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ABSTRACT

This report outlines a method, based on fransmission
line theory, for estimating currents and voltages induced
in buried insulated cables by the gamma flux from a nuclear
weapon detonated in the near vicinity of the cable. The
driving function is modeled as a delta function in time and
a square function of distance along the cable. Numerical
examples are given for postulated characteristics of the

driving function.
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DIRECT GAMMA-INDUCED CURRENTS IN BURIED CABLES

1. INTRODUCTION

The problem considered herein was suggested by Bob Parker
of Sandia Corporation in a meeting with Harold Price of Kaman

Nuclear.

If a nuclear weapon is detonated near a buried cable, two
mechanisms are available to introduce currents and voltages
on the cable. The more familiar problem is tlke interaction
with the cable of the intense electromagnetic fields generated
by the burst. The second mechanism occurs when the gamma rays
from the bomb strike the cable, liberating compton and photo-
. electrons. A replacemént current, originating in the cable,
will surge to replace the charge knocked out of the cable. It

is the second mechanism with which the present work is concerned.
The problem consists of two parts:

(a) Determination of the photon flux at the cable
as a function of time after burst and distance

from the source.

(b) Determination of the transient voltages and currents

in the cable caused by the photon flux.

The photon transport, part (a), is by no means a trivial
task. It is complicated by the various gamma producing neutron
interactions with the soil, and the time-dependent transport of
these photons to the cable. Even obtaining order of magnitude
estimates of the photon flux is a complex and time consuming

chore.
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Betause of the uncertainty of the outcome of a gamma ray
transport calculation, it has been decided that for the present
time an upper bound on the problem should be obtained in as
simple a way as possible. To this end, the authors have estimated
that the maximum dose that the cable could receive from a one
megaton bomb is 1011 rads over a 10 meter length. This upper
bound would have to be increased, perhaps as much as two orders
of magnitude, if the depth of cable burial were reduced from
6 ft to 4 £t. For the purpose of this calculation, the pulse
shape was assumed to be a delta function in time. It is not

clear whether or not this assumption corresponds to the worst
case. )

According to Reference 1, the charge scattered from a wire
by gamma rays is roughly 10_13 coulomb per cm (of length) per
rad deposited in the cable. Thus, for a dose of 1011 rads, and
coﬁverting centimeters fo meters, the upper bound estimate ofs
the charge is 1 coulomb/meter, deposited inétantly. The next -
section provides a solution for thgc:urrent and voltage for this

type excitation.

2. TRANSMISSION LINE THEORY FOR A CURRENT DRIVING SOURCE

For the present analysis it is assumed that the transmission
line analogy for the buried cable provides adequate solutions.
(Reference 4). The transmission line equations for arbitrary

driving conditions are, for eimt time dependence, the following:
dl
HF - -WwW-I&® (1)
@V _ _ 21 + E (2)
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where
= current in the line

< =
|

voltage induced across the line

= distance along the line from the origin (in meters)
= 1line impedance

admittance

= 1njection current per unit length

H & 4 N M
]

= electric field parallel to the wire

For the problem under consideration E(x) = 0, and J(x) is
a square function, unity between -h and h and zero outside
|x]| = h. (Figure 1) "

lJ(x)

Figure 1 - Current Driving Function

In the present problem, h = 5 meters, as the gamma pulse was
assumed to irradiate a 10 meter section of the cable.

Given the solution to (1) and (2) for I(x,w) and V(x,w),

for eluwt time dependence, the time dependent solutions I(x,t)

and V(x,t) can be obtained by Fourier transform theory.
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I(x,t) = 211? f Ix,w) e % qw o (3)
V(x,t) = -2]-'1-1: f V(x,w elwt dw (4)

Equations (3) and (4) are simplified by the assumption of a
delta function driving current, the Fourier transform of which
is unity for all frequencies. For an arbitrary driving function
J(x,t), the integrands in (3) and (4) would have to be multi-
plied by J(x,w where

J(x,0) = Jr J(x,t) e~lwt 44 ' (5)
(o]

The driving function (J(x), as shown in Figure 1 can be

expressed'analytically by

J(x) = n(x+h) - n(x-h) (6)

where v 1is the Heaviside function
nx) = 0 - < x<0 , (7)

= 1 0 <h<o=>,

The Heaviside function is related to the delta function
by
4 o) = 8x) | (8)
dx '
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Differentiating (1) and using (2), (6) and (8), it is
shown that the differential equation for I

2

2,

I

]

X

Similarly,

aZv

dx2

ZY1

ZYV

8(x~h) - &(x+h).

Z(n(x+h) - n(x-h)] .

By following the usual procedure and defining

y_ =

AZ

equations (9) and (10) become

21

Yy

§(x-h) - 8(x+h)

Z[n(x+h) - n(x-h)]

(9)

(10)

(11)

(12)

(13)

The solutions of (12) and (13), subject to the appro-

priate boundary conditions,
and voltage on the cable.
vis (3) and (4), one must obtain

frequency.

form the frequency domain current
Before returning to the time domain
¥y and Z as functions of

It can be shown that the general solutions to (12) and

(13) are



I(x) = Ae " 7X; Be”*4 f% sinh [y(x-h) In(x-h) --%; sinh[y(x+h) In(x+h

V(x) %

[7

Ae”
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.-4)

X _ 9Be”™ + {1 - % cosh [y(x-h) 1} n(x-h)

~ {1 - 2 cosh [y(x+h) ]} n(x+h)] (15)

For the present study.itlis sufficient to consider an

infinite line with no discontinuities. There are three regions

of interest:

1.
2.
3.

- ®< x < -h

-~ h<x<h

h < x € @

The boundary conditions are:

(a)
(b)
(c)
(d)
(e)
(£)

as

at

at

at

as

as

X

X

- - @ y I(X) ~ e+7x

-h, I(x) is continuous

=0, I(x) =0
= +h, I(x) is continuous
- 4+ @, I(X) ~ e-‘yx

-  V(x) -0

The solutions for the current which match the boundary
conditions and satisfy the differential equations are:
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1 (o-¥(h+x) _ -y(h-x) 4 |x] < n (16)

I1(x) 75

I(x) (e~ "B _e"hy %X x >h (17)

Equation (17) represents the current at distances away
from the burst for a harmonic time dependence. In order to
obtain the current in the time domain, it is necessary to de-

termine the attenuation constant ¥ as a function of frequency.

3. DETERMINATION OF THE ATTENUATION AND PROPAGATION CONSTANTS

Experience of other Kaman personnel2 has indicated that
the values of vy as given by ordinary transmission line theory
are not adequate for the SANGUINE study.. The reason for this
is that the so0il conductivity at the Sanguine site is too low
for the earth to be considered a good conductor. An exact
expression for ¥ (for a cable buried in an infinite earth)
can be obtained from the roots of the so-called determinental

eQuation3
2
T J,(A2a;)
Ny (hpay)- 2 171 Ny (Rp24)
Rohoky Jl(xlal)
ulklkg I, (X a )
J (kz 1) Ji(kzal)

5
Hohgky J ("1 1

2 5

B a,)
ghgky Hyr33, N

N,(Apa,) - (Apa,)
222 2 (1) 1\ 222
Ak H (A qa,)
) Rohy 3 (11) 3%2 (18)
Hodok  H:t/(Aqa,)

2 »z(1)
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In equation (18), the subscripts 1, 2 and 3 denote values of
variables in the cable conductor, dielectric, and soil, respec-
tively. Jo, No, and Hél) are, respectively, the Bessel function,
Neumann function and Hankel function of the first kind. ay is
the radius of the conductor and aq "is the outer radius of the

dielectric. (see Figure 2)

Figure 2 - Cable Geometry

A 1is defined by:
R Y - | - (19)

k2 = aPue - iwpc | (20)

' The solutions of (18) for v as a function of frequency
determine the propagation and attenuation coefficients. Un-
fortunately, the solution of (18) is a very complicated and
time-consuming'process which to date has been accomplished only
for frequencies below 40 kHz. For an upper bound calculation,
as is presented in this memorandum, it was considered sufficient
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to approximate % by the plane-wave propagation constant
in soil

Yy = -1 (u?ue - iwuc)% (21)

for frequencies greater than 40 kH=z.

Figure 3 presents plots of real and imaginary parts of ¥
as functions of frequency. For O < f < 40 kHz the roots of
equation (18) were used for ¥ ; for f > 40 kHz, equation (21)
was used. The discontinuity in 7y at 40 kHz was smoothed in
by hand. It is felt that for present purposes the values of ¥

as given in Figure 3 are adequate.

4. GAP VOLTAGES

Also of interest is the volfage across the dielectric.
It is seen in equation (15) that the evaluation of voltage re-
quires an expression for the line admittance Y. As remarked
earlier, the transmission line theoretical expressions for line
parameters, such as admittance, impedance, etc., are not suffi-
ciently accurate, even for the present upper bound study. An
expression which does seem to provide reasonable answers ié

given by Strattons,

a

- iauy 2
V(X) = log,. (2). I(X) .
21rk2 e aq

2

Using (17) for I(X),
az _ - Yy
i log( /al)[e Yh —eyhlfe Y=
avr w €g

v(x) = (22)
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5. RESULTS

Expressions (17) and (22), along with the values given in
Figure 3 for ¥, were inserted into equations (3) and (4) for
I(x,t) and V(x,t). Qualitatively, it is easy to explain the
expected behavior. The problem considered is the response of
an infinitely long transmission line after a large amount of
charge has been deposited upon it. The charge will redistribute
itself along the line. Since the signal cannot propagate faster
than the speed of light, no current should be observed at point
X at least until time t = X/C. For positive charge deposition,
at t = X/C the current should swing positive until it peaks

and then it should decay to zero. It should never become negative,

f I(t) dt (23)
o : :

- should be half the charge deposited on the line. For the

and the integral

case considered hére, the fotal charge is

Q = 10 coulombs,

so the integral (23) should equal 5.

Because not all frequencies will propagate at the same
speed, the pulse will broaden as shown in Figure 4.

x =x x = xg X = x4
S I(t) : I(t)J ' I(t)
t t t
Figure 4 - Expected Behavior of I(t) vs Time for

Three Positions x4 < x2 < X3. In each
case [I(t)dt = 5 coulombs
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The voltage-time curves should behave sgmilarly, except
that there is no physical restriction on v(t)dt .

Equations (3) and (4) were integrated numerically for three
values of X; 500, 5x103 and 5x104 meters. The results are
shown in Figures § through 10. Figures 5, 6 and 7 give the
cable current as a function of time for X = 500, 5x103 and
5x104 meters from the burst. The current behaves as was pre-
dicted in Figure 4. 1In each case the time integral of the current
was within one percent of 5 coulombs. Figures 8, 9 and 10 show
the calculated gap voltage vs time after burst. Again, the cal-
culations provided no surprises, except perhaps that the peak
currents and gap voltages at large distances are indeed appreciable.

Although the current and voltage should Start at zero, rise
quickly, and decay monotonically to zero, some wiggles are seen
in Figures 5 through 10 both prior to the main pulse and during
. the decay. These oscillations are artificial and are due pri-
marily to truncation of the integrals in equations (3) and (4)°
at finite frequencies, and to inexact propagation constants at
high frequencies. It is felt that the characteristics of the
main pulse are generally correct, within the model.

Table 1 gives the peak current and gap voltage at the
three distances -- x = 500, 5x103 and 5x104 meters.

Table 1

. Peak Cable Currents and Gap Voltages

Peak Current (amps) Peak Voltage

500 meters " 3.6x10° " 2.5%107

5 kilometers 7 x 10t | 6 x 10°

50 kilometers 104 8 x 105
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FIGURE 5
CABLE CURRENT VS. TIME AT X =500 METERS
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6. DISCUSSION

The calculations for the current for this assumed model
are more accurate than is the calculation of the voltage. The
reason for this is that the voltage calculation not only relies
on the current, but included a further approximation which
essentially assumes a good conducting earth. This may tend to
overestimate the gap voltages.

It should be stressed that the calculations in this memo
are based upon a very crude model, and to improve the quality
of the calculations would require better estimates of the gamma

ray flux at the cable. The most sensitive parameter is the

depth of burial of the cable; burial at 4 feet rather than 6 feet

would increase the peak current and voltages (as calculated above)

at least by a factor 102,

Another question arises as to the overall importance of
this effect when Qiewed from the systems Qulnerability stand-
point, viz., what is the probability of a warhead landing near
enough to the cable to induce these effects. It is, therefore,
recommended that the following two efforts be undertaken:

(a) a thorough photon transport calculation should
be initiated to determine the dose rate as a
function of time and distance from the burst point,

and (b) a systém analysis study should be performed to
determine the vulnerability of the system fo this
effect, taking into account the sensitivity to
transverse displacement of the detonation point
with respect to the cable in light of the CEP of
the threat.



‘W Mmoo - e

-20-

REFERENCES

DASA TREE Handbook, UNCLASSIFIED.
Price, H. J. and D. W. Sencenbaugh, private discussion.

Stratton, J. A., Electromagnetic Theory,.McGraw—Hill
Book Company, 1941. TUNCLASSIFIED.

Sunde, E. D., "Earth Conduction Effects in Transmission

Systems', Dover 1967.

UNCLASSIFIED



