t<< where
3i

31
Figure 6 illustrates the geometry of this wire.

k_. = imaginary part of [-imp3(03 + iwga)]l/z_

WIRE (y.l.cr1 ,61)

EARTH (;Lz,a'z,cz)

COVERING (/.L3.cr3 .63)

Figure 6. The Covered Wire.

With the attenuation condition imposed, the covering will have little effect on
the magnetic flux generation relative to the current in the wire. That is, the
inductance per unit length will remain approximately the same as given for the
bare wire.

However, the covering may have a very definite effect on the transverse impe-

dance, as shown in figure 7, since a covering of an insulating material will block

the flow of conduction currents between the wire and the earth (in figure 7,

Ri +> ),
WIRE y4
L S
R o Lo s o
Tt
, |
Y; (COVERING) =:;RI 1_ci= 2 -I-
3
lY———  _| Q
[ ——o—— | |
Y. (SOIL) | 3R "c= 3
T 177 179 i
2 , _ |

Figure 7. The Impedance of a Covered Wire.
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If, as in most practical cases, the diameter of the wire-covering combi-

nation is much less than a wave length

by zero order fields with no 6 dependence.

in the earth for the frequency range of d

interest [2[a+t] < T%—T ), then the fields for the system may again be described '
-/

The covered wire can be approximated by a single bare wire of radius o

(a+t) for the purpose of determining the transverse admittance from the outer

surface of the covering to the earth.
through the covering, the wire will be
line filled with the covering material.

Y (covering)
t3

ZH[U

To determine the transverse admittance

approximated by a coaxial transmission
With these approximations

_ 2n(o +ive )

a+t
a

2n
(48)

2+iw€2)

Y (soll) =
t, Rn[y 21 ]

Az(a+t)

The total transverse admittance is then given by

If the covered wire is placed at t
half of the covering will be in contact
It is noted in equation (49) that if th
low, the total admittance is low. Ther
ficient thickness to distort the fields
through the half of the covering in con

analysis performed in the previous sect

[ H

Y (surface)

1
=Y
ty 2 't

(49)

he surface of the earth, approximately
with the air and half with the earth.

e admittance of the outside medium is very

efore, since the covering is of insuf-
appreciably, little current will pass

tact with the air. Therefore, from the

ion, and using equation (48)

(infinite depth)
3

(o +ive, )

3
in

22
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Yt (infinite depth)
2 2

Yt (surface)

I
[T

(50)
H(02+iwez]

2i
Ykz(a+t)

n

The relation for Y (total) still holds (equation 49).

The propagation constant for the covered wire can be calculated from
equations (36) and (49) using the transverse admittances calculated above. In

general, this propagation constant will be given by

I' (covered wire) = ]2

In this section the propagation and impedance factors of the covered wire
have been derived in terms of the transmission line theory. These factors may

now be used with equation (39) to determine the current induced in a covered wire.

Termination Impedances of Finite Wires

A practical transmission line is generally terminated by a reasonably well
defined and well known impedance. However, the termination of the equivalent
transmission line model, as presented in previous sections, in general is not
well defined. A few possible wire termination conditions will be considered in
this section, and attempts will be made to estimate the termination impedance

produced for each condition.

One possible termination condition, shown in figure 8, involves a wire
that is arbitrarily cut off at some point, with no further attempt made to
control the termination impedance. The lines of the driving electric field in
the earth are by definition parallel to the axis of the wire far beyond the end
of the wire. At a distance from the wire termination of less than 62, the field
lines are bent toward the wire. Since the diameter of the wire is much less than
the wave length of the electric field, any irregularities in the end of the wire
will not produce any appreciable irregularities in the field. Therefore, the
field will converge approximately isotropically on a hemisphere at the end of

the wire.
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EARTH (;.Lz,az,cz)

k—ELECTRIC FIELD LINES

Figure 8. Electric Field Near a Wire Termination.

If the total current entering the end of the wire is Ie' then the current

density in the earth near the end of the wire must be

where ry is measured from the point on the wire axis which 1s the apparent point

of convergence of the electric field lines. The current density J  includes

]
both conductive currents and displacement currents. It will be assumed here

that the termination of the wire is a hemispherical cap of radius a, equal to
the radius of the wire. Then ignoring the driving field, the component of the
electric field converging to the wire termination will be

I e-ikzrS

E_ & o=
T 2Hrsz(02+imez]

the electric potential at the end point is

24
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Ie e—ikza
" 2m(o Huwe,) [ a lsz(lkf]]

-V
where G(x) = v{.E;— dv is the exponential integral function (ref. 9).
X

Within the limits previously placed on w, 0,, €, and a,

I

v, = £
e 2Mafo,+iwe, )

Therefore, the termination impedance, defined by

Ze = 2Ha[02+iw62) (51)

In the range of the earth electrical characteristics and frequencies previously
mentioned, this impedance can vary from values comparable to the line impedance
of an insulated wire, as defined in equation (49), to several orders of magnitude
higher than the line impedance. However, a condition implied in this impedance
derivation is that there must be good electrical contact between the end of

the wire and the earth. This condition may not be true for a wire cut and

arbitrarily placed in the earth.
When there is an insulative covering of thickness t placed uniformly over
. . 1 . . .
the termination, where t << TE—T , an added impedance term is present. This
2
term, which is the capacitative impedance through the termination covering, is

7 = 1 1 1
c ZHiwe3 a a+t

1 t
B 2Him€3 [a(a+t)]
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where €, is the dielectric permittivity of the insulation. The impedance to

3
ground from the outside of the insulation is

- 1 ’
G 2H(a+t)I02+iw€2J

Z

The total termination impedance to ground is

1 1 t
Ze T 2N (at+t) [02+iws + iwe a] (52)
2 3
The added impedance, which could be caused by an air space at the end rather than
specific insulation, is always orders of magnitude higher than the line impedance

for the frequency range of interest.

The above determinations indicate that, unless special care is taken to
ensure good electrical contact with the earth at the wire ends, a wire that is
terminated only by cutting off the end will result in a termination impedance Ze

much greater than Zo’ the line impedance. This is true even for insulated wires.

One method of lowering the termination impedance is to connect the end of
the wire to a vertical metal rod driven into the earth. The rods commonly used
for this purpose are 1 to 2 meters long and 1 to 2 centimeters in diameter.

1
From these dimensions a' << g!' <<7T—-T
k2

where a' is the radius of the ground rod and %' is the length.

A theoretical study was performed by Sunde on the impedance of various
grounding arrangements (ref. 9). The short length of the rod, in addition to
the fact that it is perpendicular to the wire in the earth, ensures that its
inductance effects are small. It was found that a single grounding rod with the

above characteristics has a resistance,

P 42N
Rg = 2me'o, [Qn( a') 1] (53)

For an insulated wire in extremely high-conductivity soil, the resistance will be
down an order of magnitude from the line impedance. However, for average or low-
conductivity soil, this grounding arrangement will not reduce the termination *
impedance appreciably below the line impedance. In particular for bare wires,

the wire itself may be a much better grounding arrangement that the vertical ~’

ground rod.
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Although there are many other methods of electrically terminating the wire
in the earth, the above cases were of special interest, since these termination
methods were used on the wires in which measurements of induced currents have

been taken. The experimental results will be discussed later.

Up to this point the discussion has been guided toward the determination
of a theoretical expression to predict the currents that will be induced in a
wire in the earth by a continuous-wave electric field of arbitrary spatial
dependence. It is now necessary to compare the predictions calculated by this

theory with actual measured data to test the reliability of the theory.
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SECTION IV

THE EXPERIMENTAL WORK 7

The experimental results discussed in this section were obtained by 7
Mr. A. Whitson and his associates at the Stanford Research Institute under a

research contract with the Air Force Weapons Laboratory (reference 3).

A vertical monopole ground antenna was set up by Stanford Research Institute
to transmit a continuous wave signal at a series of discrete frequencies between
500 cps and 510 kecs. A number of wires were laid in and on the ground near the
antenna, and the currents induced in these wires were measured at several points
along each wire. The experimental results of this work will be compared with
calculations from the induced current theory to test the accuracy of the theory
in predicting the currents induced by a continuous wave field parallel to the

wire. This section will explain the experimental work that was performed. -

Work Performed by Stanford Research Institute

A large percentage of the present data on currents induced in wires in
the earth by continuous wave electromagnetic fields was collected by Stanford
Research Institute in extensive experiments performed with a vertical monopole
antenna field source (reference 3). The height of the antenna was 30.5 meters
over a counterpoise which was constructed of 19 radial wires, each 30 meters
long. The ground plane was suspended 3 meters above the earth and was terminated
in the ground with 2-meter-long metal ground stakes. The antenna itself was
placed atop an instrumentation van containing the devices for measuring the

input to the antenna. The antenna complex is shown in figure 9.

The transmission system was designed to operate at the fixed frequencies
of 0.5, 1, 2, 5, 10, 21, 62, 100, 200, 450, and 510 kc with antenna voltages
varying from 18 KV at 0.5 ke to 0.5 KV at 510 kc. These particular frequencies
were transmitted by resonating the specially designed loading coils with the
measured antenna capacitance of 426 pf. A variable capacitor in parallel with s

the antenna was used for fine adjustment of the resonant frequency.

Measurement of the antenna impedance indicated that it was essentially a

pure capacitance. Therefore, the base current of the antenna could be
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determined from the antenna capacitance (CA), the frequency (w] and the

antenna voltage [VA) by the relation ‘ <
IO = iwCA VA (54)

-

From equations (54) and (71), predictions of the transmitted azimuthal magnetic s

fields were calculated by Stanford Research Institute and were later confirmed —

by measurements made of the fields.

Predictions of the radial electric field were also made. However, the
radial electric-field measurements were unreliable, because the electric-field
sensor could not be entirely decoupled from the much larger vertical electric

field.

The transmitting monopole antenna was set up in two separate test areas.
These regions are called Area 1 and Area 5. Area 1 earth had an average
measured conductivity of approximately 4.4 X 10~3 mhos/m. Aréa,S earth had an

average measured conductivity of approkimately 2.9 x 10”2 mhos/m.

In other ways, the two areas were quite similar. Both areas were flat beds
of alluvial soil, which had a hard, dry surface crust. Laboratory measurements
indicated that the dielectric constant of the soil was approximately 40 for a
alluvium at a frequency of 1 Mcs and had a tendenty to increase with an inverse

frequency dependence at lower frequencies (reference 10).

The wires and cables used for the induced-current measurements were laid
parallel to the surface of the earth in these two areas, in a radial orientation
from the base of the antenna. These wires were buried at depths from zero to
one meter, zero depth corresponding to wires laid on the surface of the earth.
In cases where more than one wire was present, the individual wires were suf-

ficiently far apart to prevent any appreciable interaction.

A variety of bare wires, insulation-covered wires, and armor-sheathed
cables were used. One cable had a covering with conductivity comparable to the
conductivity of the surrounding earth. Some of the particular conductors used

will be detailed in a later section.

The currents in the wires were detected by circling the wire at the desired
point with a toroidal solenoid. The solenoid was constructed of 260 turns of
#22 enameled copper wire wound around a composite core with a relative permea-

bility of 125. The winding was cast in epoxy resin and the unit was then split ),
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into halves to facilitate installation onto the wire. The coil picked up the
magnetic field produced by the current in the wire, and transformed the field

into a measured voltage signal.

A capacitor was placed in series with the coil to produce resonance at
0.5 ke. By using only a part of the toroidal solenoid in the sensor, it was
possible to produce resonance in the pickup circuit at frequencies as high as
21 kec. For higher frequencies, it was unnecessary to use resonance in the
circuit, since the signal was sufficiently large to measure without tuning the

circuit to the transmitted frequency.

The phase of the current at each point on the wire was measured relative to
the phase of the vertical electric field at the point of measurement. This was
done by receiving the electric field on a small vertical antenna and comparing
the phase of the signal from the antenna to the phase of the signal from the
current sensor. The induced currents were measured at several points along

the length of each wire for each frequency transmitted by the antenna.

The specific details of some of the wires used and the results of the

currents measured on these wires will be presented in the next section.
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SECTION V

RESULTS

In this section, the currents calculated from the transmission-line dif- </
ferential equations are compared with the Stanford Research Institute experimen-
tal measurements of these currents (reference 3). The calculations were
programmed for an IBM 7044 computer. The essential features of this program
are discussed in Appendix V. Discrepancies between the data and the theoretical
calculations are analyzed in an attempt to specify the practical limitations of

this method of predicting the induced currents.

The accuracy of the Stanford Research Institute measurements was determined
in private communications with Mr. Whitson, the principal investigator (reference
3). The magnitudes of the currents measured are accurate within a factor of 2,
while phase measurements are within * 30 degrees of the actual value of all -
frequencies. However, since the polarity of the current sensor was not kept the
same for all measurements, the phase measurements were 1in many cases 180 degrees
from the true values. This latter point must be remembered when analyzing the ,

forthcoming data-theory comparisonms.

When calculating the theoretical currents for the wires, it was recognized
that all wires were buried at a depth small compared with 62 which necessitated

the use of the impedance relations for a wire at the surface of the earth,.

The Bare Wire

This wire was a 10-gauge copper wire buried approximately one-third of a
meter under the surface of the earth in Area 5 (see section IV). The wire
extended from 213.5 meters to 1128.5 meters radially from the base of an
antenna. The terminations were formed by arbitrarily cutting off the wire, with
no special grounding method used. Figures 10 to 17 show the current magnitudes
and phases for this wire, both measured and theoretically predicted, for fre-
quencies of 0.5, 10, 62, and 510 kc. The values of the current are given in s
amperes of current per kilovolt of antenna voltage. The logarithm of the current

is plotted. .

The tendency of the current to fall off at the ends indicates that

termination impedances at both ends were much greater than the effective line ~/
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impedance of the wire. The relatively high termination impedances

are anticipated by the analysis given in the termination impedance discussion.

The agreement between experimental and theoretical calculations is good
for the three highest frequencies. It must be kept in mind that, since the
polarity of the sensor was not specified in the experimental data, it may be
necessary to adjust the experimental phase values by 180 degrees. This appears

to be the case in figures 13 and 15.

At the lowest frequency, predicted currents are high by an order of magni-
tude, and the predicted phases are off by 90 degrees. The most likely reason
for the discrepancy relates to the assumption in the theoretical treatment that
the bare wire had good electrical contact with the earth. Simply burying a wire
in the earth does not ensure good electrical contact, since a rough textured
soll permits air spaces between the wire and the length of the wire. Also, a
metal oxide coating the bare wire could produce an effective insulation. 1In
case of copper wire, copper oxide may even act as a rectifying layer, an effect

that cannot be easily considered in the present linear analysis.

Any insulation, such as air spaces and oxide coatings, produces a high
capacitance in the transverse admittance. At high frequencies, this capacitance
appears as a low impedance and therefore is inconsequential. At lower frequen-
cies, however, the impedance caused by this capacitance reduces the observed

currents induced in the wires and shifts their phase by 90 degrees.

The Insulated-Wire, High-Impedance Terminations

The first insulated wire was an insulated 10-gauge wire placed on the
surface of the earth in area 1 (see section IV). The thickness of the insulation
was approximately 1.2 mm, and its measured dielectric constant for this frequency
range was approximately 2.7. The wire extended from 91.5 meters to 1220.5
meters radially from the base of the antenna. The terminations were formed by
arbitrarily cutting off the wire, making no attempt to ground the cut ends of
the wire. Figures 18 to 25 show the theoretical and experimental current

magnitude and phases for this wire for frequencies of 2, 10, 62, and 510 kcs.
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Figure 13. Bare Wire Current Phase at 10 kes.
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Figure 14. Bare Wire Current Magnitude at 62 kcs.
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Figure 15. Bare Wire Current Phase at 62 kcs.
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Figure 16. Bare Wire Current Magnitude at 510 kes.

40



AFWL-TR-65-94

DISTANCE FROM DIPOLE ANTENNA
2135 3135 4135 5135 6135 713.5 8135 9135 10135 1113.5

180 [ ‘| i l
PHASE OF CURRENT INDUCED
| WITH RESPECT TO PHASE OF
VERTICAL ELECTRIC FIELD
90
-
q
[72]
w
&
by 0
w
(=]
[}
; /
-90
— THEORETICAL CURVE
— o EXPERIMENTAL
-180

I00 200 300 400 300 600 700 800 900
DISTANCE ALONG WIRE (meters)

Figure 17. Bare Wire Current Phase at 510 kcs.
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Figure 18. Current Magnitude, Insulated Wire, High-Impedance Terminations, 2 kcs.
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Figure 19. Current Phase, Insulated Wire, High-Impedance Terminations, 2 kcs.
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Figure 21. Current Phase, Insulated Wire, High-Impedance Terminations, 10 kes.
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Figure 22. Current Magnitude, Insulated Wire, High-Impedance Terminations, 62 kcs.
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Figure 23. Current Phase, Insulated Wire, High-Impedance Terminations, 62 kcs.
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Figure 24. Current Magnitude, Insulated Wire, High-Impedance Terminations, 510 kcs.
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Figure 25. Current Phase, Insulated Wire, High-Impedance Terminations, 510 kcs.
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Again, the drop in current near the terminations indicates that the
impedances at the ends were higher than the line impedance of the wire. Since
no attempt is made to ensure good electrical contact with the earth at the
terminations, it is to be expected that these impedances were much higher than

the impedance at any other point along the wire.

A noticeable characteristic of the insulated wire is the standing wave
structure at frequencies at which the wave length of the current wave is com-
parable to or less than the length of the wire. 1In the bare wire, the reflected
waves .are so strongly attenuated that they do not produce a prominent standing

wave structure.

The magnitude of the currents shows a good comparison between experiment
and theory, except at 62 kcs. Only the phase at 10 kcS shows good comparison

between experiment and theory in the phase comparisons.

The agreement between the experimental and theoretical values of phase
cannot be quantitatively discussed at this point. Both theoretical and experi-
mental programs investigating this question should be carried out to determine

the real reasons for the present lack of quantitative agreement.

The magnitude discrepancy at 62 kcs is explained by the fact that the
electrical characteristics used for the theoretical calculations give a current
distribution at or near the second current resonance of the wire. Near reso-
nance, a small error in the electrical characteristics of tﬁe wire or in the
frequency of the input wave can result in a large error in the predicted current
value. Figure 26 illustrates how the maximum wire current varies rapidly near

resonance.

However, the fact remains that the theoretical predictions are near the
second resonance while the data appeared to be closer to the primary resonance,
both in magnitude and phase. This discrepancy is also noted in the fine
'structure of the 510 kcs magniFyde and phase comparisons. Since the wave length
of the current wave is inversely proportional to the transverse capacitance of
the insulation, the comparisons indicate that the calculated transverse capaci-

tances are too high.
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Figure 26. Theoretical Peak Current Versus Frequency Near Primary
And Secondary Resonance for the First Insulated Wire.

The reason for this is again the basic assumption that there must be good
electrical contact between the outside of the wire covering and the earth. 1In
the actual case, the wire was laid on the surface of the earth with no provision
made to ensure good electrical contact. The contact is more realistically

depicted by figure 27.
WIRE

/

Figure 27. Wire Lying on the Surface of the Earth.

The air spaces between the wire and the earth produced a capacitance in
series with the insulation capacitance, thereby reducing the total capacitance
of the system. An accurate theoretical analysis of this effect is very difficult,
but the effect is approximated by assuming that the wire had an insulating

covering of air of some appropriate thickness.
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However, if the interest of the problem lies in estimating the peak
currents induced in the wire, the only difficulty presented here is the problem
of resonance at high frequencies. Except for the 62 kes theoretical resonance,

all magnitude comparisons are good.

The Insulated Wire, Grounded Terminations

The second insulated wire was identical with the first except for the wire
terminations. In this case, each end was terminated by connecting the end of
the wire to a one-meter—iong metal stake driven vertically into the earth in an
attempt to reduce the termination impedance to a minimum. The actual termination
impedance was measured to be 1900 ohms, which was comparable to the equivalent
line impedance of the insulated wire. 1In the theoretical calculations, the
terminations are assumed to be zero at each end. Indicative of the lower
termination impedance, the current at the ends is comparable with the current

elsewhere in the wire.

Comparison of the theoretical and experimental current magnitude and phases
is found in figures 28 to 31 for frequencies of 10 and 510 kcs. The theoretical
calculation of the magnitude at 10 kcs is 3 to 4 times higher than the current
actually measured. This is due to misjudging the termination impedancés in the
calculations. Calculations indicate that at 0.5 ke, the peak current can vary
by 4 orders of magnitude if the termination impedances vary from zero ohms to
infinity. There are larée variations of this nature for all frequencies below

the primary resonant frequency, which explains the  discrepancy at 10 kcs.

The high-frequency phase discrepancy was produced by the added capacitance
caused by poor electrical contact, as in the previous insulated wire test.
Unfortunately, there are insufficient data to make a detailed analysis at either

frequency or at any of the other frequencies at which data were taken.

The High-Conductivity Covering

The conductor used in this experiment was a double-sheath armored com-
munications cable buried at a depth of approximately one meter. The outside
metal sheath, made of 0.7-mm-thick copper, was covered with a 0.55-mm-thick
covering of a material which had a conductivity of approximately 1 mho/meter;
comparable conductivity to that of earth, but much less than that of the metal.
It is assumed, for the sake of simplicity, that the thickness of the outer copper

sheath is greater than the thickness of copper necessary to produce an
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Figure 28. Current Magnitude, Insulated Wire, Grounded Terminations, 10 kecs.
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Figure 29. Current Phase, Insulated Wire, Grounded Terminations, 10 kcs.
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Figure 30. Current Magnitude, Insulated Wire, Grounded Terminations, 510 kes.
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Figure 31. Current Phase, Insulated Wire, Grounded Terminationms, 510 kcs.

56



AFWL-TR-65-94

attenuation of-% in the outside tangential electric field. This is a good
approximation for all frequencies above 10 kcs. When the approximation holds, the
hollow metal sheath appears as a solid conductor to outside fields. Therefore,
the relations that are used for the solid wire can be used, independent of the

structure inside the external metal sheath.

The terminations of the cable were cut off, with no special grounding
arrangement used. The data confirm the current magnitude decrease at each end
assoclated with this method of terminating a wire. These experimental data for
the current magnitudes in the neighborhood of the ends of the cable are so small
that they do not appear on the graphs. In some cases, these currents could not

be measured due to their small magnitudes.

Figures 32 to 39 show the comparison of the experimental current magnitude
and phase data with the corresponding theoretical calculations for 0.5, 10, 62,
and 510 kes. There is excellent agreement in magnitude and phase for all fre-

quencies except for the apparent discrepancy in phase at 0.5 kc.

The high-conductivity covering, together with burying the cable, appears to
provide a much better electrical contact with the earth than a surface cable or
a noncovered cable. The covering also prevents oxidation of the outer surface
of the metal. Therefore, the electrical characteristics of this cable are known

more precisely than the characteristics of the other cables studied.
Conclusions

Several limitations on the transmission line model are obvious at the start.
The local electrical characteristics of the earth, such as the conductivity and
the dielectric constant, may vary rapidly over the lengths of the wires. These
variations may produce error in both the wire impedance characteristics and the
postulated impressed electric field. Lacking convincing experimental evidence,
it is difficult to give a quantitative measure of this limitation. It would seem
to be a reasonable first approximation, however, to assume that the ground has

its average electrical properties everywhere.
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Figure 32. Current Magnitude in Wire with High Conductivity Covering at 0.5 kes.
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Figure 33. Current Phase in Wire with High Conductivity Covering at 0.5 kecs.
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Figure 34. Current Magnitude in Wire with High Conductivity Covering at 10 kes.
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Figure 37. Current Phase in Wire with High Conductivity Covering at 62 kcs.
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Figure 38. Current Magnitude in Wire with High Conductivity Covering at 510 kecs,
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Figure 39. Current Phase in Wire with High Conductivity Covering at 510 kes.
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The major source of error in high-frequency current calculations in
insulated wires of finite length appears to be associated with current resonance.
Near resonance, a relatively small error in calculating a wire impedance factor
can produce as much as an order of magnitude error in the magnitude of the peak -’/
current over the length of the wire. The most critical situation occurs when
there is an actual current resonance; this can mean that the actual current ~/

induced is much greater than the predicted current.

It is often difficult to determine exactly the transverse impedance charac-
teristics of a given wire because of unpredictable electrical contact with the
earth. Effects such as air spaces and oxide coatings on the metal surfaces can
produce additional capacitances. At low frequencies, these capacitances modify
both the phase and amplitude characteristics. At the higher frequencies, the

predominant effect of the capacitances is a modification of the phase function.

Other low-frequency current errors in insulated wires are termination
impedances which are not precisely known. At extremely low frequencies, the
peak current can vary by several orders of magnitude due to this uncertainty in
termination impedance. However, with proper precautions, the termination impe-

dances can be controlled within practical limits.

The present study appears to satisfactorily answer the engineering problem
of determining peak currents produced by a given impressed continuous wave field
in those cases considered. The largest discrepancies occur for the insulated
wire with floating terminations. Jr these reasons, it would seem desirable to
make a more detailled theoretical and experimental investigation of this case.
Such a detailed study would be absolutely essential for the determination of

currents induced by pulsed impressed fields.

Although an extended general study of this nature would be valuable in
further defining the essentials of the problem, the present study has, from a
practical point of view, provided a means for conservatively estimating the

peak currents to be expected in a typical cable installation.
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SECTION VI

CONCLUSIONS AND SUMMARY

The purpose of this paper has been to illustrate a method for determining
the currents induced in a long wire or cable in or on the ground by a distributed
continuous-wave electric field parallel to the wire or cable. The method used
is to approximate the wire as a transmission line to determine the impedance

factors and propagation constant for the currents in the wire.

To test this theory, a variety of cables in the ground were exposed to the
surface radial electric field from a grounded vertical monopole antenna, and the
current magnitudes and phases produced in the wires were measured. These currents
and phases were compared with those predicted from the postulated theory and the

known radial electric field distribution of the antenna.

The theory as postulated usually made current predictions within the
confidence limits of the data obtained by Stanford Research Institute (as
explained in the results), especially at higher frequencies and for the covered
wires. The theoretical peak magnitudes were consistently within a factor of
two of the peak magnitudes of the data for corresponding conductors and frequen-
cies. The corresponding phases consistently matched within the 20 to 30 degree

accuracy limit imposed by experimental considerationms.

The problem in predicting the currents for practical wires in and on the
ground lies in the examination of the electrical contact with the earth along
the full length of the wire. Air spaces, oxide coatings, and varying electrical
'constants' in the earth produce the deviations between the data and the theory.
The air spaces and oxide coatings produced added transverse capacitances which
cause deviations in current phases and magnitudes at low frequencies. The
variation of the electrical properties of the earth can produce large deviations
between theory and measured results primarily at high frequencies, when the

earth-wire system is near a resonant frequency.

The next step in the study of cable currents is to further refine the theory
of currents from continuous-wave fields. The ultimate goal will be to extend
this CW theory to determine the currents induced by fields arbitrary in space
and in time. With this goal reached, the vulnerability of cables to lightning

and to the electromagnetic pulse from a nuclear detonation can be studied in detail.
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Appendix I

THE DERIVATION OF THE REAL AND IMAGINARY
PARTS OF THE TRANSVERSE ADMITTANCE Yt

The purpose of this derivation is to determine the real (G') and imaginary

(wC') components of the transverse admittance for a wire in terms of the admit-

tance characteristics of the wire covering and the admittance to ground.

VVH?E'—:(

The transverse

W AAAS
1
3! 1
li:R- c~ l
T 1 I
. ' T
z=-— | | |
I::R |
179 CgT.
| Y= |
Figure 40. The Transverse Impedance Zt = l/Yt'

impedance, as shown in figure 40) is

1 1
Z¢ = G.+iwc, T G +iuC, (55)
i i g g
where
= l/Ri = the conductive admittance of the wire covering
= l/Rg = the conductive admittance to ground
wCl = the capacitive admittance of the wire covering
ng = the capacitive admittance to ground
This gives for the transverse admittance
Yt = l/Zt
[Gi+iwcij(cg+iwcg]
(56)

Ici+GgJ + iw(Ci+C;7

69



AFWL-TR-65-94

.

From this, upon expansion of the numerator and eliminating the imaginary terms
in the denominator, the expressions for G' and C' are obtained.

—ml 2
(Gi+€g)(GiGg w ciqg) + w?(c +c_)(c C_+G c,)

g
Vi 2 2
(Gi+cgj + w (ci+cg)

G' = Yt (real) =
(57)

c' =

Y, (imaginary) _ (6,4¢,)(6,C 46 ¢ ) - (c+¢ )(e e -w?CC )
W - (G.+G z

The conductive admittance Gi of a good insulator is, by definition of an insu-
lator, negligible compared to the other admittance term. Other than the DC case
for a very long cable or a cable which has a covering which is not an insulator,
Gi may be omitted, giving the simplified relations below

w2 c? ¢
1

G' =
G4 + wc|C.+C
g i g

c,G 2 + w2(c,+Cc_) c,C
oL - iz ig
Gy + wszi+cg]

(58)

The general equations, equations (57), were used in the computer program

(appendix V) for the calculation of the <cable currents in a given wire.
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Appendix II

THE DETERMINATION OF THE REAL AND IMAGINARY PARTS OF THE
PROPAGATION CONSTANT OF THE CONDUCTOR

The propagation constant of a given cable for a given set of conditions is

(reference 9)
r=(zx )}/2 = [(R + 16L') (6" + 1uc")]}/2

where T 1is the propagation constant,
Z is the longitudinal impedance per unit length of the cable,
Y _ is the transverse admittance per unit length of the cable,
R is the resistance per unit length of the cable,
L' is the inductance per unit length of the cable,
G' is the transverse conductive admittance per unit length of the cable,
C' is the effective capacitance per unit length of the cable, and

w is the radian frequency of. the CW current.

To separate I into its real part, the attenuation coefficient, and its
imaginary part, the phase factor, the general expression for the square root of

a complex number must be found. This is determined as follows

Let z = X + iy and w = u + iv be complex numbers such that z = Va

2

Squaring both sides, we have z¢ = w, or
x2 - y2 + 2ixy = u + iv
This gives u=x2-y2
v = 2xy
2 V2
Therefore u=x° -7
4x
2
or - w2 - X =9
4
By the binomial theorum
x2 = U t /uZ ¥ 3?2
2

and, by letting x = %; and repeating the above arguments for y, we get
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For our specific case, consider the expression for T
u = R¢' - w?L'C’

w(L'G' + RC")

<
1}

8O
1/2

. - [RG' - w2L'c' * /[RE'—w’L'C' ]2 + mZ{L'G'+Rc']2]-
= 2

Note, as R - 0 and G' » 0 (very high conductivity wire in a high impedance medium),

we have the known conditions
I (real) +~ 0
I' (imaginary) - w/L'C'

which sets the signs in front of square root as positive.

Therefore ) 1/2
v [ el ] T_ Z7tat )2 VAR T2
I (real) = [RG w?L'C' + V[RG mzL C']% + w?[L'G'+RC"] ] (59)
Similarly
w?L'C' - RG' + V[RG"-w?L'C']% + w?[L'G'+RC']? 1z
I' (imaginary) = 5 (60)

For the case of a cable in good electrical contact with the ground, the
following special cases are most applicable in the frequency range of interest
(500 cps to 500 kes). It is assumed in these situations that the wire resistance

R << wL', the inductive impedance.

For an insulated wire, the capacitance of the insulation rules over any

conductive effects. Therefore, G' is small compared with C', which gives

L'ZGVZ + RZC'Z 1/2
T (real) = 4L'C'

(61)

I' (imaginary) = w/L'C'

For a bare wire, the transverse conductive admfittance outweighs the capaci-

tive admittance, or G' > wC'. This results in the propagation constant components

1r1q1/2
wL'G ] (62)

I' (real) = T (imaginary) 5[ 7
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Appendix III

THE DERIVATION OF THE REFLECTION CONSTANTS K AND L

The solution to the current induced in a finite single wire of length d by

a distributed sinusoidal current along the wire, as given by equation (39) is

I(z) = Ke 1% + Le'? + F(z)

where K and L are the end reflection coefficients and

Y
__t -T|z-v|
F(z) = 57 on(v)e dv
0
is the integral term, Also from section III, we note that

di(z) _ _
iz = YtV(z)

where V (z) is the voltage with respect to the earth at a point z on the conduc-

tor. This gives, for the voltage along the conductor

V(z) = - 2= [-rre”T? + rLer] - LG
Y Y dz
t £
or
V@) = - 2z [—Ke-rz + Lerz] - T (2) (63)
o] ) v
where Z = %L
t
and F (Z) = AQF_(_Z_Z.
‘v Yt dz

At the termination z = 0, the wire is terminated with impedance Z1 and at

termination z = d, the wire i1s terminated with impedance Z, (see figure 41).
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V(o) V(z) vid)

I(o) dI(z) I(d)

21 Zt

Z2
z-=d

Figure 41l. The Currents and Voltages in the Wire and Its Terminations.

250 z:z'

This gives the two boundary condition equations at the terminations

ZII(o) = - V(o)
ZZI(d) = V(d)
Setting these expressions for the voltage at points z' = 0 and z' = d separately

equal to the voltage expression,equation (63), with z = 0 and z = d, respectively

21[1( + L+ F(o)] Zo[—K + L] +F_(0)

z, [Ke_rd +Leld 4 F(d)]

-z [—Ke—rd + Lerd] - F (d)
(o] v

Rewriting these equations, we get

(2, +2 ) k+ (2, -2 )L=F (o) - 2,F(o)

1
(64)

-Td rd

(z, -2 ) ke "+ (z,+2 ) Le" =~ [Fv(d) + zzF(d)]
Note that

FV(Z) =

. z
d%gil = - %Je-l‘z on(v)edev - eI‘z jiEo(v)e_rvdvg
0

L
Y, ,
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therefore, since

Z

- r -r

F(z) = 3%— %e Fz-/nEo(v)ervdv +e? E_(v)e Vav
(o] (o]

then
Fv(o) = ZOF(o)

(65)
Fv(d) = - ZOF(d)

Solving equation (64) simultaneously using equation (65), we obtain for the
reflection constants
rd
(z,-2z,)(z,-2,) F(® - (z,+2,)(2,-2,) e “F(0)

d “Td
(z,42,)(z,42,) e ¢ - (2,-2.)(2,72,) e

(66)
(z,-2,)(z,-2,) e T4 ro) - [Zl+zo][zz—zo] F(d)

L = -
d -Td
(z,42,)(2,*2,) el - (z,-2,)(2,-2,) e

For the case of high impedance ends, where Zl and 22 >> ZO the reflection

terms are approximated by

_ F(d) - F(o)e'd
2 Sin h T'd

= F(Qle-rd - F(d)
2 Sin h Td

This same approximation may be found by setting the current equal to zero at the

terminations, which implies an infinite termination impedance.

When matched impedances are placed at the ends; that is, Z1 = Z0 and
z, = ZO’ the respective terminations will no longer reflect the transmitted

current. This is seen from equation (66)

as Zl———¢-Zo, K =——>-(

as Zo——7 L =0

0!
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With both terminations completely 'shorted out'; that is, Z, = 22 = 0, the

1
reflection terms become ~/

. F(o)e'd + F(d) .
- 2 Sin h T'd

-~
:

L F)e 'Y + F(a) -~
2 Sin h I'd

=
[1H

This result may also be found by setting the termination voltages equal to O,

as would be required at a short.

Now we will note the effect of the propagation constant r. If the real
part of I', representing the exponential decrease in magnitude of a propagating

current with distance, is very large, such that

eFd s> 1 >> e

(z —zlj
(o]
lzl+zol

rd

then

1

F(o)

- u; F(o) '

(22) vy, E@

“Tz+z ) ra ~ "~ H27rd ~/
2 (o] e e

=
't

where u; and ué are the respective single reflection constants for each terminal.
In this approximation, the reflected wave length is very short compared to the
length of the conductor, and the coefficients are dependent only on the impedance
and induced current at their respective terminations. These same results are

obtained for L by letting Z1 > ZO and for K by letting 22 + Z_, therefore

0
eliminating the effect of reflection from the opposing terminal in each case.
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Appendix IV

FIELDS PRODUCED BY A VERTICAL MONOPOLE ANTENNA

Starting from the general electromagnetic field equations the following
expressions were developed for the fields produced by a filament sinusoidal
current dipole of infinitesimal length in free space. As shown in figure 42
these fields were derived in spherical coordinates.,

lC

FREE SPACE (pu,,¢,)

Figure 42, The Filament Current Dipole, Comparing
Rectangular, Spherical and Cylindrical Coordinates.

The fields at the point P from the current dipole are (reference 7)

Idz 1wy n '
0 1 o —-ikor
E = c ol s . [
8' 411 [ . T iaer 3T r.z]e Sin 8
s s o s

s
Idz 2n :
_ c o 2 -ikor'y .
Eré W r,sz + iweor'; e Cos 6 s (67)
Idz ik
c o 1 -ik,1!
H = : + e 0°S gin 8!
il ! 'z
o 4 ry Iy ] s

and ko = w[uoeo]l/z, the propagation constant in free space.
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From these field relations it was necessary to find the field transmitted
by a vertical monopole antenna seated on the earth and grounded as shown in

figure 43.
zzh' AIR (., ,€,)

/1 8s' Fo%o

dlc{// =~ - rl

\\ s
\

I{+2z )'\// 2, =0 r

//////4//////////)7'77

/\ 1
I(-zc), IMAGE \ |

\| EARTH ("2'02"2)

Figure 43. Vertical Monopole Antenna, With Its
Electrical Image in the Earth.

For this derivation the assumption was made that the antenna is one dimensional,
in thezzcdimension only. This is justifiable if the thickness of the antenna

a << h', the height of the antenna, and also a << %ﬂ-, the wave length of the
transmitted signals in the air. ©

Also, the assumption was made that h' << %ﬂ for the frequency range of
interest, which was 102 - 10° cps. Since the cOrrent on the antenna will disap-
pear at z, = h' (except for a small displacement current of negligible magnitude),

the above assumption insured a roughly linear current distribution of the form

(ref. 11) h'—|z |
I(zc) = I(o) [——-T;jL] (68)

where Io is the current at the base of the antenna. This current distribution

is illustrated in figure 43.

In the earth, in general the conductive currents outweigh the displacement
currents for the frequency range of interest and for all but the very low-conduc-
tivity rocks and soils. 1If o, = 10™"* or less and the frequency is on the order
of 10° cps or higher, this assumption does not hold. However, in general, the

earth may be considered a good conductor.

If the earth had infinite conductivity, the fields transmitted into the air
by the antenna-earth system could be calculated by replacing the earth with a

mirror image of the vertical antenna. This "image" would have a mirror-image
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current distribution, about the horizontal plane, with its current flowing
toward the base of the real antenna when the current distribution in the real
antenna is flowing away from the base. This situation is illustrated in

figure 43.

The objective is to determine the fields from this antenna at the surface
of the earth (zc = 0) as a function of horizontal range from the base of the
antenna (rc), the base current of the antenna (Io), the height of the antenna,
and the electrical characteristics of the two media. This is done by integrating
the fields from the infinitesimal dipole components of the antenna over the

full length of the antenna and its image.

From figure 43, the following relations are found

Cos B = - Cos #8'
s

Sin B = Sin 6"
s

' = To (69)
s Sin B '

z = i

c Tan B

Upon close examination of figure 44

dz = r' Cos a da
c s
r, (70)
= Sin B Sin B do

Since ¢ = 90° -

then da = - dB

Therefore dz = - r dB
c c

B-dB

c'lzc

Figure 44. Exaggerated View of the Monopole Antenna.
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From equation (67) we integrate over the length of the wire and its image.

hl

I |[h'-]z ||| ik
Ay 0 c o 1 -ikor'g '
Hy (2.20] ‘_.(_411 = o tIm|e Sin 8' dz_

The contributions from z, > 0 and z, < 0 are additive and equal, and

h'

B, (z.=0) = 2_[ £(z ) dz_

—ikoh'
Also, e

—ikor's = e—ikorc

wave. Then e over the range of integration.

2 ] since h' is much less than the wave length of the transmitted

Therefore r

c
» Tan—IHr

I -4 r ik SinB . 2

_ _ "o ikore c 0 Sin<B .
He (Zc_o) = Ton® ﬁ/ﬁ (l h'TanB)[ r 2 ] T, Sin B dB
c I c c
2

]
o
[N
=

N =

|
3
o
S]

I0 ikorc -1 T T r.
o o '"d + 'd ¢n |Sin{ Tan—! "D

+
0H|H
o
@
/’1;‘\
g
.
i
S—
+
7 |a"
I~~~
=
o)
&
b
L
7)o
1
I
N—

By the geometry of the problem

r
C s -]

d E = -d Ee' Cos B+ dE , Sin B
& r

The contributions from d Er' Sin B and d EG' Cos B are antisymmetric about

B = 90°. Therefore, S

Erc(zc=0] =0

(71)

The vertical electric field components, which is not of interest in this

paper, may be derived by similar means.
It is of interest to note that

I h'[ik i
. 0 0 1 -ikore
limit Hg (zc=0) = [ + 2] e

r - o C
c
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which 1is, in effect, the field tra?smitted by a small dipole of length 2h' and
total dipole current magnitude of ?? , the average current over the length of the
antenna and its image.

As previously done in the field determinations, the concept of infinite con-
ductivity was used to simplify the problem. It is a good first approximation for
the antenna fields because, in most cases, the conductivity of the earth is suf-
ficiently high that the tangential electric field is only a nominal percentage of
the transmitted vertical electric field. However, it is this tangential field

that interacts with the long wires in the earth, and this field must be determined.

When the magnetic field produced by the antenna propagates along the surface
of the earth, it also propagates down into the earth with a magnitude defined by
—ik2|2c|
H [zc] = HB (zc=0] e (73)

where [zc] is the depth of penetration of the field into the earth. From the

x ( 2)

it is seen that the attenuation of the magnetic field in the earth produces an

electric field in the earth. Using Stoke's Theorum,

fVXﬁ-38=f(02+iwez]ﬁ'd_§=ﬁ'ﬁ-31
Area of closed loop Circumference of closed loop

The closed loop chosen is shown in figure 45.

AIR Hec (z ¢ 0)
>
Yl vessvriied P
EARTH ® d__s, o E:
—— 1. df.—>
Y

FROM o© TO©

Figure 45. Path of the Line Integral in the Earth to Determine Er'
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From equation (73) and figure 45, we see that

> >
$ - db = H, (2.=0) - x_ de_ (74)

The electric field produced by the attenuation of the magnetic field will also

have the form
-ik, |z_|
e c

c )
Therefore
rC doe
Hec [z =0] r de = - Erc (z —0) ik2 (02 + imez]
or
ik
E_ (z.=0) = - 2~ § (z=0) (75)
r,- ¢ 02+iw£2 6 ©
where
k2 = [— iwu2 (02 + iwezﬂ t/2
This gives
FYC (zc=0) == g H6 . (zc=0)
where iwuz 1/2
nG = g, + iwez

is the characteristic impedance to an electromagnetic wave in the earth.
At distances closer than T%-T from the base of the antenna, the earth
2

currents will no longer have the appearance of a sheet of current near the
surface of the earth. Instead, they converge to a single point at the base of
the antenna, as shown in figure 46. 1In this close-in region, the earth currents
approach an isotropic hemispherical distribution as they approach the antenna

base.
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Figure 46. Earth Currents Near a Monopole Antenna.

That is 1
o)

limit J, = Shr 2
r.>o s s

whereJr includes both conductive and displacement currents. The electrical

s
field produced by this current convergence is

Jr I e—ikzrs
s 0

rS = [02+iw52]

E' - >
21'[rS [02+im32J

where the exponential term is added to account for the attenuation of this field
distribution in the earth. The component of this field at the surface of the

earth was added to that created by the magnetic field attenuation to give the

total radial electric field from a vertical monopole antenna:

0
E z =0} =-n, H z =0) - - (76)
r, (2.=0) G "8, (2=0) 2Mr (0, +iue,)

At r, >> a, the actual thickness of the antenna, these relations should give
accurate predictions for the fields i1f the antenna is on homogenous earth.
Inhomogenieties in the earth, such as wires, metal objects or just earth of dif-
ferent electrical characteristics, can not only alter these fields, but can also
créate new field components. These anomalous components are generally very small
compared to the strength of the primary fields, when they are produced by inhomo-

genieties in the earth's electrical characteristics.
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Appendix V -

THE COMPUTER PROGRAM FOR THE CALCULATION OF THE CURRENTS INDUCED -/
IN A LONG BURIED CABLE BY A DISTRIBUTED CW ELECTRIC FIELD H

The computer program given in this section is written in FORTRAN IV for an
IBM 7044 computer. Its purpose is to compute the magnitude and the phase of the
current induced in a wire in the ground, as a function of distance along the wire,
from a set of known electrical impedance parameters and from a known distributed
continuous-wave electric field. The results of this program were compared with

wire current measurements made in dipole antenna distributed fields.

The exact equation which the program will utilize is the theoretical current

relation, equation (39) in Section II (using x instead of z)
I(x) = Ke_Fx + LePx + E]Z'— fEO(v) e—I‘|x—v| dv .
o 0

The length d and the frequency are known, and the propagation constant T is N
~calculated, using the known electrical parameters, from the relations derived in
in section III and appendix II. Then the integral is solved by the computer for
each desired value of x by breaking the integral down to a summation over finite
intervals. This approximation equates the integral with the total area under
the curve of its function in the interval of interest, the length of the cable.

d

d X
1
on(v) e-r|xl-VI dv = e_Fxlf Eo(v) eFv dv + eFxleo(v) e_FV dv
0 0 X
I v Iz
E (v ) e Av + e
o' ' n
n=1 m=

& e_FXl E [v )e—va Av
ol'm

where X, is a particular point on the cable at which the solution of the current
is of interest,
Av is one of the small finite sub-intervals on which the summations are *

carried out (1 meter intervals were used in the program),
x

1
I, = v the total number of sub-intervals in the interval of the first

d-x

Av ?

integral,

I, = the total number of sub-intervals in the interval of the first ~/

integral.
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v is the value of v in the range of the first integral at which the
function Eo(v)erV is equal to its average value over the nth interval in this
range (this will be taken, to a very good approximation for small Av, at the
midpoint of the nth intervalj; v, o= ndv + én—l)Av
the range of the second integral at which the function Eo(v)e_rv is equal to its

), and v is the value of v in

average value over the mth interval in this range (by the same reasoning as above,
_ mAv + (m-1)Av
m > + xl).

The electric field used in the integration was the radial surface dipole

electric field as theoretically determined in appendix IV, equation (76), using
the soil and antenna parameters supplied by the Stanford Research Institute

measurements (reference 3).

When the integral term of the solution was calculated for all desired X0
the integral terms for x; = 0 and x; = d were used along with the postulated
termination impedances of the given wire at each frequency to determine the
reflection constants K and L from the relations derived in appendix III,

equation (66).

Note that practically all parameters necessary for the calculation of the
currents are complex quantities. The compiler used had no way of handling cam—
plex quantities. Therefore, the calculations of these parameters, including the
calculation of the propagation constant, the calculation of the reflection terms
and the integration method itself has to be performed in two parts; one for the

real output and one for the imaginary output.

Once the reflection terms are known, the integral term having been calculated
beforehand, the real and imaginary components of the current are calculated.
From these components, both the magnitude and phase of the current can be found
by:
Magnitude [I(x)] = [I(x)2 (real) + I(x)? (imaginary)]l/2

Phase [I(x)] = Tan~! [I(x) (Imaginarl)_] 360°

I(x) (real) 211 radians

The result of these calculations, along with several of the parameters involved
in the calculation, are printed out on paper and written on magnetic tape, the

latter for the purpose of plotting the results by machine later.
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The running time for the program, using six separate frequencies and

approximately 250 values of X, per frequency, is close to 3 minutes.
time goes as high as 5 minutes when the output is for 11 frequencies.

of a binary deck instead of a FORTRAN read-in could save some time.
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N

(S S

Table I
THE COMPUTER PROGRAM

CURRENT INDUCED IN A GROUND CABLE BY FIELD FROM A DIPOLEANTENNA
COMMON RE1(1000),COM1(1000),RE2(1000),COM2(1000),AR,AI
COMMON OM,GAMR,GAMI,RA,D,CMU,EG,E0,PI,S1G,I,DX,DV,CL
COMMON GP,CP,R,DELTA2,KFR,N,GAMGR,GAMGI,W(8),CK,H
DIMENSION AF(1000),BF(1000)

PRINT 36

CMU=1.27E-6

EO=8.85E-12

ETAA=SQRT (CMU/EO)

PI=3.14159265

READ 29,SIG,AA,AB,AC

READ 30,D,RA,RAA

READ 31,CMUW,SIGW,DECON,CT,SIGI

EI=DECON*EQ

READ 32,DX,DV

READ 33,Az1,BZ1,AZ2,BZ2

READ 34,ALTC,SCAFAC

I=D/DX+1.

DI=I-1

DJ=D-DI*DX

IF (DJ) 2,2,1

I=I+1

IF (CT) 3,3,4

C=1.E10

GO TO 5

C=PI*EI/ALOG ( (RAA+CT) /RAA) /ALTC

WRITE (4,27) RA,I

DO 25 KFR=1,1000

READ 35, (W(N),N=1,8)

WRITE (4,28) (W(N),N=1,8)

DO 24 N=1,8

FREQ=W (N)

IF (FREQ-9.E19) 6,42,42

PRINT 37,FREQ

PRINT 38

EG=( (AA/FREQ) **AB+1. ) *AC*EO

OM=2 . *PI*FREQ

DELTA2=(1./ (PI*FREQ*CMU*SIG) ) **0.5

DELTA=(1./ (PI*FREQ*CMUW*SIGW) ) **0.5

IF (RAA-DELTA) 7,8,8

DELTA=RAA

R=1./(SIGW*PI*(RAA**2— (RAA-DELTA) **2))

CL=CMU/ (2.*PI)*ALOG ( (RAA+CT+DELTA2) /RAA)+R/ (2.*PI*FREQ)
CG=PI*EG/ALOG ( (RAA+CT+DELTA2) / (RAA+CT) )
GG=PI*SIG/ALOG ( (RAA+CT+DELTA2) / (RAA+CT))

RG=1./GG

GI=C*SIGI/EI*ALTC

_ DENO=(GI+GG) **2+OM*OM# (C+CG) **2
ANUM1=(GI+GG) * (GI*GG-OM*OM*C*CG)+OM*OM# (C+CG) * (GI*CGHGG*C)

ANﬁM2=(GI+GG)*(GI*CG+GG*C)—(C+CG)*(GI*GG—OM*OM*C*CG)
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GP=ANUM1/DENO
CP=ANUM2/DENO

GAMR= ( (R*GP- (2. *PI*FREQ) **2*CL*CP+( ((2.*PI*FREQ*CL) *%*2+R**2) % ((2.* 50
1PI*FREQ*CP) **2+GP**2))**0.5)/2.)*%0.5 51
GAMI=0M* (CL*GP+R*CP)/ (2.*GAMR) 52
AZ0=(GAMR*GP+GAMI*OM*CP) / (GP*GP+OM*CP*0OM*CP) 53
BZO=(GAMI*GP-GAMR*OM#*CP) / (GP*GP+OM*CP*0OM*CP) 54

IF (Az1) 9,10,10 : 55

9 AZ1=AZ0 56
10 IF (BzZl) 11,12,12 57
11  BZ1=BZO 58
12 IF (AZ2) 13,14,14 59
13 AZ2=AZ0 - 60
14 IF (BZ2) 15,16,16 61
15 BZ2=BzZ0 62
16  CALL ARGH (FREQ) 63
U=0. 64
CDEN=2.*(AZO*AZ0+BZ0*BZ0) 65
BR=(AR*AZO+AI*BZ0) /CDEN 66
BI=(AI*AZ0O-AR*BZ0)/CDEN 67

DO 19 L=1,I 68
SI3=SIN(GAMI*U) 69
C03=C0S (GAMI*U) 70
AFS=C03* (RE1(L)+RE2 (L) )+SI3*(COM1(L)-COM2(L)) 71
BFS=CO03* (COM1(L)+COM2 (L) )+SI3*(RE2(L)-RE1(L)) 72

AF (L) =BR*AFS-BI*BFS 73

BF (L) =BR*BFS+BI*AFS 74

IF (D-U) 20,20,17 75

17  U=U+DX 76
IF (D-U) 18,19,19 77

18 U=D 78
19 CONTINUE 79
20  Al=(AZ1+AZO)*SCAFAC 80
Bl=(BZ1+4+BZ0) *SCAFAC 81
A2=(AZ2+AZ0) *SCAFAC 82
B2=(BZ2+BZ0) *SCAFAC 83
S1=(AZ1-AZ0) *SCAFAC 84
T1l=(BZ1-BZ0) *SCAFAC 85
S2=(AZ2-AZ0) *SCAFAC 86
T2=(BZ2-BZ0) *SCAFAC 87
BDEXP=EXP (~-GAMR*D) 88
BDEXP2=BDEXP*#*2 89
SI=SIN(GAMI*D) 90
CO=CO0S (GAMI*D) 91
ADEN=( (A2*%A1-B2*B1) *CO- (A2*B1+B2*A1) *ST) - ((S2*S1-T2*T1) *CO+(S2*T1+ 92
1T2*S1) *SI) *BDEXP2 93
BDEN=( (A2*A1-B2*B1) *ST+(A2*B1+B2*A1) *CO)+( (S2*S1-T2*T1) *SI-(S2*T1+ 94
1T2*S1) *#CO) *BDEXP2 95
ARN=( (S1*S2-T1*T2)*AF (I)- (S1*T2+T1*S2) *BF (I) ) *BDEXP~-( (S1*A2-T1*B2) 96
1*(AF (1) *CO-BF (1) *ST) - (S1*B2+T1*A2)* (AF (1) *SI+BF (1) *C0) ) 97
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21
22

50
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33
34
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36
37
38

39
40
43
41
42

BRN=((S1*S2-T1*T2)*BF (I)+(S1*T2+T1*S2)*AF (1)) *BDEXP- ((S1*A2-T1*B2)
1% (AF (1) *SI+BF (1) *CO)+(S1*B2+4T1*A2) * (AF (1) *CO-BF(1) *SI))
ALN=((S1*S2-T1*T2)* (AF (1) *CO+BF (1) *SI)+(S1*T2+4+T1%*S2)* (AF(1)*SI-BF(
11) *CO) ) *BDEXP~ (S2*A1-T2*B1) *AF (I)+(S2*B1+T2*A1) *BF (I)
BLN=((S1*T2+T1*S2)*(AF(1)*CO+BF(1)*SI)— (Sl*SZ-Tl*TZ)*(AF(l)*SI BF(
11) *CO) ) *BDEXP- (S2*A1-T2*B1) *BF (I)- (S2*B1+T2*A1)*AF (1)
AK= (AKN*ADEN+BKN*BDEN) / (ADEN**2+BDEN**2)
BK=(-AKN*BDEN+BKN*ADEN) / (ADEN**2+BDEN**2)

AL= (ALN*ADEN+BLN*BDEN) / (ADEN**2+BDEN**2)
BL=(-ALN*BDEN+BLN*ADEN) / (ADEN**2+BDEN**2)

Y=0.

DO 23 K=1,I

IF (Y-D) 22,22,21

Y=D

SI2=SIN(GAMI*Y)

C02=CO0S (GAMI*Y)

BDEXP3=EXP (-GAMR*Y)

BDEXP4=EXP (-GAMR* (D-Y))
CIA=(AK*CO2+BK*SI2)*BDEXP3+(AL*CO2-BL*SI2)*BDEXP4+AF (K)
CIB=(BK*C02-AK*SI2)*BDEXP3+(AL*SI2+BL*C02)*BDEXP4+BF (K)
AMAG=SQRT (CIA*CIA+CIB*CIB)

PHASE= ATAN2 (CIB,CIA)*360./(2.*PI)
BMAG=SQRT (AF (K) *AF (K)+BF (K) *BF(K))
BPHASE=ATAN2 (BF (K) ,AF(K))*360./(2.*PI)

PRINT 39,Y,CIA,CIB,AMAG,PHASE,AF(K),BF(K),BMAG,EZ1
WRITE (4,26) Y,AMAG,PHASE

Y=Y+DX

CONTINUE

PRINT 40,GAMR,GAMI

PRINT 43,EI1,GI,C,RG,CG

PRINT 41,CK,AZO,BZ0,GP,CP,EG,CL,R

CONTINUE,

CONTINUE

FORMAT (3E15.5)

FORMAT (E15.5,15)

FORMAT (8E15.5)

FORMAT (2E10.3,2F10.1)

FORMAT (3E10.3)

FORMAT (2E10.3,F10.2,2E10.3)

FORMAT (2F10.2)

FORMAT (4E10.2)

FORMAT (F10.3,E10.1)

FORMAT (8E10.3)

FORMAT (1H1,43X,32HGROUND CURRENT FROM DIPOLE FIELD/1H-/)
FORMAT (1H-/1H ,60X,5HFREQ=,E9.3/1H )

FORMAT (1HO,8X,1HY,13X,3HCIA,10X,3HCIB,10X,4HAMAG, 9X, 5HPHASE, 8X, 2H
1AF, 12X, 2HBF, 12X, 4HBMAG, 10X, 6HBPHASE/1H )

FORMAT (9El4.4)

FORMAT (2El4.4)

FORMAT (5E14.4)

FORMAT (8El4.4/1H1)

END FILE 4

REWIND 4

END
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SUBROUTINE ARGH (FREQ)
COMMON RE1(1000),COM1(1000),RE2(1000),COM2(1000),AR,AT
COMMON OM, GAMR,GAMI,RA,D,CMU,EG,E0,PI,SIG,I,DX,DV,CL
COMMON GP,CP,R,DELTA2,KFR,N,GAMGR,GAMGI,W(8),CK,H
GAM1=0M*OM*CMU*EG
GAM2=0M*CMU*SIG
GAMGR=SQRT ( (SQRT (GAM1*GAM1+GAM2*GAM2)-GAM1) /2.)
GAMGI=SQRT( (GAM1+SQRT (GAM1*GAM1+GAM2*GAM2))/2.)
COETA=SQRT (SIG*SIG+OM*EG*OM*EG)
ETAR=SQRT ( (GAM1+SQRT (GAM1*GAM1+GAM2*GAM2))/2.) /COETA
ETAI=SQRT ( (-GAM1+SQRT (GAM1*GAM1+GAM2*GAM2))/2.) /COETA
CK=0M* (CMU*EQ) **0, 5
QID=I-2
X=0.
EX=QID*DX
QUO=D-EX
QUK=EXP (-GAMR*QUO)
QUJ=EXP (~GAMR*DX)
QUI=QUJ
IF (KFR-1) 1,1,3
1 IF (N-1) 2,2,3
2 READ 17,H,CA,VA
RE1(1)=0.
COM1(1)=0.
RE2(I)=0.
coM2(I)=0.
M=DX/DV
3 AR=0.
AT=FREQ*CA*VA
DO 15 J=1,I
z=0.
Q=0.
IF (X) 12,12,4
4 NBB=I-J+1
NCB=I-J+2
NAB=J-1
QWQ=J-2
RE2(NBB)=RE2 (NCB) *QUL
COM2 (NBB)=COM2 (NCB) *QUI
IF (D-X) 5,5,6
5 QUI=QUK
6 RE1(J)=RE1(NAB) *QUI
COM1(J)=COM1(NAB) *QUI
Z=Z+QWQ*DX+DV/2.
Q=Q+EX+DV/2.
DO 11 I1I=1,M
IF (D-z) 8,8,7
7 R1=RA+Z
COEF1=CK*(P1/2.-ATAN2 (R1,H)+R1/H*ALOG (R1/SQRT (R1*R1+H*H)))
COEF2=(H/R1+R1/H) /SQRT (R1*R1+H*H)-1./H
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10
11

12
13

14
15
16
17

COEF3=1./ (SIG*R1*R1) *EXP (~GAMGR*R1)

ERR= (ETAR*COS (CK*R1)+ETAI*SIN(CK*R1) ) *COEF 2- (ETATI*COS (CK*R1) -ETAR*
1SIN(CK*R1))*COEF1+COEF3*COS (GAMGI*R1)

ERR=-ERR

ERI=(ETAI*COS (CK*R1)-ETAR*SIN(CK*R1))*COEF2+(ETAR*COS (CK*R1)+ETAI*
1SIN(CK*R1) ) *COEF1-COEF3*SIN(GAMGI*R1)

ERI=-ERI

COCO=CO0S (GAMI*Z)

SISI=SIN(GAMI*Z)

DEX=EXP (—-GAMR* (X-Z))

RE1(J)=RE1(J)+(ERR*COCO-ERI*SISI) *DEX*DV
COM1(J)=COM1(J)+(ERR*SISI+ERI*COCO) *DEX*DV

Z=Z+DV

IF (D-Q) 10,10,9

R1=RAHQ

COEF1=CK* (PI/2.-ATAN2 (R1,H)+R1/H*ALOG (R1/SQRT (R1*R1+H*H)))
COEF2=(H/R1+R1/H)/SQRT(R1*R1+H*H)~-1./H
COEF3=1./(SIG*R1*R1) *EXP (—-GAMGR*R1)

ERR=(ETAR*COS (CK*R1)+ETAI*SIN(CK*R1) ) *COEF2- (ETAI*COS (CK*R1) —~ETAR*
1SIN(CK*R1))*COEF1+COEF3*COS (GAMGI*R1)

ERR=-ERR )

ERI=(ETAI*COS (CK*R1)-ETAR*SIN(CK*R1) ) *COEF2+(ETAR*COS (CK*R1)+ETAI*
1SIN(CK*R1)) *COEF1-COEF3*SIN(GAMGI*R1)

ERI=-ERI

COCO=CO0S (GAMI*Q)

SISI=SIN(GAMI*Q)

DEX=EXP (~GAMR* (Q-EX) )

RE2 (NBB)=RE2 (NBB)+(ERR*COCO+ERI*SISI) *DEX*DV

COM2 (NBB)=COM2 (NBB)+(ERI*COCO-ERR*SISI) *DEX*DV

Q=Q+DV

CONTINUE

EX=EX-DX

IF (D-X) 16,16,13

X=X+DX

IF (D-X) 14,15,15

X=D

CONTINUE

RETURN

FORMAT (F10.2,2E10.3)

END
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The following variables must be read into the program on data cards (see

-/

table I):

SIG is the conductivity of the earth in mhos per meter. o

AA,AB, and AC are the parameters to determine the dielectric constant of °
the earth. Measurements by Scott of the U.S. Geodetic Survey (reference 12) )
indicate that the dielectric constant of soil is frequency dependent. His curves
of dielectric constant against frequency (see figure 47) indicate a dependence
approximated by the relation

=) -]
o
where AC is the high frequency level-off value, AB is the exponent of the low
frequency fall-off and AA is the frequency where
224
o

D is the length of the wire in meters. )

RA is the distance from the dipole antenna to the nearest end of the wire
in meters. ’

RAA is the radius of the wire in meters. ~

CMUW is the magnetic permeability of the wire in henrys per meter.

SIGW is the conductivity of the wire in mhos per meter.

DECON is the dielectric constant of the insulating material.

CT is the thickness of the insulation in meters. If the wire is bare, the
value will be read in as zero.

SIGI is the conductivity of the wire covering in mhos per meter. If the
covering is insulation, this value will be read in as zero.

DX is the incremental distance between the points along the wire, at which
the current will be calculated,in meters, starting with the endpoint nearest to
the dipole antenna.

DV is the incremental distance in meters used in the integration subroutine
for the numerical integration term of the solution. The value used has been 1 .
meter, which is sufficiently small for CW fields of the frequencies of interest.
In general, the wave length of the CW fields must be much greater than DV for an
accurate numerical integration by the method used. :

AZ]1 and BZ1 are the real and imaginary parts of the termination impedance in

~/

ohms at the end of the wire nearest the dipole antenna. If these values are read
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Figure 47. Relative Dielectric Constant and Conductivity Measurements for Alluvium.
(Taken from reference 12, page 25.)
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in as negative numbers, they will be set equal to the real and imaginary parts
of the line impedance of the wire. The wire will then appear electrically to
extend to infinity, except that there shall be no driving fields beyond the actual

limits of the wire.

AZ2 and BZ2 are the real and imaginary parts of the termination impedance
in ohms at the second end of the wire. These may also be set equal to the
equivalent components of the line impedance by reading them into the program as

negative numbers.

ALTC is a number to arbitrarily change the value of the capacitance of the
insulation by C, = C/ALTC, where C is the capacitance calculated from the insu-
lation dimensions and dielectric constant. The purpose of this factor in the
program is to attempt to determine the effects of non-ideal electrical contact
with the earth. If there is a sizeable discrepancy between the theory and the
data in the magnitude of the currents the reason for discrepancy can often be
determined by a simple change of the insulation capacitance. This constant will

be set equal to 1 for all practical cases of current calculation.

SCAFAC is a scaling factor necessary in the IBM 7044 (which will overflow
above 1038), to prevent overflow in the calculation of the reflection terms.
This factor is read in as 10‘5, unless an overflow readout indicates that a

smaller factor is necessary.

W(N) are the frequencies, which are read into the program one card of eight
frequencies at a time. Any frequency cards after the first card will be placed
at the end of the data deck. After the last frequency on the cards, the number
1 x 1020 will be read in, which will end the program immediately.

For the subroutine:

H in the subroutine is the height of the dipole antenna; 30.5 meters for the

SRI antenna.

CA in the subroutine is the effective capacitance of the antenna in farads.
The SRI antenna input impedance was determined by measurement to be a practically

pure capacitive reactance equivalent to that produced by a 400-picofarad capacitance.

VA is the applied antenna voltage in volts. In the test calculations a

voltage of 1 kilovolt was used for simplicity.

ERR and ERI are the real and imaginary components of the electric field,

respectively. 1In this program listing, the electric
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field is the radial electric field at the surface of the earth produced by a
vertical grounded dipole antenna of finite height and infinitesimal thickness.
Note that Rl is the distance from the antenna in meters, and Q and Z are the

distances from the termination of the cable nearest to the dipole antenna.

Any desired distributed CW éléctrip field may be used 1in this program
by placing it in the proper form in the two places where ERR and ERI are found.

The answers printed out by this program as written here are:
FREQ, the frequency of the CW electromagnetic wave used.

Y, the distance along the cable in meters from the termination of the cable

nearest the dipole antenna.

CIA and CIB, the real and imagninary parts of the total current magnitude,

including reflections, induced into the cable.

AMAG and PHASE, the magnitude of the total current, including reflectionms,

and its phase with respect to the phase of the antenna voltage.

AF(K) and BK(K), the real and imaginary part of the induced current in the

cables, ignoring the reflection terms.

BMAG and BPHASE, the magnitude of the induced current, ignoring reflections,

and its phase relative to the phase of the dipole antenna voltage.

These 9 quantities are printed out in a block after the frequency. In the

third to the last line of the block, we have printed out:

GAMR and GAMI, the real and imaginary components of the propagation con-

stant I for the cable.
In the second to the last line of the block, we have printed out:

EI, the dielectric permittivity in farads per meter of the wire covering,

if any covering is present. Otherwise, this number will be ignored.

GI, the conductive admittance in mhos per meter of the wire covering if any

covering is present. Otherwise, this number will be ignored.

C, the capacitance per unit length in farads per meter of the wire covering,

if any covering is present. Otherwise, the number will be ignored.

RG, the effective resistance from the cable (including covering) to the
earth. It is the inverse of GG, the admittance per unit length in mhos per

meter from the cable (including covering) to the surrounding earth.
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CG, the effective capacitance per unit length in farads per meter between <

the cable (including covering) and the surrounding earth.

In the final line of print out in each frequency block, we have the following <
quantities: °

CK, the propagation constant of an electromagnetic wave in the air in ~/
meters~!.

AZO and BZ0O, the real and imaginary parts of the effective transmission line

impedance of the cable in ohms.

GP, the real part of the transverse admittance per unit length of the cable

in mhos per meter (see appendix I).

CP, the imaginary part of the transverse admittance per unit length of the
cable divided by the radian frequency of the signal. This quantity will be the

effective total capacitance per unit length of the cable in farads per meter.

EG, the dielectric permittivity of the earth, at the given frequency, in

farads per meter.
CL, the inductance per unit length of the cable in henries per meter.

R, the longitudinal resistance per unit length of the cable in ohms per

meter.

Also a product of the program, as previously stated, is the Tape 4, which
contains W(N), RA, I, and all values of Y, AMAG and PHASE. This tape is run into
a plot program with the available data, which produces a plot tape. The plot
tape is then run through a CALCOMP plot machine to produce the graphs seen in the

results of this paper (section IV).

Note that the program as written will give the phase of the currents with
respect to the phase of the antenna voltage. The results, however, are stated
in terms of a current phase relative to the phase of the vertical electric field.
For this purpose statement number 50 must be replaced with the group of state-

ments in table II.

,
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50

51
52

53

Table II

STATEMENTS TO DETERMINE PHASE WRT
VERTICAL ELECTRIC FIELD

APHASE=ATAN2 (CIB,CIA)*360./(2.*PI)

R2=RA+Y

AT=ATAN2 (R2,H)

SIZ=R2/SQRT(R2*R2+H*H)

COZ=H/SQRT (R2*R2+H*H)

SIX=SIN(CK*R2)

COX=CO0S (CK*R2)

COF1=0M*CMU* (COZ+R2/H*(SIZ-1.))
COF2=(C0Z-COZ*%3/3.4+R2/ (3.*H) *( (SIZ**3-1.)))/ (OM*EO*R2%R2)
COF3=ETAA*(PI/2.-AT+SIN(2.*AT)/2.+R2/H*(SIZ*S1Z-1.))/ (2.*R2)
EZ1R=AR* (SIX* (COF1-COF2)+COX*COF3)+AI* (SIX*COF3-COX* (COF1-COF2))
EZ1R=-EZ1R

EZ1I=AR* (COX* (COF1-COF2)-SIX*COF3)+AI*SIX* (COF1-COF2)+AI*COX*COF3
EZ1I=-EZ1I

EZ1=SQRT(EZ1R*EZ1R+EZ1I*EZ1I)
PHEZ1=ATAN2(EZ1I,EZ1R)*360./(2.*PI)

P1=APHASE-PHEZ1

AMOUR=ABS (P1)

IF (AMOUR-180.)50,50,51

PHASE=P1

GO TO 54

IF (APHASE)52,52,53

PHASE=360.4P1

GO TO 54

PHASE=P1-360.
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