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ABSTRACT

The problem of determining the electromagnetic fields produced inside
a perfectly conducting cavity by an external field when an aperture is
present in the cavity wall is formulated. It is found that the fields
excited within the cavity are proportional to the current density at the
aperture that would be present if the aperture were completely shorted.



INTRODUCTION

The problem formulated is that of determining the electromagnetic field
produced inside a perfectly conducting cavity by an external field when an
aperture is present in a cavity wall. For convenience, the cavity geometry
is taken to be rectangular, and the dimensions of the aperture are considered

small as compared to the wavelength of the incident radiation. General modal

expansions for the field components inside the cavity are derived and the
expansion coefficients are expressed in terms of the aperture fields for an
arbitrarily shaped aperture. The theory of diffraction by small circular
apertures is then used to obtain the aperture fields. However these fields
are expressed in terms of the field components that would be present if the
aperture were completely shorted. Two methods are proposed for determining

the later.

The formulation yields the result that the fields excited within the
cavity are proportional to the current density at the aperture that would
be present is the aperture were completely shorted. This result has been

observed for other cavities.




ANALYSIS

Interior Field

In general, the theory of wave guides and cavity resonators is well

formulated (1,2). The geometry used is shown below. In general, the

z
<——q—->'

_!17 @ T

=9

/

X
medium of propagation is vacuum and the walls are perfectly conducting.

The E field in the cavity can be written as
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where Eo E are functions of x and y with the z dependence contained
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in the exponential, and kg is the effective propagation constant in the z
direction. In a straight forward manner Maxwell's equations lead to expres-

o
sions for x and y components of E and B in terms of z components:
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where (kl)2 = k2 - kg2 = (wz/cz) - kgz.

From the wave equation, it follows that
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where Y is E or H . For the TE modes (E_ = 0) and TM modes (H_ = 0), the
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above equation and the boundary conditions (Etang = 0 and VHoz must be tangent

to the surface at the surfaces) imply

2 2
H_ , = Fpy cos nfix cos mmy xH2={[n} +[m m2
' P q )% q
Eoz = Gnm sin ggg sin mgz m, n integers.

The general expressions for Eoz and Hoz including explicitly the z dependence

are
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These expressions represent TM and TE modes propagating in both the +z and

-z directions in the cavity. It is easy to show from previous results that

on = Em

s . —jkgz + ' jkoz
JkE n7T cos nTx sin mmy Gnm e Gnm e’ g

(k1)?

p q
+ jwg mm  cos nmMx sin mmy {g;m e°jkgz + F;m ejkgz
kH? q p q

The G terms and H terms retain their identity with TM and TE modes, respec-
tively; however, if coupling between modes exists, it should follow naturally

from this general expression. E can be rewritten as
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where
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To complete the program, H and Ho become
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Therefore if G, G' , F__, and F' can be determined from boundary conditions
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then the fields in the cavity will be specified completely.

On the z = 0 surface on = E am
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the two o and Brelations, it 1s possible to show that
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Thus, each square bracket in the field equations can be replaced by either .
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. . t
nm sin kgz or Zanm sin kgz. Perhaps an easier method is to find anm

and BAm using boundary conditions on the z = d surface and solve these

equations for G, . and an. This approach will be followed.
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On the z = d surface (and since cos and sin form an orthogonal set of

functions), it follows that
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Up to this stage, the formulation is general. It is necessary only to
specify the tangential electric field components on the z = d surface and
perform the above integrals. This will evaluate a;m and Bém from which
Gnm and an can be found. Once these are known the field expressions

are known.

Aperture Field

To proceed further on and Edy on the z = d surface must be specified.
Bethe (3) has considered a similar problem. The geometry of Bethe's problem
is a hole in a single infinitely large flat conductor and he finds expressions

for the field components in the hole and on the side of the plate opposite
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the impressed fields. For a circular aperature of radius a, these results

may be approximated by
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where Ez , the z component of the impressed field, is defined as the z com-
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ponent of the field that would be present if there were no hole in the
screen. If the additiomnal a#sumption is made that the dimensions of the
hole are small compared to the wavelength of the impressed field, then
Eiz can be evaluated at the center of the aperture and assumed constant
throughout the apérFure.
If the origin of the coordinate system is shifted to the center of

the z = 0 surface and a small circular hole is assumed centered at the

center of the z = d surface, the resulting approximations for the problem

considered here become
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Appropriate expressions can be written when m(n) is even and n(m) is odd.
Due to the algebraic form of the Bethe approximations, certain ones of the

above terms are zero;

a' =0 for even n
nm
B! =0 for even m
om
and Gnm =F =0 for m and n even. To proceed further, it is necessary to
nm

i
have an explicit expression for the impressed field, Eoz'

As nbted earlier Bethe's approximation considers only a single plate.
In this problem, there will be reflected waves contributing to the fields

in the aperture. A means for determining if this approximation is valid

in this problem would be to compare the size of the Ez field induced in
the cavity to the impressed field, E;z. If the induced field is small

compared to the impressed field, the approximation should be good.

Impressed Field

Obtaining the impressed field components is simplified somewhat by not
having to consider the aperture present. Two procedures for obtaining these
field components are proposed. The first is an experimental procedure and
the second a theoretical-numerical approach.

According to the foregoing formulation, a knowledge of the z-component
of the impressed electric field completely determines the field in the
interior of the cavity. Provided the cavity walls are good conductors

the impressed field is
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where P is the surface charge density on the outside wall of the cavity at

z = d. From the equation of continuity
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where Jx and Jy are the components of the surface current density on the
outer surface of the cavity at z = d. In general the current density is

a periodic function of position. Therefore
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and hence the interior fields are proportional to the surface current density

that would exist at the position of the aperture. Although this result is
obtained for rectangular structures, it is expected that this result holds
for an arbitrarily shaped closed shell with a small aperature. Indeed this
has been observed for cylindrical shields.
According to the foregoing
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expresses the impressed field in terms of surface current density, which
is easily determined by experimental methods. The first method proposed
for determining the impressed field is to experimentally determine J
after shorting the aperture and use the result in the foregoing equation

i
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for E
The second method proposed for determining Eiz is to solve Maxwell's

equations directly using finite-difference methods as suggested by K. S.

Yee (4). This procedure necessitates the use of a high-speed digital

computer. The authors plan for the near futurg to write a fortran program

to compute the Ezz field component at the surface of a rectangular structure

that is illuminated by a plane wave.
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