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ABSTRACT

Formulas for the steady-state electric and magnetic fields
at the center of an imperfectly conducting spherical shell of
unrestricted size are derived. The incident electromagnetic field
is assumed to be a plane wave. The shield is made of copper or
aluminum and contains no slots or other appurtenances. It is
shown that the fields at the center of the cavity are linearly
polarized. The time history of these fields is computed for the
case where the incident electromagnetic field has an amplitude
distribution in the shape of a Gaussian pulse. Numerical informa-
tion relating to the effectiveness of the shield under steady-
state and transient conditions is provided in the final report for
several pulse durations, shield sizes, and wall thicknesses.
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Introduction

This study was undertaken to determine the shielding characteristics of
thin-walled spherical shells of arbitrary size under steady-state and transient
conditions. The shields are assumed to be made of copper or aluminum and con-
tain no slots. Gaussian plane-wave electromagnetic field pulses are propagated
from outside to the center of the shield. At this location the time histories
of the electric and magnetic fields are computed. In the numerical work,
pulses of several time durations and a number of shield dimensions (radii and
wall thicknesses) are used. 1In one case a sphere of sufficient size is assumed
in the calculations to permit one to infer the properties of the "comparable?

shielded room of cubical shape.

Preliminary Remarks

Figure 1 illustrates a homogeneous imperfectly conducting spherical shell
of outer radius a and inner radius b characterized by permeability “1’

dielectric constant €., and conductivity o It is embzdded in an infinite

1 1’

homogeneous medium with constitutive parameters p €2, and o, = 0. The

interior and exterior regions of the shield are aisumed to poisess the same
electrical properties. The center of the shell is the origin of superimposed
Cartesian and spherical coordinate systems. The unit vectors in these systems
are %, ¥, and Z} and 9, @, and R, respectively. 6 is the angle between Z and
ﬁ, $ is the angle between X and the projection of R in the xy plane, and R is
measured from the origin. The incident electric field is linearly polarized
in the x-direction and propagates in the direction of the positive z-axis. It
follows that the magnetic field is linearly polarized in the y-direction.

These fields are in the same time phase.



Mathematical Representation of
the Electromagnetic Fields

The expansions, in vector spherical wave functions, of the incident,
diffracted, shell, and cavity fields may be written down by analogy with the
work of St:r::ltt:on1 who has solved the problem of scattering from a solid

imperfectly conducting sphere. The field expressions are

-Jk z
o . 2 : n_2n+1 [ (D) (1)
Ei - XEoe E -9 n(n + 1) Boln + j‘—"elh (1)
R2a
n_2n0+1 | (1) . (1) .
gi § ;( i n(n + 1) [Eeln B JEoln] ()
R,Z a
- § : n 2n+1 r (3)+ r (3)
' E -9 a(n + 1) an Eoln + jbn ~eln )
n=1
R 2z
n_2n+ 1 (3)’ ) |
5 = Z‘ R lbrrerarl L NS L oln] )
n=1
R2a
n_2n + 1 3)* (3)*
=E Z( -1 n(n + 1) pn"oln + jqn“eln
n=1
n 2n + 1 -(3) (3)
+zl(-j) n(n + 1) dnEoln n—eln], (5)
n'

1.]. A. Stratton, "Electromagnetic Theory," 1st Edition, McGraw-Hill Book
Co., Inc., p 564, 1941,



Z n_2n 4+ 1 3)* 3)*
Ea -1 n(n + 1) qngeln - Jprroln

Z‘” n 2n+41 (3) (3)
+ - -1 n(n + 1) fu!"eln B jdng'oln (6)
b<R<a
. n _2n+ 1 (1) c (1) |
E EZ(_‘I) an + 1) a °1n+jbn3e1n @)
n=1
0<RZ<D
n_2n+1 }Jc (1) c (1)
'EC Z( » n(n + 1) b1'1 Eeln-"lan 2in] - (8)
0<RZ<D

The subscripts i, r, s, and ¢ on the field vectors indicate incident, reflected,
shell, and cavity, respectiyely. The time dependence assumed (and suppressed)
in writing (1)-(8) is exp(jwt). The propagation constants in medi{ums 1 and 2
are

Y

1
;- (=D (9)

(provide& 01 >> wel) and

kz = m\/uzez , (10)

respectively. Eo is the amplitude of the incident electric field.



r .r c c .
Also, a , b ,p ,q,d, f,a, and b are constants to be evaluated from the
n n n n n n n

boundary equations. The spherical vector wave functions are defined as follows:

.1 (kR) 3
(1) 1 cos <P a sin ® A
-°1n * 2in O Pn(cos 8) sin 4, j (kR) 69 P (c )cos 4)@ - (11)
e

) inds 1 "9 8
D _p@m+ D 3 (kR)p (cos 8)° " R + = [kRJn(kR)] Y Pi(cos G)Z;n 28

s kR CP s
in
e
+—1 lkRJ (kR)] P (cos 6)°°° *3. (12)
kR sin € sin & .
t_ni3) is obtained from g‘()l) by writing hcl)(kR) for j (kR) throughout the
In in a n
e e
expression. c(> )is obtained from n( ) in like .manner.
ln . °1n
e e
in writing down the expansions for the magnetic field, the relations
VxE=-joull , (13)
2
and
Vxm=kn
Vxn=kn
* . (14)
Vxm =kn
Vxn " =km*

2Il:vicl, pg 415 and 416,



3)* o)

are used. It is important to note that the notation Eo and Bo employed
in in
e e

in this paper indicates that the complex conjugate of the function is to be

taken. The argument of the function, even though complex, is to be left alone.

Thus bP " (kr) — 0¢? (kr) and 1¢® *(kr) — 0P
n n n n

(kR) , where k may be complex.

The Electromagnetic Field at
the Center of the Cavity

It is a simple matter to demonstrate that at the center of the spherical
shell (R = 0), (7) and (8) become

(_E_Z_C> = Eobc[sin 6 cos ¥R + cos 6 cos 6 - sin &P (15)

R=0 1

. (16)

(H ) = 2 E ac‘sin 0 gin R + cos O sin $8 + cos
e/, op, ol

Evidently an infinite sum of modes is not required to express the electric and
magnetic filelds at the middle of the sphere. Because of this fact the problem

is tremendously simplified. Since

R = sin 9 cos dR + cos 6 cos ¢80 - sin P

9 = sin 0 sin R + cos 6 sin $6 + cos <_b$ (17)
N

Z = cos Gﬁ- sin 66

it follows that

(gc) - onbi (18)



(ﬂb) = a>2 ) i ) (19)
R=0 )

<
t
[+

Evidently the polarization of the cavity field is the same as the polari-

zation of the incident field. Hence

(20)

where § = wuzlkz.

The Boundary Equations

The boun&aty conditions that must be satisfied on the inner and outer

surfaces of the spherical shield are

R=b (21)

® VRxa (22)



It turns out that the 6 and ¢ boundary conditions give rise to two sets
of redundant equations relating the constants. Hence, only the S(or ¢) com-
ponent of the fields at the boundaries are needed. In obtaining the simul-
taneous equations for the constants it is of importance to observe that
Pi(cos 8) and g% P;(cos 6) are different functions of 6 and cannot be employed

together in the same boundary equation.

Let the following notation be introducec:

Ay = 300
B, = n{? (k) :
C1 = h§2)(k1a)
D1 = hil)(kla)
. (23)
E, = kzajl(kza)]
Fl = :kZah{Z)(kZa{:'
G, = :klahiz)(kla):'
= [ Pom]

Also, let A2 ces Hz be defined in like manner except that b is written for a.

It can then be shown that the boundary equations take the following form:

r
- 4
A, +aB =pC + dlol (24)
E. b G. £.H
s RS W b A (25)
k. k. 1 k K

N
N

1 1



Equations

the value

where

C. + £.D ' (26)

o E. +aF |=pG +dH 27)
w, |17 % P T %%
[~
p,C, +d,D, = ajh, (28)
c
L £8, bE
e St T 29)
1 1 2 .
u k
21 c
b K, Iq1cz + f1D2} b4, _ (30)

My

M
2 c
{plc2 + dlﬁz} T alEz .

1)

(24), (27) and (28), (31) may be solved for ai. This constant has

uw(H,C, - G,D,))(AF, - BiE))

(uA,H, - EZDZ)(ClFl - unlcl) + (u.Asz - Ezcz)(unlﬂl - Dlpl) (32)
Ty
2

T L" (33)
1

10



Accordingly, u = 1 if the shell is nonmagnetic and 1is immersed in free space.

Similarly, Equations (25), (26) and (29), (30) may be solved for b:. This
constant has the value
kz(CH-DG)(A'F-BE)
c e AR 7 2V T BN
b1 =72 2 2 s (34)
- - A - -
(k A2G2 uCzEz) (k BIHI uFlDl)-!-(k 2H2 uDzEz) (pFlcl k Blcl)
where
k
k = _k_z : (35)
1

Equations (32) and (34) may now be substituted into (19) and (18), respectively,
to obtain the cavity fields. It is important to note that no restrictions on

the cavity size have been introduced into the theory.

In the numerical work it is of convenience to have available exact expres-

sions for the functions appearing in (23). These are

jl(z) - !1; z . co: 2 ’ [zjl(z)] = < -‘l;> sin z + % cos z
z 4
I\ -3 ' - -
hiz)(z) - - -:- (1 - ;)e iz [zhiz)(z)] -f (1 - %) e 3% 4 o732 (36)
L, , . 1 1) iz w, ] .1 ( 1) 32 iz
hl (z) 2 (1+z)e zhl (z)] = 1+z)e - Je
3

P. M. Morse, '"'Vibration and Sound," 2nd Edition, MCGraw-Hill Book Company,
Inc., pp 316-317, 1948.
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The Form of the Integrals to
Be Evaluated by a Computer

The description of the incident electric field pulse assumed in this paper

is

-tZ/Zti
eo(t) = Ae (37)

where A is the value of eo(O) in volts/m, t 1s'the time, and t_. 18 a measure of

1
the pulse width. The spectrum of this pulse is
-£%/2¢]
zo(f) = At1\/2ve . 38)

Here f is the frequency in cycles/sec, and f1 = 1/27t1.

Let G(f) = G_(f) + jG,(f) represent one of the desired steady-state shield-

R 1
ing ratios, such as {Ec(f)] /@O(f). The time history of the electric field
' R=0, '

at the center of the cavity is then

[~ ]
e (1) "f G(H)E (£)ed?™EE 45
c oo (o]
fc -f2/2f2
~ zAclx/EE f [GR(f) cos 27ft - G (£) sin 21rft]e df (39)
. ’ o]

where in obtaining the second part of (39) use has been made of the relation
G*(f) = G(-f). For cémputations of the electric field the constant A in (39)
was taken to be 1 volt/m; for computations of the magnetic field h and H are sub-
stituted in (37) to (39) in place of e and E, and A is set equal to 1 amp/m. In
this paper the highest significant frequency contained in a Gaussian pulse is
taken to be fc = 2.6f.. The "significant' base width of the time function is

1

2'x 2.6t; = 5.2t;. The half-amplitude width of a Gaussian pulse is 2.355:1.
[3 . ° 12
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FIGURE I: SPHERICAL SHIELD. THE FIELDS E; AND H, ARE POLAR-
IZED PARALLEL TO THE X AND y AXES, RESPECTIVELY.
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On the Attenuation of Transient Fields by Imperfectly

Conducting Spherical Shells

o

C. W. HARRISON, Jr., SENIOR MEMBER, IEEE, AND C. H. PAPAS, MEMBER, IEEE

Abstract—Exact formulas for the electric and magnetic fields at
any arbitrary point within a cavity region completely enclosed by a
conducting spherical shell of arbitrary size are derived under the
assumption that the exciting electromagnetic field is a linearly
polarized, monochromatic, plane wave falling on the external surface
of the shell. It is shown that the polarization of the electromagnetic
field at the center of the cavity is the same as the polarization of the
incident wave. From a knowledge of this steady-state solution, the
time history of the electromagnetic field at the center of the cavity
is calculated for the case where the incident wave is a Gaussian
pulse. Numerical information on the effectiveness of the aluminum
and copper shields under steady-state and transient conditions is
provided for several pulse durations, shield sizes, and wall thick-

nesses.
INTRODUCTION

CLASS OF PROBLEMS known as shielding
A problems has recently been raised to a position of

practical importance due to the requirement that
certain field-sensitive devices be protected against the
damaging effects of high-intensity electromagnetic
pulses. Clearly, when an electromagnetic pulse fallson a
shield, a relatively large part of the incident pulse is re-
flected by the outer surface of the shield and the remain-
ing part is transmitted through the shield. The object of
the shield is to keep the level of the transmitted part of
the pulse below a prescribed level of safety.

The standard way of solving the problem is to take
the temporal Fourier transform of the incident pulse
and then to treat the problem as a steady-state bound-
ary-value problem. The solution of the boundary-value
problem yields the Fourier transform of the transmitted

Manuscript received April 5, 1965; revised June 2, 1965.
C. W. Harrison, Jr., is with the Sandia Corp., Albuquerque,

N. Mex.
C. H. Papas is with the California Institute of Technology,

Pasadena, Calif.

field in terms of the Fourier transform of the incident
pulse. By taking the inverse Fourier transform of this
solution, one obtains the time-dependent transmitted
field as a function of the incident pulse. The one step of
this procedure that limits its general applicability is the
solving of the boundary-value problem. Unless the
shield has a simple shape, the boundary-value problem
cannot be solved with the completeness that the Fourier
technique requires.

In the present paper we accordingly choose the shell
to be spherical because for a spherical shell the bound-
ary-value problem can be solved exactly. We assume
the incident wave to be a linearly polarized Gaussian
pulse and calculate the resulting field at the center of
the cavity. In the numerical work, pulses of stveral
time durations and a number of shield dimensions are
used. In particular, a sphere large enough to simulate a
shielded room is considered.

PRELIMINARY REMARKS

Figure 1 illustrates a homogeneous imperfectly con-@
ducting spherical shell of outer radius @, inner radius 5,
and thickness d(=b6—a). The shell is characterized by
permeability p,, dielectric constant €, and conductivity
o1. It is embedded in an infinite homogeneous medium
with constitutive parameters u., €, and o2=0. The in-
terior and exterior regions of the shield are assumed to
possess the same electrical properties. The center of the
shell is the origin of concentric Cartesian and spherical
coordinate systems. The unit vectors in these systems
are %, 9, and £; and 6, &, and R, respectively. 8 is the
angle between 2 and R, ® is the angle between £ and the
projection of R in the xy plane, and R is measured from
the origin. The incident electric field is linearly polarized

Fig. 1.

Spherical shield. The fields E; and H; are polarized parallel
to the x and y axes, respectively.

960
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+ in the x direction and propagates in the direction of the
positive z axis. It follows that the magnetic field is lin-
mcarly polarized in the y direction. These ficlds are in
Jtime phase.

MATHEMATICAL REPRESENTATION OF
THE ELECTROMAGNETIC FIELDS

The expansions, in vector spherical wave functions,
¢ he incident, diffracted, shell, and cavity fields may
e written down by analogy with the work of Stratton!
on the problem of scarttering from a solid imperfectly
conducting sphere. The field expressions are

] ud 2n + 1
E; = iEgqe 7 = E, ?;‘ (_j)nm (101 ® + jRaa®]
R>a (1)
k2 ® 2n + 1 '
Hl=——E - en(l)—.on(l)
" °,§( 7) n(n+1)[ml Jnoin™]
R>2a (2
= 2n 4+ 1
B = e 2 I gy (e e o]
R>a (3)
2 hnd 2” + l
H.=— —E —7)m
Witz OE( ) n(n + 1)
'[burmeln(s)* —janrnoln(z)*] R Z a (4)
= 2n 4+ 1
E. =B { 2 = gy (oo ®s - ganan 4]
d n—+1
- dn o n(a) ] ndle n(a)
+§( 7) ”(n+1)[ mo1n® + jfanel ]}
b<R<a (5
2n + 1
H, =—— E —)—
o °{.‘§( L

[gamnte1e % — jparion, +]

n+1
+ Z (_J)n ( +1) Lf"meln(’) ‘jdnnolna)]}
b<R<ZLa (6)
= 2n+1
E,=E 2, (—j)" m (82201, + jbanre1a™]
ne=]

0<R<?® (D

' J. A. Stratton, Electromagnetic Theory, 1st ed. New York:
McGraw-Hill, 1941, p. 564.
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ks d 2n + 1
H. =——F g T
orn og( 7) wn + 1)
'-[bncmeln(” —jan‘noln“)]- 0 _<_ R S b (8)

The subscripts ¢, 7, s, and ¢ on the field vectors indicate
incident, reflected, shell, and cavity, respectively. The
time dependance assumed (and suppressed) in writing
(1)-(8) is exp (jwt). The propagation constants in me-

diums 1 and 2 are
WG]
/20—

ky = ®

(for o> we) and

k! = w\/f?ﬂy (10)
respectively. E, is the amplitude of the incident electric
field. Also, @.", bs", Pns Quy @y fny @a% and 5,° are con-
stants to be evaluated from the boundary equations.
The spherical vector wave functions are defined as fol-
lows:

R) cos P,
P, (cosf) . 6
sin

P (B
(1)_+J(

Oy, =
o In

sin @

LR Pcoss) ™ Tg (1)
— Ja — 1, (COS
J 60_ cos ®
m  nin+1) sin ¢
o=-—-———-,.kRP‘c050 R
o = iR P o)
+ L kRWGR) 2 Pi(ost) ™" T
—_— n — L7y (COS
kR J ad cos ®
L RLGRPMess) T 2)
n n {CO P
~ kR sin 6 J sin *

mg,® is obtained from m,, "V by writing &,V (kR) for
Jjn(kR) throughout the expression. ng,'® is obtained
from n,, @ in like manner.

In writing down the expansions for the magnetic
field, the relations

VX E = — juuH, (13)
and?
’ VXm=kEkn
v =k
I X n m (14)
V X m* = kn*
V X n* = km*
Y Ibid., pp. 415-416.
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are used. It is important to note that the notation
. me,M* and n,,,®* employed- in this paper indicates
that the complex conjugate of the function is to be
taken. The argument of the function, even though com-
plex, is to be left alone. Thus k,"V*(kR)—h,®(kR) and
k. V*(kR)—h, V(kER), where 2 may be complex.

THE ELECTROMAGNETIC FIELD AT
THE CENTER OF THE CAvITY

It can be shown that at the center of the spherical
shell (R=0), (7) and (8) become
(Ee Rmg = Eob]‘{Sine Cos (pﬁ

+ cos 6 cos $0 — sin B} (15)

k ,
(H.)r—o = — Eqa:¢{sin 8 sin &R
wi2

+ cos@sin $f + cos d$]. (16)
Evidently an infinite sum of modes is not required to
express the electric and magnetic fields at the middle

of the sphere. Because of this fact the problem is greatly
simplified. Since

= sin @ cos ®R + cos 8 cos & ~ sin &d
9 = sinfsin &R + cos § sin ¥4 + cos &d (17)
2 = cosfR — sin6f

it follows that )
(Eg)ﬂ_o = i'Eablc (18)

k
H)z—o =9 = Ega,°. * 19)
wWH2

Evidently the polarization of the cavity field is the
same as the polarization of the incident field, and we

have
| E.| | B1e
=¢ 20
AR )

where { =wuz/ k..

TaE BouNDaRY EQUATIONS

The boundary conditions that must be satisfied on
the inner and outer surfaces of the spherical shield are

(Edo = (Eo)e
(E)s = (Eo)e
(Hoe = (H.)e
(Hi)s = (Hoe

= b (21)

#(H:C: — G2D2)(A41F1 — B:1Ey)

(E: + E.)e = (E.)e
(E: + E))s = (E)s

R = a. ’
F+Hyo=Hye [ ° “O
(Hi + Hr ¢ = (Ho)é

It turns out that the 8 and ® boundary conditions givz
rise to two sets of redundant equations relating the con-
stants. Hence, only the #(or &) component of the fields
at the boundaries are needed. In obtaining the simul-
taneous equations for the constants it is of importance
to observe that P,!(cos ) and (3/36)P,'(cos 8) are dif-
ferent functions of 8 and cannot be employed together
in the same boundary equation.

Let the following notation be introduced:

A,y = ji(ka) )
B, = ¥ (ka)
Ci = h®(kia)
Dy = kM (kya)

s 23
Ey = [kaji(Rea)] , B
Fy = [keahy @ (ksa))'
G = [k1ahy® (k1a)]’
H, = [kiah; O (k1a)]’
Also, let 4; - - - H, be defined in like manner excep

that b is written for a. It can then be shown that th{ /}
boundary equations take the following form:

A+ ai'By = p,.Cy + di D, (24)
E by nG, [l
— 4+ F, = + 25
ka + k2 ! & ky ( )
kop
! {A1 + 61'31} = qC1 + f1D1. (26)
ks
B
atc {Ei+ arrF1} = p:1Gi+ duH, (27)
B2 ..
£21C2 + d1D; = a,°4, (28)
/43 f),Hz blcEz
—G.+ = 29
kl * kl k! ( )
paky ’
= {q:Cz +f1Dz} = b1°4s (30)
uiks
B2
— {?161 + dIH2} = a,°E,. (31)
#1

Equations (24), (27) and (28), (31) may be solved for
ay’. This constant has the value

(32)

a1’ =

(y.Asz il EzDz)(ClFl - uBlG:[) + (ﬁAsz - Eng)([.lBlHl - DIFI)
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2963
where e(t) = f G(f) Eolf) e 1df
‘l —
p=—- (33) ot
K1 ~ 2At1‘\/27l'f
Accordingly, p=1 if the shell is nonmagnetic and is . ’ . gt
immersed in free space. Similarly, (25), (26) and (29), [Gr(f) cos 2xft — Gu(f) sin 2ufi]e=r'12r’df  (39)

(30) may be solved for b,°. This constant has the value

’

c

pk2(CoHy — DuG,o)(AFy — BLE))

where in obtaining the second part of (39) use has been

by

where

35

1

Equations (32) and (34) may now be substituted into
(19) and (18), respcctively, to obtain the cavity fields.
It is important to note that no restrictions on the cavity
size have been introduced into the theory.

In the numerical work it is of convenience to have
available exact expressions for the functions appearing
in (23). These are?

= sinz cosz

] 51(2) =

' 1 i\ .
B(z) = — —(1 +—> e
2 ‘z

THE ForRM OF THE INTEGRALS To BE
EvaLuATED BY A COMPUTER

The description of the incident electric field pulse
assumed in this paper is

eo(t) = A’ (37
where 4 is the value of ¢¢(0) in volts/m, ¢ is the time,
and ¢ is a measure of the pulse width. 4 is taken to be
one volt/m. The spectrum of the pulse described by
37 is

Eo(f) = Aty/77 002, (38)

Here f is the frequency in ¢/s, and fi=1/2m4.

Let G{f) =Gr{f) +jG1(f) represent one of the desired
steady-state shielding ratios, such as [E.(f)]z=o/Eo(f)-
The time history of the electric field at the center of
the cavity is then

3P, M. Morse, Vibration and Sound. 2nd ed. New York: Mc-
Graw.Hill, 1948, pp. 316~317.

B (k’Aza:ﬁC;Ez)(szlgx — uF1 DY) + (szzgz — oD E)(uF1Cy — £2B1GY)

(34

made of the relation G*(f) =G(—f). A similar integral
holds for the case of the magnetic field. In this paper
the highest significant frequency contained in a Gaus-
sian pulse is taken to be f.=2.6f:. The “significant” base
width of the time function is 22.6¢,=5.2¢;. The half-
amplitude width of a Gaussian pulse is 2.355¢,. Observe
that the time history of the incident magnetic field 2o(t)
is given by (37) with A replaced by 4/¢ ( =wu,/k)).

NUMERICAL RESULTS .

Figure 2 presents the steady-state transfer charac-
teristic relating E.(f) to Eq(f) for two aluminum spheres

1 1
[z7:(2)]) = (1 - —) sinz+ —cosz
3z? z
1/ ] 1 f
{B®D(z) = — _<'1 — _J_> et [zhl(”(z)]’ = __<1 — _J_> et + je it {
z z ] z

{ .
[z, D (2)]) = —(1 + —J—) et —~ jei
F AN z .

(36)

(0=3.54 X107 mhos/m) of designated wall thickness
d=a—b. In this figure, and in subsequent figures, the
solid-line curves apply to spheres of 36-inch radius, and
the dashed .curves apply to spheres 18 inches in radius.

Figures 3. 4, 5, and 6 present the time history of the
electric field at the center of the aluminum shells for
=06 us, 12 us, 24 us, and 48 us, respectively.

Figure 7 shows the time history of the electric field
at the center of a shielded room having the shape of a
sphere. The volume of the room is 1000 cubic feet, so
that its radius is 6.204 feet. The shield is copper sheet
(0 =5.8 X107 mho/m) 0.06408-inch thick (the dameter
of AWG No. 14 wire).

Figure 8 presents the steady-state transfer charac-
teristic relating H.(f) to Eo(f). If the reference had been
H(f) instead of E(f), these curves would have becn
shifted upward by 51.53 dB, (20 logis 1207).

Figures 9, 10, 11, and 12 present the time history of
the magnetic field at the center of the aluminum shells
for ty=6 us, 12 us, 24 ps, and 48 us, respectively.

Figure 13 corresponds to Fig. 7, except that the time
history of the magnetic field is presented.
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DiscussioN

The numerical results obtained from this exact theory
of spherical shields are compatible with the results re-
ported elsewhere based on an approximate analysis of
magnetic-field shielding by a spherical shell and electric-
field shielding by a cylindrical shell of finite length.*

The following figures and graphs may be compared:

Figure 2 (present Graph 26 (footnote 4)

paper)
Figures 3, 4, 5 Graphs 27, 28, 29
Figure 8 Graph 12
Figure 11 Graph 13
Figure 12 Graph 14

Note that the results obtained in the two papers for the
time histories of the magnetic field within spherical
shells differ somewhat. This discrepancy is attributed
to the fact that the prior work* is based on an approxi-
mate transfer function.®* No previous study was made of
the shielding of an électric field by a spherical shell.
Intuitively one feels that the time histories of the elec-
tric field in shells of arbitrary shape made of the same
material and having the same wall thickness should be
qualitatively the same, provided their dimensions are
small'in terms of the wavelength of the incident radia-

¢ C. W. Harrison, Jr., “Transient electromagnetic field propaga-
tion through infinite sheets, into spherical shells, and into hollow
cylinders,” IEEE Trans. on Antennas and Propagation, vol. AP-12,
Pp. 319 334 May 1964.

SL. V. ng, “Electromagnetic shielding at radio frequencies,”
Phil. Mag., vol. 15, no. 97, pp. 201-223, February 1933. Observe that
the author does not state whether he computes the field at the center
of the sphere or elsewhere. .
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tion. A comparison of the curves and graphs in the two
reports as suggested above, reveals that this statement
is true.

ConcLusION

Insofar as the authors are aware, this is the first
presentation of an exact theory relating the électric and
magnetic fields at any point within an imperfectly con-
ducting spherical shell to the incident plane-wave elec-
tric field. Using Fourier transform techniques, the time
histories of the electric and magnetic fields were com-
puted at the center of several shields for incident elec-
tric fields having the shape of a Gaussian pulse. It
should be noted that the center of a shell is a point of
symmetry, and, accordingly, the amplitudes and time
sequences of fields at other points within the shell could
be considerably different, even though the shield is elec-
trically small at the highest significant frequency con-
tained in the incident pulse. Suffice to say an “analytical
probing” of the field at several points within and near
the shield (as was recently carried out for two parallel
infinite plates®) would be a prodigious undertaking, even
considering the availability of the most modern high-
speed digital computer.
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