Interaction Notes
Note 42

15 November 1968

Electromagnetic Scattering From
Arbitrary Configuration of Wires

by

Clayhorne D. Taylor
Shiow-Meei Lin
H. Val McAdams

Mississippi State University
State College, Mississippi

ABSTRACT

A general formulation is presented for the treatment of electro-
magnetic scattering from an arbitrary configuration of thin wires.
To illustrate the usage of the formulation, it is applied in the
treatment of scattering from two perpendicular, intersecting straight
wires.



INTRODUCTION

The advent of high-speed digital computers has made possible the
theoretical study of electromagnetic scattering for an arbitrary con-
figuration of wires. If the dimensions of the wires are short in terms
of the incident wavelengths, the procedure presented by Richmond1 may
be used. However, the general case requires new techniques and it 1s
the purpose of this paper to present those techniques.

Coupled integral equations are derived for the currents induced
in the wires with arbitrary field excitation. The number of equations
is generally equal the number of wires. If the wires intersect, it is
found that additional boundary conditions must be employed, in particular,
a "Kirchhoff Circuit Law' condition and the continuitv of scalar potential.
With the boundary conditions and the reduction of the coupled integral

equations to a system of linear equations (following the procedure out-

S

lined by Aronson and Taylorz), the formulation is in suitable form for
programming a digital computer.

Knowing the induced current distribution it becomes a relatively
simple matter to compute the back scattered fieldsl. Hencé one may
then compute back scattering cross-sections of practically any configur-
ation of wires. Thls has immedlate application to radar return studies
for various types of radar chaff.

Also the presented formulation may be applied to the numerical
investigation of a number of complex antenna structures; for example, the

L-antenna, the T-antenna, the Turnstile antenna, and various antenna arrays.

To illustrate the usage of the presented formulation it is applied in the
treatment of electromagnetic scattering from two perpendicular, intersecting

straight wires. Extensive numerical data are obtained and discussed.
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ANALYSTIS

Derivation of System of Intepral Equations

4
According to the considerations of thin wire scattering theory 3 ’5.

the tangential component of the vector potential at the surface of the
n th wire in proximity to a system of N arbitrarily aoriented current

carrying wires is

N ~ ~
Asn(sn) = Z‘ j:ls&\(sl;1 . Sn)Im(Sx;:)Gm(sn’Sr;l) (1)
4T m= 1 4
m

where

G_(S_,S1) = exp [—jk r2(s_,5) + ai]/ Vries_,s0) + a?

Im(S;) is the total axial current at point S; on m th wire

~

S; is the unit vector tangential to the m th wire at point S;
L 1s the arc length at m th wire
m tn
r (S ,S;) is the linear distance as shown in Figure 1.
n

In the foregoing the harmonic time dependence, exp (jwt), is assumed but
suppressed. The usual scalar potential is
N
= ' t '
<I>n(Sn) iz Z dSm d i Im(Sm) Gm(Sn,Sm) (2)
4m k ds
m=1 "L m
m
At the surface of each wire the tangential component of the electric
field is set equal zero. That 1s, for the n th wire
E (s)+Eel(s)y=o0
sn n sn n
where Ei is the tangential component of the incident electric field and

Es is the tangential component of the scattered field. It is well known
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Figure 1: Two arbitrarily oriented wires




that
Esn(Sn) = —vsn ¢n(sn) - Jw Asn(sn) (4)
i = -
~E,, (80 = —%s— ¢n(Sn) Juw Asn(sn) (5)
n

The substitution of (1) and (2) into (5) yields a system of integro-
differential equations for the current distributions induced in the
wires by the incident (or impressed) eiectromagnetic fields. However
the system does not yileld unique solutions for the induced currents
without the application of appropriate boundary conditions.

Rather than working with integro-differential equations, it is

convenient to reduce the system to integral equations. This may be

accomplished by defining the scalar function.
2 S
ép (s ) = -jk ///’n'ds' ¢n(s') (6)
n 'n " n n
(-]

By using (6) in (5) ylelds
[d—z+k2]¢>(s)-k2[cp(s)-A (Sp) L
dSn n n n'n sn ‘°n ” Es“(s“)(7)
The formal solution of the foregoing differential equation is

$s)=c cosks +D Sinks
n n n n n n

S
n
+k/ dSr"[ (Sr';) - Asn(svn)] sin k(sn-s;)
(o]

S
n
-1k
dk [ 4sv Bl (5') sin k(S -S") (8)
w n sn n n n
()
Since @n(o) =0, C = 0. The first integral on the right hand side

of (8) may be combined with ¢n(sn) to yield the system of equations*

*Essentially all thg mathematical manipulations required to obtain
(9) are presented by Mei” in his treatment of the single wire antenna
problem.
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N
Z ds' 1 (s')TT(s ,S8') = C Cos k§ + D sin kS
n n n m n m m m m
n=1 n
S
-] gﬂ;’/'m dq; E:n (q;) sin k(Sm—qﬂ) (9)
o]

Sﬂl

; ') = "ye .A' - ' ] ' g, .Av at
where | [(s_,5%) = G(s_,s")s_.5' / as? [ﬂc(sm,sm)(sm.sn) (10)
o]

a 1] ~ A‘
+3=7  G(s',8')+ G(s',s") &__ (s'.s ):‘ Cos k (S5 -§")
n m N m h 3' p n m m

m
In deriving (9) it was required that the current vanish at the wire ends. Of course,
this boundary condition could not strictly be applied to wires without
free ends. The constants Cm and Dm must be determined from boundary

conditions.

Boundarv Conditions

If the system of N wires does not have intersecting wires then the

appra;riate boundary conditions are
1¢¢6)| =0 n=1, 2, —N
n n wire ends

In the juncture of wires two physical processes must obtain. Firstly
there should be no charge accumulation at the juncture. That is, the
total elecéric current into the juncture is equal the current out of the
junction; this may be recognized as a paraphrase of the Kirchhoff circuit
law. Secondly mutual points on the wires at the juncture must be at the
same potential. This is an enforcement of the continuity of scalar
potential.

Perhaps a cursory investigation of the scattering problem wouid not

reveal the necessity of additional boundary conditions when there are

intersecting wires. However, it 1s feasible to have a geometrical con-
figuration that allows exchange of charge between the wires at the juncture. .
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Obviously in this case, the current distribution on a given wire must be
discontinuous across the junction. This effectively adds an additional

unknown (the magnitude of the discontinuity) for each wire. But the

“implimentation of the foregoing boundary conditions will yield a sufficient

number of independent equations to obtain these additional unknowns.

The implimentation of the first boundary condition (no chcrge
buildup at junctions) is quite simple. Unfortunately the enforce-
ment of continuity of scalar potential is not quite as simple. According
to the assumption of electrically thin wires the current distributions
scalar potentials, and vector potentials are constant about the periphery
of the wire. Therefore the continuity of scalar potential is enforced
only at the axial points locating the junctiomns.

To illustrate the application of the boundary conditions -consider
that all N wires of a system of N wires intersect at one point that
this point is located by gn for the n th wire. The first boundary

condition (no charge buildup) yields

lim g:‘ [In(2n+6) - In(ln—é)] = 0 (1L

§ + o0 n=1

Since (2) yields

¢(S) ds’' I(S)—r G(S S) (12)
4Wk 2;;///

The enforcement of scalar potential yields

¢1(zl) = ¢ (L) n=2,3, ~——, N (13)

Because the coordinates on each wire are defined relative to an arbitrary

point, it is possible to choose coordinates such that Zn =0, n=1,2, --N,
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In this case (13) yields very simple results. From (6)

¢ ) =1 w o a @ 6) (14)
k2 ds_

and using the foregoing in (8) yields

S
n
®(Sq) = 3 Iﬂ_cl_ Dh cos ksn + jw /dsr'l[ n(sr'l) - Asn (S'n).]
o
S

n
—qt .4qe? i t -Q'
X cos k (Sn Sn) +-///;Sn Esn(s n) cos k (Sn Sn) (15)
o

Substituting (15) into (13) requiring Qn = 0 one obtains

D =0D n=2, 3, -—N (16)
1 n

Note that application of the boundary conditions at a junction of
wires yields N equations for N intersecting wires while N inter-
secting wires introduces N additional unknqwns. Therefore a unique
sélution is obtained.

Numerical Solution

The system of integral equations presented in (9) may be solved
by the so-called direct integration technique. For an excellent formal
discussion of this technique see Harrington4 and for a discussion of
the practical aspects see Aronson and Taylorz. Basically the direct
integration technique reduces the system of linear integral equations
to a system of linear algebralc equations that may be solved by use
of a high speed digital computer. The numerical results of an

application of the presented formulation have been obtained and will

be presented subsequently.
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Short-Wire Configurations

In his treatment of electromagnetic scattering from wire-grid objects,
Richmond1 was able to ignor the boundary conditions at intersections of
wires. The wire-grid objects were considered to be formed by segments of
wires short in length as compared to the wavelength of incident radiation.
Although Richmond's formulation is admittedly approximate (for example,
the boundary condition on the tangential electric field is mot fully
satisfied and a uniform current distribution is assumed for each wire
segment) his results exhibit good agreement with the experimental data
that is presented. But in general the neglection of boundary conditions
on the current distribution can not always be expected to lead to
satisfactory results, particularly since it does not insure a unique
solution. To illustrate the difficulty that may be encountered comnsider
that Richmond's technique is applied to a single straight wire. The
result would be a "direct integration" solution to Pocklington's integral
equation for the current distribution induced on the wire. However
Meis' shows that the "direct integration" solution to Pocklington's equation
yields a spurious result. But it must be pointed out that Richmond
restricted his formulation to short-wire segments that form a grid or a
loop (in which case there are no boundary conditions on the current
distribution) so that the current distribution on the wires is essentially
uniform. Within the stated limits Richmond's formulation yields good

results.



NUMERICAL RESULTS

To obtain numerical results, a simple configuration of wires is
selected for treatment. Only two straight wires which intersect per-
pendicularly are considered (see Figure 2). The horizontal wire is
oriented symmetrically abo'ut the vertical wire. For this configuration

(9) yields the following system of integral equations.

2 2
82 53
' ' ! ' ' ' =

9 dz Il(z ) Kl(z. z') + J, dx IZ(X ) Kz(x 'Z)

1 3

z
C coskz + D_sinkz ~-j 4mw S dz' E1 (z') sin k(z-2') 17)
1 1 —C— o 1z

2

-2

L
2 3
5; dz' Il(z') Kz(z',x) + S dx' Iz(x') Kl(x—x') =
1 3 x

i
C2coskx + Dzsinkx -j 4m g dx' E (x') sin k(x-x'") (18)
z J 2x
where

Kl(z—z') = exp [—jk\/(z—z')2 + a2 J\/(z-z')z + a? (19)

z
Kz(x',z) = S dz' g_' [\/x'z + z'2 + az] cos k(z-z') . (20)

x
o

Il(z) is the current distribution on the vertical wire and Iz(x) is the
current distribution on the horizontal wire. According to Figure 2, the
origin of the coordinate system appears at the intersection of the wires
so that (16) applies. Then \

D, =D ) (21)
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Two intersecting-perpendicular wires with the
incident electric field,

11



The other boundary condition needed is

HE L - L9 4 5O - 5,69 o

t
[#]

With (21) and (22) it should be possible to obtain unique solutions for
currents, Il(z) and Iz(x), induced in the wires by the incident field
i i
ts, E z d E .
components lz( ) an 2x(x)
For convenience the crossed wire configuration 1is considered to be
illuminated by a plane wave propagating normally to the plane of the

wires. In this case

i -
Elz(z) = Eo cos O
(23)

Ei (x) = E ;in o

2x o
where Eo is the magnitude of the electric field considered directed at
an angle o with the z axis. For the data that are presented subsequently
EO = 1 volt/meter.

The system of integral equations 1s solved using the aforementioned
numerical solution technique. A fortran program was written for the
IBM 360 Model 40 computer and the approximate running time of the program
for this '"mot exceedingly fast' computer is about 10 minutes.

Whenever the intersection of the wires is at their respective midpoints,
it is found that there is no coupling present, i.e. the currents induced in
the wires are the same as would be induced in the respective wires alone.
The effect of coupling between the wires is most clearly demonstrated in
figure 3. Here the real and imaginary parts of the current distribution
on the horizontal elements are shown. Since a = o the current induced on

the horizontal elements is solely due to the coupling and because of this
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Figure 3: Current distribution on the horizontal element
for 2 = 24n [(zl + 12)/3] - 10.0, o = 0°, k& = 1.38,

22 = l1/2, 13 = 21/2.
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the current distribution is antisymmetric. For the same parameters,
figure 4 shows the real and imaginary parts of the vertical current
distributions. It is seen that the field induced current on the verti-
cal element is about one order of magnitude greater than the coupling
induced current on the horizontal element. An interesting note on both
sets of curves is that the current distribution on the respective wires
are continuous across the Intersections. At least this 1is observed to
be the case to within the accuracy of the numerical results.

In figures 5, 6 and 7 the frequency dependence is shown for the
current at the center of the vertical element. Since there is no
coupling when 21 = 12, it is seen that the coupling slightly affects
the center currents.

A knowledge of the currents induced in the wires allows a ready
determination of the various scattering cross sections (for the defini-
tions see reference [4]). The bistatic cross section 1s shown in
figure 9 where the transmitting antenna transmitts a signal propagating
normally to the plane of wires and is linearly polarized with angle of
polarization a. The receiver dipole lies in the plane containing the
z axis and perpendicular to the xz plane. The angle B is the angle
between the axis of the received dipole and the z axis. The angle 5
is the angle between the positive z axis and the direction to the
receiver. Again the effects of the coupling of the wires are demon-
strated in figure 10 and 11 where the total cross section and the
. monostatic cross sections are plotted versus the electrical length

of the vertical element.
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Figure &4:
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Current distribution on the vertical element for
o= 2n[(; +122)/a] = 10,0, & = 0°, k& = 1.38,
22 = 21/2, &3 = 23/2
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Figure 5:
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Real component of the center current on the vertical

wire versus the electrical half-length,
= = = (0 =
Q= 2nf(s; + 2y)/a] = 10.0, a = 09, 23 = £;/2
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Imaginary component of the center current on the vertical wire
versus the electrical half-length. = 2&n [(21 + 22)/53 = 10.0,

= 0° =
a = 0%, 23 21/2
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Figure 7: Magnitude of the center on the vertical wire versus
the electrical half-length. & = 2¢n[(2; + 22)/2]-
10.0, a = 0°, 23 - 21/2
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Figure 8: Magnitude of the center current on the vertical wire versus
the electrical half-length. £ = 2&n [(2, + £,)/a] = 10.0,

o] =
o= 45%, R, = £9/2
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Figure 9: Bistatic cross section versus polar angle to receiver.
Q=2 C(ll + 92)/31 = 10.0, 93 = &/2, a = 450
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Figure 10:
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a = 45 :
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Figure 11: Monostatic cross section versus electric half-
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CONCLUSION

A very general formulation is presented which may be applied in
principle to the treatment of scattering from any configuration of
wires. The application is only limited by the capability of the
available high-speed digital computer. Basically the formulation
provides a system of coupled linear integral equations to be solved
for the induced current distribution subject to certain boundary
conditions. The system of integral equations may be solved by the
"direct integration" technique that reduced the system to linear

algebratc equations.
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