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ABSTRACT

In this note the formulation of the two-dimensional scattering
problem is presented. The scattered objects are a discontinuous-
radius cylinder, a cone, and a sphere. To determine the scattered
fields, Maxwell's equations are solved directly by the use of a

finite difference technique. Theoretical results are presented
and discussed.



INTRODUCT ION

Recently it was shown that finite lifference techniques may be
used to solve Maxwell's equations directly for an electromagnetic pulse
propagation and scattering in time-varying, inhomogeneous media (1).

By extending those techniques, it is shown that two-dimensional
scattering from arbitrarily curved surfaces also may be treated. The
finite difference scheme requires the incident fields to be continuous
functions of position and to be two-~dimensional. Otherwise, there are
no restrictions on the incident pulse. This study has application to
radar pulse propagation and scattering in the vicinity of fireballs
from nuclear explosions and the wakes of high speed re-entry vehicles,
To illustrate the techniques the incident pulse is considered to be
propagating in a cylinderical waveguide; the scatterer is considered to
be located on the axis of the waveguide, and the axis of symmetry of the
scatterer is coincident with the axis of tHe waveguide. The scattering
objects considered are a discontinuous-radius cylinder, a cone and a

sphere,



1 System of Partial Differential Eguationms

Consider an isotropic medium where the relations

3(;,0 = uoﬁ(—;,t) (1.1)
B(r.t) = ¢ E(T,¢t) (1.2)
J(F,t) = o(%,t) E(r,t) (1.3)

are satisfied. (The notation is consistent with Jones' text (2).)

From Maxwell's equations we have

curl B(z,0) = JE,0) + 2= B(E,0) (1.4)
-+ 3 -
curl E(¥,t) = - Yy B(r,0) (1.5)
I
Div D(r,t) = p (1.6)
Div B(Z,t) = 0 (1.7)
Equations (1.1) . - (1.5) are sufficient to determine the

electromagnetic field. If these equations are expanded in cylindri-
cal coordinates with aximuthal symmetry they produce the three

partial differential equations shown below

) )
e(z,r,t) 3T Er(z,r,t) = -7 H¢(z,r,t) - oe(z,r,t) Er(z,r,t) (1.8)
: ) 2k =12 M (z,r,0) - 0 (z,r,0) E y
e(z,r,t T z(z,r,t) =I5 T o z,r,t) - 0 (2,r,t z(z,r,t (1.9)
u E—-H (z,r,t) = 9 E_(z,r,t) —-3— E (z,r,t) (1.10)
odt ¢ 7 Jr Tz dz T 7’7 )

where r, ¢, and z are the usual cylindrical coordinates and

o (z,r,t) = 0(z,r,t) + %E- e(z,r,t) (1.11)
e

Hence equations (1.8) - (1.10) 1is the system of equations

which must be solved to obtain the electromagnetic fields.



2  Corresponding Finite Difference Equations

The system of partial differential equations obtained in Sec. 1
yields to a solution by finite difference techniques. The method
used to set up the difference equations is one given by Lax (3).
This method automatically '"centers' the difference formulas and
hence reduces truncation error. Applying this method to the system

of partial differential equations gives the resulting equations

N+1 N 1 AT N-+1s N+1s
= —_—— 1 - -
Hy (1,3) = Hy(I,D) + 3 57 [E (I,J+%) - E (I,J-%
N+is N+1s
_i4t L - !
n Az E. (I+%,J) Er (1-%,J) (2.1)
N+3/2 N+ A N1 *
E (I,3¥) =E (L3¢ +nigp B (1,I+)/J
z
A N+1 N+1
+£Slly (1,0+1-8 (I,D)
Ar ¢ )
N+1 N+1 N+1
-At 0 (I,J+%) E, (I,J+}%) /er (1,J+%) (2.2)
e
N+3/2 N+ Ao L N+1 T
+ = E I+s,J) - H— -
Er (I+%,7) r (I+%,J) iz H¢ (I+1,3) H¢ (1,J)
N1 N+1 N+1
+ AT 0 (I+ks,Jd) Er (I+%,J{)’/€r (I+5,7) (2.3)
e
where the following notation is used
T=ct, c =_1 is the speed of light in free space

T
n = /—Q = 1207 ohms
>
o)
Hi(z,r,t) =H (I1,J)
¢ z = IAz ¢
r = (J-%)Ar
t = NAT/c




and €. is the relative rermittivity, i.e.,

e(z,r,t) = eoer(z,r,t)
which may be a function of both time and position.

A close look at the arguments for any given field component
reveals that indices are not necessarily consistent. These inconsisten-
cies must be removed before the solution can be effected. Removal may
be accomplished in the following manner: Notice that the magnetic
field component H, is evaluated at r = (J - %)Ar in (2.1) and at
r = JAr in (2.2) . Linear interpolation may be used to make the
equations consistent, e.g.

N+1 N+1 N+1
H I,J+%) = % |H (I,J+1) + H
o ( 5) 2 B, ( ) "

A close examination of the system will reveal two more inconsistencies

(1,J) .

which may be treated in the same manner, Upon substitution of the
index changes into the system (2.1) - (2.3), the resulting set of
equations may be programmed to compute the field components in an

iterative manner at suitable time intervals (4).

3 Srtability and Convergence

The system of partial differential equations to be solved is a
hyperbolic system. For the case where the constitutive properties of
the medium are constant, the hyperbeolic system has been thoroughly
analyzed (3,4,5,6). The resulting difference equations for the
hyperbolic system are known to be stable and converge toward the

solution provided a restriction is placed on the ratio of
grid increments. 1In general this restrictiom is that



At < 1

r (3.1)

yn

where Ar and Az are assumed to be equal and n is the number of space

l>|l>
N |~

dimensions. For the system given in equations (1.8) - (1.10) ,
n=2. It has been found that the best (in terms of economy and
accuracy) results are obtained when the time increment to space
increment ratio is as large as possible and satisfies the necessary
condition given by (3.1) . The numerical results presented in the

latter part of this chapter were obtained using a grid ratio of 0.5,

e.g.
AT - AT _
Az~ Ar 0.5

If the variations in the constitutive properties of the medium
are small compared to the variations in the field components, then
it may be assumed that the stability and convergence criterion would
hold for inhomogeneous and time varying media. It is well known
that as the time and space increments approach zero, the solution of
the difference equations converges to the exact solution of the

partial differential equations.

4 Initial and Boundary Conditions

It is necessary to define the difference equations over a finite
region of space. This implies a statement of the appropriate initial
and boundary conditions. From Stratton's text {7) a general

statement of these necessary conditions may be found:




An electromagnetic field is uniquely determined

within a bounded region V at all times t>0 by the

initial values of electric and magnetic vectors

throughout V, and the values of the tangential

component of the electric vector (or the magnetic

vector) over the boundaries for t > 0.
For convenience, the region under investigation could be considered
to be bounded by a perfect conductor so that the appropriate boundary
conditions are that the tangential component of the electric field
and the normal component of the magnetic field both vanish (8)..
However instead of posing these conditions, the components on the
boundary may be approximated bv linear extrapolation. This is the
technique which was used to obtain the numerical results given in the
next section.

It is necessary to examine the difference equations to determine
what boundary conditions are needed over the region. If equation

(2.1) « is satisfied for I = 1,K and J = 1,L; then (2.2) is
satisfied only for I = 1,K and J = 1, L-1, and (2.3) for I = 1,
K-1 and J = 1,L. Hence the components which must he determined by
N+3/2 N#3/2 N+3/°

extrapolation or boundary conditions are:E,(I,%),E (I,K+}%),E (3,7) and
N+3/2

E (L+3}5,J). The first two may be obtained by extrapolation, i.e.
r
N+3/2 N+3/2 N+3/2
E (1,%) = 2E (1,3/2) - E (1,5/2)
z z z
N+3/2 N+3/2 N+3/2
EZ (I,K+%) = 2Ez (I,k-%) - Ez (I,K-3/2)

The other two components can be determined by requiring that they equal

zero by placing perfectly conducting plates at z = é% and a = (L+%)Az,

The configurations of a cylindrical scatterer and waveguide are shown



in Figure 1. The difference equations are used to determine pulse
propagation and scattering from inside a cylindrical waveguide for
various shaped scatterers. The electromagnetic boundary conditions
at the sufface of the scatterer determine certain field
components. These components are substituted into the difference
equations thereby accounting for the presence of the scatterer. The
particular scatterers under consideration are a discontinuous radius
cylinder, a cone, and a sphere. The orientations of the respective
scatterers in the cylindrical waveguide are shown in Figures 2,3,4.
Notice that the surfaces of the cone and the sphere are not coinci-
dent with the surfaces formed by the grid points. Hence the boundary
conditions for these cases must be approximated in some manner. The
technique used in this study is to approximate the boundaries with a
"stairstep' type of surface. Then the surfaces of the stairsteps are
coincident with the grid surface. Figures 5 and 6 show the longitudi-
nal cross sections of the "approximate' scatterers. The value of
certain electromagnetic field components are then known on the
approximate gurfaces. These values are then imposed on the basic
difference equations to account for the shape of the particular
scatterer.

Along with the appropriate boundary conditions, it is necessary
that the initial components of the fields be known. In this study,
the initial components are considered to be those of a pulse

propagating in a cylindrical waveguide. These initial fields must




/

rigure 1 Cylindrical Wave guide containing a solid
cylindrical scatterer on axis of the waveguide.
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rigure 2 Cylindrical waveguide containing a solid
discontinuous radius cylindrical scatterer
on axis of the waveguide.
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Figure 3

Cylindrical waveguide containing a solid conical
scatterer on the axis of the wavegquide.
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Figure 4 Cylindrical waveguide containing a solid spherical
scatterer on the axis of the waveguide.
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rigure 5 | opgitudinal cross-section of cylindrical
waveguide and conical scatterer showing
the "stairstep” approximation to the surface.

Figure 6 | gngitudinal cross- section of cylindrical
waveguide and spherical scatterer showing
the "stairstep’ approximation to the surface.
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satisfy certain conditions or restrictions: (1) they must satisfy
Maxwell's equations, (2) they must be continuous functions in order
for the difference formulas to apply, and (3) they must be axially
or rotationally symmetric. For convenience, the initial components
of the electromagnetic pulse will be considered to be those of the
TM  mode. This is a natural choice since the components of this

01
mode have azimuthal symmetry. The field components of the TMO1

mode as given by (7) are

-~ -jBz

E_(z,7,0) = § %Eo(w) 3 (k.r) e (4.1)
~ ¢ -jBz

Ez(z,r,w) =E (W) J (kr) e (4.2)

) o ¢

~ k "jBZ

H (z,r,w) = j E (W Jl(kcr) e (4.3)
¢ nlkc °

where Eo(w) is the complex amplitude of the mode at the radian

frequency w and

8= Jk% -k 2
c
2 2
k= =
WHE n uo/€1
kC = 2.405/R, where R is the radius of the waveguide

The waveguide is assumed to contain a static homogeneous medium with

properties uo,el, and ¢ = 0, although the difference equations are
1

valid for variable constitutive properties provided their initial

values are those given above.
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The time histories of the field components are expressed as
Fourier superpositions of the respective components given by (4.1) -

(4.3) . By taking the appropriate derivatives, it can be shown

that
Jl(kcr) 2
Er(z,r,t) = —— Ez(z,r,t) (4.4)
: kcJO(kCr) 3z
J.(k_r)
H¢(z,r,t) -t 2 E_(z,r,t) (4.5)
n k cJ (k. r) 9t
lc o €
where
Jo(kcr) g0 -j(Bz-wt)
E (z,r,t) = dw E_(w) e (4.6)
I——:'_- =00
VLﬂ

If 2 is chosen sufficiently large, such that B =~ k for most of

the frequency content of the pulse, then equation (4.6) yields
Ez(z,r,t) = Jo(kcr) F(zfct) (4.7)

where F(ztct) is determined by the choice of Eo(w) or vice versa.

Because of the restrictions imposed on the initial fields by the

finite difference equations,F(zict) and F‘(ztct) must be continuous

for all ztct, and (4.7) requires that the Fourier transform

of F(ztct) must have negligible frequency content for wfkcc. In

+ .
this study the choice of F(z-ct) subject to the foregoing restrictions

+ sinz[A(z b ct)) O S Az I ct) : i
F(z - ct) = (4.8)

_O elsewhere ‘

is

5 Numerical Results

The numerical results presented here were obtained using an IBM
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360 Model 40 computer which carries only 8 significant figures in
digital calculations. The radius of the waveguide considered is
2405 meters; each spatial increment, Az = Ar, is 0.025 meters; and
the actual time increment, At, is 4,166 x 107 sec. The incident
electromagnetic pulse field components are those given by (4.4) -
(4.8) where
A = m(1802) T

and the pulse width at half-maximum is 3/4 nanosecond.

Figure 7 shows the propagation of the axial component of the
electric field evaluated at J = 40, The pulse 1s shown at three
distinct times; initially, after it has propagated for 25 time

increments, and after it has propagated for 50 time increments.

Notice that there is a slight disturbance at the tall of the pulse
for N = 50. This is caused by "round—éff" error but has little
effect on the results obtained here.

The first scatterer considered is the discontinuous radius
cylinder. The total length of the cylinder is 0,350 meters. The
discontinuity occurs at the middle of the cylinder with the small
radius being 0.050 meters and the large radius being 0.175 meters.
In Figure 8, observe the buildup of the current distribution on
the surface of the cylinder shown by the solid curve. The two
broken curves give a comparison with distributions obtained from
continuous cylinders with the same respective radii. These data were

taken at the time when the current magnitude was a maximum on the

16
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Figure 7 The propagation of the axial component of the electric

-1
field evaluated at J=40. Az=0.025m, At=4166x10 sec,
R=2405m.



8T

03¢t
0.2t — discontinuous
cylinder
% —-=-cylinder with
E large radi
S Ot rge radius
% - —— cylinder with
g small radius
0
= 0.0 ;
£ 2|0 50
\ ,I
\
\ // I
AN
-0.1 r -

Figure 8 The current distribution induced on the cylindrical
scatterer. The peak of the incident pulse at N=33
is at I=36. The region of the scatterer is 28<I<42.




discontinuous-radius cylinder. These same current distributions are
shown at a later time in Figure 9, A change in phase is noted as
the current is reflected from the end faces of the cylinder.

The second scatterer considered is the cone. Its length is
0.350 meters and its radius at the base 0.175 meters. As indicated
before a "stairstep' appreximation of the conical surface is used.
The current distribution induced on the conical surface is shown
in Figure 10. Notice the slight irregularity of the curve. It is
expected that a more accurate approximation to the scatterer would
produce smoother curves such as those in Figures 8 and 9 where
the scattering surfaces ai~ exactly coincident with grid points.

The last numerical d=zra are presented for the sphere with
radius of 0.175 meters. again an approximate surface is used.

The current distribution ziong the surface of the sphere is
shown in Figure 11. The slight irregularity in the curve is due
to the approximate determination of the boundary conditions of

the sphere.
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Figure 9 - The current distribution induced on the cylindrical
scatterer. The peak of the incident pulse at N=50

is at I= 45. The reglon of the scatterer is 28 <1542,
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Figure 10 The current distribution induced on the conical scatterer.

The peak of the Incident pulse at N=33 is at I =40,
The region of the scatterer is 28<I< 42.
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Figure 11 The current distribution induced on the spherical scatterer.
The peak of the incident pulse at N=25 is at T=35, The

region of the scatterer is 28 <1 < 42.




LIST OF REFERENCES

1. C. D. Taylor, D. H. Lam and T. H. Shumpert, "Two-Dimensional
Scattering in Time Varying, Inhomogeneous Media," Interaction
Note 41, November, 1968.

2. D. S. Jones, The Theory of Electromagnetism. New York:
Pergamon, 1964, p. 3, 5, 10.

3. P. D. Lax, "Differential Equations, Difference Equationms
and Matrix Theory," Communs. Pure Appl. Math. Vol. 11, pp. 175-194,
November 1958.

4. P. Fox, "The Solution of Hyperbolic Partial Differential
Equations by Difference Methods,'" Mathematical Methods for
Digital Computers, Edited by A. Ralston and H. S. Wilf, New York:
John Wiley, 1964, pp. 180-188.

5. G. E. Forsythe and W. R. Wason, Finite-Difference Methods
for Partial Differential Equations. New York: John Wiley,
1960, Section 26.

6. P. D. Lax and R. D. Richtmyer, '"Survey of the Stability of
Linear Finite Difference Equations,'" Communs. Pure Appl.
Math., Vol. 9, pp. 267-293, September 1956.

7. J. A. Stratton, 'Uniqueness of Solution," Electromagnetic
Theory, p. 487 (New York: McGraw-Hill, 1941).

8. K. S. Yee, "Numerical Solution of Initial Boundary Value
Problems Involving Maxwell's Equations in Isotropic Media,"
IEEE Trans, Ant. Prop., AP-14, No. 3, pp 302-307, May 1966.

23



