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Cylindrical Shields*

R. W. P. KINGT{, rerLow, RE, AND C. W. HARRISON, JR.I, SENIOR MEMBER, IRE

Summary—The effectiveness of am imperfectly-conducting
cylindrical shield of small cross section depends on both the attenua-
tion through the metal wall of the externally maintained field and the
amplitude of the current that is induced in the cylinder. When the
length of the cylinder, which behaves like a linear scattering antenna,
approaches a resonant value, the currents induced in the walls and
the field inside the tube are relatively large. Under these conditions,
large currents may be induced in a thin dipole placed coaxially within
the shield.

INTRODUCTION

N a recent paper,! a general theory of shielding by
]:[ imperfectly conducting walls enclosing a region of

finite size was formulated and applied specifically
to the response of a dipole probe in a metal cylinder that
is electrically small, both in cross section and in length.
It is the purpose of this investigation to consider shield-
ing by cylinders that are electrically small in cross sec-
tion but may be up to a wavelength long. Two problems
are considered. First, the determination of the axial
electric field in a metal cylinder of léngth 2/, inner radius
b and outer radius ¢, when immersed in an incident field
E’ parallel to its axis, is outlined. Second, the response
of a thin dipole antenna of length 2k and radius a,
placed coaxially within the shield, is investigated.

* Received by the PGAP, May 23, 1960.
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N. M., and Gordon McKay Professor of Applied Physics, Harvard
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1 C. W. Harrison, Jr. and R. W. P. King, “Response of a loaded
dipole in an imperfectly conducting cvlinder of finite length,”
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In order to permit the application of the theory of
cylindrical antennas, the following conditions are im-
posed: .

c Kl
a<Lh,

(1)
(2
where 8o =w~/poe0 = 27 /Ao is the free space wave number.
The conductivity of the metal walls and of the dipole?

is o, the permeability u =uou,. The complex propagation
constant in the metal is

Boc K 1,
Boa K 1,

k=j%8, B =+wuo. 3
In most cases it may be assumed that
8b 2 10, @

so that the simpler asymptotic forms of the Bessel
functions may be used. Formally, the general case may
be carried through without difficulty. Note that the in-
equalities (1) and (4) are compatible since

(B/B0) = Vuo/wea > 1,

by definition of a good conductor.

The coaxial cylinders to be analyzed are shown in
Fig. 1. They are equivalent to a coaxial line with two
electrically open ends but with a completely closed

€)

2 For simplicity, the conductivities of the dipole and the shield
are assumed to be the same, since the numerical value of the con-
ductivity of the dipole is unimportant as long as it is in the range of
metals used as electrical conductors. If desired, separate values may
be used with no difficulty.
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Fig. 1—Dipole in cylindrical shield.

shield. The electrically open ends are obtained by means
of gaps between the ends of the inner conductor and the
metal disks that close the ends of the shield. A lumped
load Z. is shown connected in series with the inner con-
ductor at its center. The electric field Ef parallel to the
axis of the cylinders is maintained by an external source.

For completeness, a brief summary of the relevant
parts of the earlier work! is given together with the ap-
propriately generalized formulas.

THE ELECTRIC FIELD IN A CLOSED
TuBuLAR CONDUCTOR

The first problem is to determine the ratio of the
axial field inside the shield to the incident field when
there is no inner conductor.

Since the tubular shield satisfies the conditions (1) of
linear antenna theory, it may be treated as an unloaded
receiving antenna in a uniform field. The total axial cur-
rent I.(z) has the following leading term,?

cos B0z — cos Bl
(2) = I.(0
1) = 20 e ] (6)
where
I.(0) = 21,E¢/Zin. @)

In (7), 21, is the effective length of an antenna of actual
length 2! and Z.ia is the input impedance of the antenna
when cut in two at the center and driven by a delta-
function generator. Curves of /,/A are in King;? an ap-
proximate formula when B¢ <7 is

Bols = tan (8ul/2). (8)

The input impedance of an imperfectly conducting an-
tenna is given by :

Ziin = Zeo + Zc‘.t (9)

$R. W. P. King, “Theory of Linear Antennas,” Harvard Uni-
versity Press, Cambridge Mass., ch. 4, p. 469, (18) and p. 492; 1956.
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where Z,y, the impedance of a perfectly conducting an-

.tenna, is given in tabular and graphical form in King,*

and

ZS = (25/80)(Bol csc? Bol — cot Bol) (10)

is the contribution from ohmic resistance.’ The internal
impedance z.! per unit length of a tube of outer radius ¢
is given below. In general, Z.' is negligible compared
with Z.,.

The general formula for the internal impedance per
unit length of a tubular conductor of outer radius ¢and
inner radius b is®

E(c, 2)
I(z)

(ko) /\n(kb) — 1V1(kc)J1(kb) 2

Zt =

2wco

When (4) is satisfied, (11a) reduces to
k /‘/cosh 24,4+ cos 24.
2wco cosh 24, — cos 24,
If the additional condition, 1,24, is imposed (which is
zquivalent to requiring the wall thickness to be at least

four times the skin depth) the following simple formula
is obtained:

¢/ @ctverid)  (11b)

z; =

Z,b = mes eiTls, (11¢)
In the above formulas:
tan ®. = tanh d.tan 4, (12a)
tan Y. = tanh 4. cot A, (12b)
and |
= (¢~ 0)/d, (13)
where
= V/2/wpo (14)
is the skin depth.
With (11) and (7), it follows that,
E(c, 0)/E} = 22,/ 2 ;n. (13)

This is the fundamental relation between the field at
the outer surface of the tube and the incident field.

The relation between the tangential field at the inner
surface (r=»5) to that at the outer surface (r=¢) has
been given in the literature.!® It is,

E(b,z)  Jo(kb)N1(kb) — No(kb)J l(kb)
E(c, 2) Jo(kc)N 1(kb) — No(ke)J x(kb)

(16a)

4 Ibid., pp. 154-179.
' Ibtd p. 147, (11) and (12).
P. King, “Electromagnetic Engmeenng,” McGraw-Hill
Book Co Inc New York, N. Y., p. 356;
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) Subject to (4) this becomes,

E(b, 2) /‘/ ( e i%e
\/1 cosh 2A + cos 24,

E{c, 2)
with the additional restriction, 4.=4, the following
simple result is obtained;

E(b, ) 1/‘c‘ .
=24/ — e—A+D
E(c, 2) b

The condition B.0<1, which is implied in (1), has as

a consequence the relation
E(r,z)  JalBor) | )

E(d,z)  Jo(Beb)
The combination of (17) with (16) and (15) and the
use of (11) leads to the following formulas for the ratio

of the axial electric field in the air within the conducting
tube to the incident field outside the tube: (r<b)

) (16b)

(16c)

for r <b. an

_ E(,0)
-0
Lk [Jo(kb)-vl(kb) - No(kb)Jl(kb):l (182)
= a
1rCO'Z¢in J[(kC).Nl(kb) —_ Nx(kl:)]]_(kb)
when 8b=10,
E(r,0 .. J(Fe=r/4)
_EnO S ‘ - (18b)
Ef xo\/be Zein v/2[cosh 24, — cos 2.4.] ,
When, in addition, 4.=4,7
_ E(fy 0) _ ZZ-B e—Ac(1+i)e}'f“; (ISC)

E  wovbcZein

where A,=(c—0b)/d.. Except near the ends at z= +/,
the axial distribution of the electric field is obtained
from the relation E=32‘I with (6). It is approximately

cos B9z — CO0S Bol]
1 — cos Bl ’
when B¢ <27. This completes the determination of the

axial electric field in the interior of the imperfectly con-
ducting tube when it contains no inner conductor.

E(r,2) = E(r,0) [ (19)

THE CURRENT IN A DIPOLE WITHIN THE SHIELD

When a conducting dipole is placed along the axis in
the air within the shield, the axial field that exits there
induces currents in the dipole. These currents in turn set
up a field that induces additional currents in the shield
and, since the shield is imperfectly conducting, a field
is also maintained outside the shield. It will be assumed
that this is much smaller than the incident field as,
indeed, it will be if the ratio in (18) is small. Let the
field maintained by the current in the dipole be denoted

7 For example, with an aluminum shield (¢ =3.54X107 1 /ohm-m)

at a frequency of 10 ke, this condition leads to ¢ —~b2>4d, =4+/2/wuc
=0,338 cm.
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by E’(r, z). At the outer surface of the shield it is
E'(c, z). It follows that the current that must be main-
tained on the shield in order to satisfy the boundary
condition for the continuity of the tangential com-
ponent of the electric field at r =c is given by (6) and (7)
with Ei+ E’(¢, 0) substituted for E¢ in (7). Since it is
assumed that

’E’(c, 0 (20)

no serious error is made by replacing E’(¢, z) by the
constant value E’(¢, 0) at the center. However, if (20)
is satisfied the resulting change in the small ratio § is of
higher order and may be neglected. In other words, it is
assumed that the attenuation through the shield is
sufficiently great so that what might be described as
multiple reflections from the dipole back through the
shield may be neglected.

Subject to (20), the field E(a, z) given by (19) with
(18) and r =« at the surface of the dipole is independent
of the current in the dipole. This latter is then given by

cos Boz — cos S
1 — cos Beh

I.(z) = I.(0) (21)

with
I,(0) = 2k.E(a,0)/(Zain + Z1),

if the approximation is made of replacing E(a, z) by
E(a, 0). Since for dipoles of length 2k <\ the large cur-
rents are all induced near the center, no large error is in-
volved in this simplification. In (22) 2k, is the effective
length of the dipole as if it were in free space, Z,ia is its
input impedance, and Z. is a load that may be con-
nected in series at its center.

The input impedance of the dipole in the imperfectly
conducting shield is not the same as it would be if it
were either in a perfectly conducting shield or in free
space. Its approximate value may be obtained as fol-
lows. Consider the dipole center driven by a delta-func-
tion voltage V that maintains a current I(z). This cur-
rent may be separated into two parts,

I(z) = I4(2) + I(2),

(22)

(23)

where Ir(2) is the part for which an equal and opposite
current is induced in the shield, and 74(3) is the part for
which no current is induced in the shield. If the shield
were perfectly conducting, I4(2) would be zero. In other
words, [4(z) is the algebraic sum of the currents in the
dipole and the induced currents in the shield. Since the
electromagnetic field outside the shield due to Ir(z) and
the current induced in the shield is zero, the entire field
outside the shield is that maintained by I4(z), just as if
there were no shield and 74(2) were the total current on
the dipole. It follows that

V = I(0)Zain = 14(0)Zao + I7(0)Z7,

where Z,, is the input impedance of the dipole in free

(24)

[ <4

O
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space and Zr is the input impedance of two sections of
transmission line in series. That is, s

Zr = 2R, coth [ah + j(Boh + ®1)],

where R, is the characteristic impedance of the coaxial
line, a«=2r,'/R, is the attenuation constant, and ®,=0
is the terminal phase function of the ends which are
open-circuited. With (23), the input impedance of the
dipole in the shield may be expressed in the form

14(0)
I(0)

(25)

Zr +

Zain = (Zao - ZT)- (26)

The ratio of currents in (26) may be replaced by a
ratio of fields in the following manner. The field E’(c, 0)
maintained on the outer surface of the shield is due en-
tirely to T4(z) and is, in fact, proportional to it. The
field Ei(b, 0) incident on the inner surface of the shield
is proportional to the total current I(z) in the dipole.
Both fields are those that would be maintained in the
absence of the shield. Since the wall thickness (¢—b) is
a very small fraction of a free-space wavelength, it fol-

fows that

14(0)
1(0)

_ E'(c, 0)
__ Ei(b, 0)

=. (27

It may-now be argued that the attenuation through the
shield of a field that is incident from the outside must
be essentially the same as the attenuation through the
same shield of a field incident from the inside, provided
Bb is sufficiently great to satisfy (4). That is,

¥ =s. (28)
With (27) and (28) it follows that
Zain = ZT + 6(ZGO ZT); (29)

where 8 is given by (18b) or (18c). Note that if the walls

. of the shield are perfectly conductingd=0and Zin=27;

similarly, when the shield is absent, § =1 and Z;in = Zao.
The final expression for the current at the center of

the dipole when enciosed by the imperfectly conducting

cylindrical shield may now be expressed as follows,

I, (0) 2h6
Es Zr+5(Zao—ZT)+ZL

where § is given by (18b) or (18¢c) and it is assumed that
(4) is satisfied together with (20).

(30)

NuMERICAL EXAMPLES

In order to obtain a quantitative estimate of the mag-
nitude of the ratio é of the field in a cylindrical shield of
finite length and of the current that may be induced in
a conductor along the axis of such a shield, consider the
following numerical examples. These involve an alu-
minum shield of given wall thickness and cross-sectional
size but two different lengths, the one very short com-
pared with the wavelength, the other a half wavelength
long.

King and Harrison:
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The subscripts 1 and 2 appearing on the various pa-
rameters entering the problem refer to the short and
half-wavelength long shields, respectively. The cylinder
and inner conductor are made of aluminum. o = 3.54 X 107
(ohm-meter)~*. In both illustrations, f=10 kg,
w=2mf=0.283X10%, Ae=3X10* meter, Bo=27/),
=2.094X107* meter!.

The Cylinder as an Antenna
c=68cm,b=67cm,(c—b) =1mm

2l
11 = Sm Boll = 1047 X 10_'3 Qle = 2111—'
[

9.98

2,
lp = 7.5km, Bols = 1.571, Ry = 2 In — = 24.61
c

B8 = Vwpo = 1.672 X 103m~!
# = 4x X 10" henry — m™!
2
B8b = 112.02,d, = — = 0.846 mm
wuo
c—b
A. = ( ) = 1.182
d,

Zein1 = — 3.78 X 10% ohms?
Zoin2 = 77.3 + 743.6 = 88.75¢/°-4 ohms®
1.1 = %ll = 2 Sm"’

lyg = 5.04 X 10°m!!

Computed Field Ratio
E(a 0)

1

= 70.845 X 10-%i0-458

= (0.374 +j0.758)10~°
£(a, 0)
2 = —

Ed

= (4.08 — j5.98)10°2

[from (18b)]

= 7.25 X 10-%i072

[from (18b)]

Interior Data

Center Conductor:

a=2X 10‘3m, h= Sm, ﬁohl = 1.047 X 10_3,

2hy
Q= 2In— = 17. 03,
a

2%
ks = 7.5km, Bohz = 1.571, Qy = 2In — = 31.66
a

ho =~ 1hy = 2.5m10
ke =~ 4.77 X 10°m??
Zr = — j7.817 X 105 ohms®

t King, op. cit., footnote 3, p. 192 (46b).

? Ibid., by extrapolation of Table 30.1, p. 168.

1 Ibzd p. 496.

1 Ibid., p 492, Fig. 9.6b; k,/Ao=0.168 for 0, =24.61.
12 Ibid., p. 492, Fig. 9.6b; k,/A=0.159 for Q= .

13 Ibui., p. 184, (6¢) with Qm17.03.

L 34
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Zoaz = T4 + j42.5 = 85.3¢/0-52114
—Jj2R.

Zry = 2R, coth (a + jBo) k1 =
Boly

b
Ry = 60 In — = 210.7 ohms. Hence
a

Zyy = ~— j4.03 X 105 ohms.
Zr2 = 2R, tanh aks = 2R.ahy = rih,

rs

= (ryd + 1) ks, sincea =
c

Also®
Ba M(Ba) 3r
= P —m— cos [z- + 64(Ba) — ol(ﬂa)]
Ba = 3.3

" Mo(3.3) = 2.301,68,(3.3) = 109°.25!6
M\(3.3) = 2.124, 6,(3.3) = 206°.83"7
ra' = 3.23 X 10-318
et = 9.59 X 105 [(11b) with (12a) and (12b)]
ri=r 4 7= 3.33 X103
Zr2 = rihs = 24.95 ohms.

Ratio of the Current at the Middle of the Unloaded
Center Conductor to the Incident Field

Ial(o) - .

o 1.05 X 10~14¢72-883 [(30) with Z; = 0]
I.2(0 _ '

;(_) = 2.72¢770-987 [(30) with Z,, = 0]

Thus, for an incident field E¢ of 10 volts/meter the mag-
nitude of the current at the center of the inner conductor
is only 1.05X 10~ amperes for the case of the short
cylinder. However, for the half-wave cylinder the cur-
rent is 27.2 amperes for the same incident field.

1 Ibid., p. 168, by extrapolation with Table 30.1, noting that for
Qs o0, Z=73.147 42.5.

1 King. op, ctt., footnote 6, p. 346, (2).

 Ibid., p. 523.

v Ibid., p. 524.

B Ibid., p. 346, (2).
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CONCLUSION

" The field in the interior of a cylindrical shield depends

on the attenuation through the shield and on the ampli-
tude of the current that can be induced on it by the ex-
ternal field. When a closed cylindrical shield is very
short compared with the wavelength, the effective
length is small and the impedance is enormous. It fol-
lows that the induced current is very small, and with it
the field in the interior of the shield. When the shield
approaches a resonant length, the effective length is
relatively large and the impedance quite small. It fol-
lows that a rather large current is induced in the
cylinder and a correspondingly large field is maintained
in the interior. .

If a dipole is placed inside the shield with its ends not
connected to the metal end surfaces of the shield, the
current induced in it depends on its length and on the
magnitude of the surrounding field. When the field in
the shield is small and the length of the dipole is far
from a resonant value, the current induced in the dipole
is extremely small. On the other hand, when the field
in the shield is more intense and the dipole has a
resonant length, surprisingly large induced currents are
possible.

Similar results may be expected if the dipole in a
shield is replaced by a conventional coaxial line with a
load at one end and a generator at the other. If the
length of the line is resonant at the frequency of an ex-
ternal field and the wall thickness is not very great com-
pared with the skin depth, significant fields may be
maintained within the shield. These may induce rela-
tively large currents in the coaxial line, particularly if
a resonant condition obtains. Evidently, all of the con-
clusions reached for solid metal shields also apply to
the practically important case of braided shields of com-
parable thickness. -

Although somewhat idealized, the assumed numeri-
cal values are not physically unreasonable under spe-
cial circumstances. The short cylinder in a uniform field
is obviously realizable. A cable 15 km long in a uniform
field is not easily realized. However, a long cable on dry
sand near a high-powered VLF transmitter might not
be very different in its response.




