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ABSTRACT

The diffraction of plane waves by small apertures in a perfectly
conducting plane screen is studied theoretically. A quasi-static
solution technique is used for this problem. It is found that the
far field may be expressed in terms of radiating electric and mag-
netic dipoles in the aperture. The transmission coefficient of the
aperture is found to be simply related to ka, where a is the radius
of aperture. Investigations are restricted to apertures which are of
simple geometric shapes and which may be described in suitable co-
ordinate systems, e.g., elliptical apertures. However, the dif-
fraction screen may be finite.

It is shown that the electromagnetic field in a cavity when
excited through a small hole can be represented in terms of the
normal modes of the cavity and the dipole moments of the aperture.
The associated Green's function and the expansion coefficlents are
written in terms of the magnetic and electric dipole moments which
are associated with the fictitious magnetic charge and current
distributions in the aperture used to satigfy the boundary conditions.
Hence the field penetration through small apertures into cavities may
be readily obtained.
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CHAPTER 1
INTRODUCTION

The problem of diffraction by an aperture in an infinite plane
screen has received much attention within the last two decades. How-
ever, exact solutions are restricted to a few cases where the aperture
is of simple geometric shape and may be described by a coordinate
system in which the wave equation is separable. For example, the
exact, but open-form, solution is now available for the diffraction
of a linearly polarized electromagnetic plane wave by a circular disk
or the equivalent circular hole (using Babinet's principlel) in a
perfectly conducting screen. The most utilized theoretical methods
for the more simple approximate treatments of this problem are the
variational, the integral equation and the quasi-static approaches.

This thesis presents, first, an investigation of the quasi-
static diffraction by circular and elliptical apertures using an
approach similar to that of Bethe?. The procedure is based on solving
Laplace's equation expressed in terms of oblate spheroidal and ellip-
soidal coordinates. The diffracted field at large distances from the
aperture is expressed in terms of the magnetic dipole moment and the

electric dipole moment of equivalent aperture source distributions.

41E. T. Copson, "An Integral-equation Method of Solving Plane
Diffraction Problems,'" Proc. Roy. Soc. (London), Vol. A186, pp. 100-
118, 1946; H. G. Booker, "Slot Aerials and Their Relationships to
Complementary Wire Aerials," J. Inst. Elec. Engr. (London) Vo. 93,
Part IIIA, pp. 620-626, 1946.

4. A. Bethe, '"Theory of Diffraction by Small Holes," Phys. Rev.,
Vol. 66, pp. 163-182, October 1944.



Second, the field distribution inside a cavity excited through a small
aperture is obtained by using the aforementioned quasi-static dif-
fraction results.

A cavity resonator usually takes the place of a tuned or resonant
circuit in a microwave network. Since the resonant properties of the
cavity are different for different modes, it is necessary in the study
of the coupling of the cavity to another circuit to consider the exci-
tation of a desired mode inside the cavity. Then the exciting source
for the cavity can be properly designed. For Iinstance, in order to
excite a cavity for a particular mode by a loop, the plane of the loop
is placed normal to the magnetic lines for the corresponding mode.
Similarly, to excite in a cavity a desired mode with a probe or a
short antenna, the axis of the antenna is placed parallel to the
electric lines for the corresponding mode. The excitation of a cavity
by a small aperture is also done in a similar manner requiring that
the electric or magnetic lines 1inside the cavity for the desired mode
coincide with the corresponding field lines of the exciting source at
the aperture3. Thus, once the field distribution inside the cavitv
for a desired mode is known, the orientation and shape of the exciting
aperture can be determined for an optimum excitation. Also, the study
of field penetration through small apertures into cavities has appli-
cation in the study of the degradation of electromagnetic shields
resulting from the presence of small holes in the shield surface.

A generalized theory of cavities is developed for an arbitrary

shaped cavity. 1In practice, however, simple geometries, such as

3C. G. Montgomery, Technique of Microwave Measurements, Mc ra -
Hill, Inec., 1947, p. 859. :




rectangular, cylinders or spheres, are commonly used. The diffracted
field of a small aperture in simply connected cavities may be expanded
in terms of the normal modes of the cavity. It is shown that the
expansion coefficients for the lower order modes may be expressed in
terms of an electric dipole moment and a magnetic dipole moment of the
fictitious magnetic charge and current distributions in the aperture.
Higher order multipole moments generally may be neglected for small

apertures (i. e., small in terms of overall cavity dimensions).



CHAPTER I1
GENERAL CONSIDERATIONS OF APERTURE DIFFRACTION

The theoretical analysis of high frequency or optical diffraction
by apertures is usually based on Kirchhoff's mathematical formulation
of Huygens' principlel. This approach considers that the aperture
field 1is essentially the incident field, and the normal derivative of
the scalar potential is assumed to vanish on the shadow face of the
screen. The incident wave is conslidered a scalar wave, 1. e., the
electromagnetic field components are derivable from a scalar potential
function so that polarization is ignored. However, the specific
polarization effects cannot be ignored in electromagnetic wave problems
when the wavelength 1s of the same order of magnitude as the aperture.
The Kirchhoff formulation suitable for an electromagnetic field
(harmonic time dependence) is given by Stratton and Chu?, elaborated
also by Kottle3. One way to account for polarization is by using a
one-component Hertzlian vector as the scalar wave function. On the
other hand, if the scalar Kirchhoff formula is applied to each of the
six rectangular components of the electric and magnetic vectors, then

the six wave functions so obtained do not satisfy Maxwell's equation.

'B. B. Baker and E. T. Copson, The Mathematical Theory of Huygens'
Principle, Claredon Press, Oxford, 1950, 2nd ed., Chap. II.

2J. A. Stratton and L. J. Chu, "Diffraction Theory of Electro-
magnetic Waves,'" Phys. Rev., Vol. 56, pp. 99-107, 1939.

3F. Kottler, "Elektromagnetische Theorie der Beugung an Schwarzen
Schirmen,"” Ann. Physik, Series 4, Vol. 71, pp. 457-508, 1923,




This difficulty can be obviated by introducing certain contour inte-
grals. These integrals represent the effect of fictitious magnetic
and electric line charges which are introduced along the rim of the
aperture to ensure the fulfillment of the divergence conditions,
v E =y . ﬁ = 0. A defect in the Kirchhoff procedure is revealed
by its failure to satisfy the assumed boundary values at the con-
ducting screen. On the other hand, the transmitted field so deter-
mined from the incident field in the aperture does not vanish on the
screen. Therefore, the results are valid only when the aperture
dimension is large compared to the wave-length of the electromagnetic
field. This technique is valid because the field on the shadow face
of the screen generally will be relatively small.
Another approximate solution is due to Lord Rayleigh“ who pro-
posed a method of analysis of the long wavelength diffraction problem.
'tThe basic idea 1s that in the vicinity of the aperture the electro-
magnetic field can be calculated as if the wavelength were infinite
(the conditions are essentially static). Then the problem is solved
by the standard techniques of potential theory. Rayleigh treated
the circular aperture with harmonic plane waves incident normally.
After identifying the local field with a Hertzian oscillator, the
known radiation characteristics of a dipole are used to find the dif-
fracted field at large distances (as compared with aperture dimensions)

from the aperture. With the foregoing approach, the tangential

“Lord Rayleigh, '"On the Incidence of Aerial and Electric Waves on
Small Obstacles in the Form of Ellipsoids or Elliptic Cylinders, on
the Passage of Electric Waves Through a Circular Aperture in a Con-
ducting Screen," Phil. Mag., Vol. 44, p. 28, 1897,



electric field at the screen vanishes in this solution, as is required
by the boundary conditions on a perfectly conducting surface. However,
the evaluated transmission cross section (energy passing through the
aperture per second/energy transported per unit area of the incident
wave per second) represents the first term of an expansion in asrend-
ing powers of the ratio ka (circumference of aperture/wavelength) and,
therefore, is accurate only for long wavelengths.

Bethe® reconsiders Rayleigh's approach and extends the theory to
apply to an arbitrary spatial incident field. The problem is carried
through with great skill. A new feature introduced is that the dif-
fracted field behind the circular aperture is derived from fictitious
magnetic aurrents and charges in the aperture. Then the fictitious

distributions are obtained satisfving all boundary conditions. Bethe

also points out that the Kirchhoff type of solution does not satisfy
the conditions aforementioned. However, Bethe's derivation leads to
an incorrect approximation for the field in the vicinity of the aper-
ture although it supplies the correct field at large distances from
the aperture. Included in his paper are some interesting predictions
on the excitation of cavities coupled by a small hole. More recent
investigations have corroborated Bethe's application of his theory to

the coupling of cavities®, The error in Bethe's paper is pointed out

H. A. Bethe, 'Theory of Diffraction by Small Holes," Phys. Rev.,
Vol. 66, pp. 163-182, October 1944,

6C. G. Montgomery, Technique of Microwave Measurements, Vol. 11
of MIT Radiation Laboratory Series, McGraw-Hill Book Co., New York,
1947, Chap. 14; N. Marcuvitz, Waveguide Handbook, Vol. 10 of the MIT
Radiation Laboratory Series, McGraw-Hill Book Co., New York, 1951,

Chap. 5.




in Bourgin's7 criticism, which suggests that when the screen is not
closed, it is necessary to add line singularities over the rim of the
aperture. This is important for the second radiation condition and
affects only the near fiéld of the aperture.

Also, Bouwkamp8 gives a detailed theoretical analysis of the
diffraction of an electromagnetic wave by a circular hole small com-
pared with wavelength. He determines the fictitious magnetic current
and charge from a system of integro-differential equations that he

derived. It is shown that Bethe's zeroth order solution for the

-
magnetic current Kp 18 correct but the first order solution EH, where

>
Ky =

0]~

differs from the correct one which Bouwkamp expresses as K! ,

0j=

- - - - -
Kl = Zhpla? - 0912 (20K Bl + A x VG - Eo)} -
+p e {dk Hg x n - V(n * Eg)} 2 = o)1z ] .
> ->
Here E, and H, are the incident electric and magnetic fields evalu-

ated at the center of the aperture. The difference is due to Bethe's

->
Ky being correct except for the omission of a solenoidal vector?,

’D. G. Bourgin, "Bethe, H. A., Theory of Diffraction by Small
Holes," Math. Rev., Vol. 6, P 165, 1945.

8C. J. Bouwkamp, "Diffraction Theory", Philips Res. Rep., No. 5,
pp. 401-442, December 1950.

9Evidently D. S. Jackson was not aware of this result when writing
Section 9 of Chap. 9 in his text, Classical Electrodynamics, John
Wiley & Sons, Inc., New York,




The explanation proferred by Meixner!® is that the total field must
have a singularity on the rim of the hole; that 1s, the electric field
becomes infinite there and normal to the rim. Bethe's solution has

no such singularity. However, Bouwkamp proves that Bethe's quasi-
static approach does obtain correctly the dipole moments of the
fictitious aperture distributions.

A higher-order approximation of the diffraction by a small circu-
lar disk is evaluated by Eggimannll. His approach is essentially an
extension of the procedure described by Bouwkamp. Eggimann considers
a solution for the vector potential which is expressed in a power-
series in ka for an arbitrary incident field. The surface current
density is calculated in terms of the electromagnetic field and its
derivatives at the center of the disk. The induced electric and
magnetic dipole moments and the distant fields are obtained directly.

The procedure for obtaining a rigorous, but open form, solution
to the foregoing problem is first obtained by Meixner and Andre-
jewskil?, The diffracted field is derived from the currents induced

on a circular disk by an incident wave. The authors express the dif-

fracted field in terms of the Hertzian vector potential, which is

107, Meixner, "Die Kantenbedingung in der Theorie der Beugung
elektromagnetischer Welien an volldommen leitenden ebenen Schirmen',

Ann. Physik, Vel. 6, pp. 1-9, 1949.

11y, H. Eggimann, "Higher-order Evaluation of Electromagnetic
Diffraction by Circular Disks', IRE Trans. on Microwave Theory and
Techniques, Vol. MIT-9, pp. 408-418, September 1961.

125, Meixner and W. Andrejewski, "Strange Theorie der Beugung
ebener Elektromagnetischer Wellen an der vollkommen leitenden
Kreisscheibe und an der kreisformigen Offhung im vollkommen
lettenden ebener Schirm,”" Ann. Physik, Vol. 7, pp. 157-168, 1950.




everywhere directed parallel to the plane of the disk. The two
rectangular components of the vector potential are expanded in terms
of the oblate spheroidal wave functions. The coefficients in these
axpansions are derived from the boundary conditions on the disk and
its rim in a unique way. An approximate expression 1s then obtained
for the scattering cross section, or echo area, of a small disk for
the case of normal incidence. The complementary problem for the
diffraction of a plane wave by a circular hole is solved by applica-
tion of Babinet's principle.

This chapter considers a quasi-static theory of the electro-
magnetic wave diffraction by small apertures. This formulation is
based on the work originally developed by Bethel!3. This quasi-static
procedure is presented because it 1s straightforward and applies for a
finite screen as well as an infinite screen. The exact theories do
not possess either of these features. The basic technique is that the
fields in the neighborhood of a small aperture may be represented in
the quasi-static approximation by the fields Eo and ﬁo impressed on
the aperture before the aperture is cut, superimposed with the fields
of electric and magnetic dipoles located at the center of the
aperture. The dipole moments are proportional to Eo and ﬁo respec-
tively and are functions of the shape and size of the aperture. Cer-
tain conditions, the so-called Bethe's conditions, will be presented
regarding the symmetry and antisymmetry of the diffracted fields which
are formulated to insure the continuity of the total field through

the aperture.

134, a. Bethe, op. cit.



2.1 Fields and Coupling on Small Apertures

If harmonic electromagnetic waves impinge from the 2z < 0 space
on an infinitesimally thin, perfectly conducting plane containing an
aperture of any shape, the total field about the plate can be des-
cribed as the sum of the incident, reflected, and perturbation fields.

That is,
El = El +Er +EP | HT = #l + 5T +EP . (2.1)

> -
Considering that Eo and Ho are fields on the lower surface of the
screen and are uniform over the aperture before the aperture is cut,

then

. ->i -»l_ - N —-»i >
Eq = n - (E*+EF) , |4 fn x (" + HD)| , (2.2)

-

where n 1is unit vector normal to the screen. After the aperture is

cut, the total fields are denoted by

+’T‘ —>i -+ > —»T —)1 - ->
L= r = r
Ey = E] +EJ+EP , Hy = H +H +H

(2.3)
-)T - -)p ,T _ —rp
E; = E; , Hy = H)

The subscripts "1'" and "2" describe the z < 0 space and z - 0 space.
All components of the electromagnetic field must be continuous across
the aperture provided that the media on both sides of the aperture
are the same. Therefore the fields satisfy the following boundary

conditions:

10




On the hole surface,

~ > - > -~ FS
n x EY = nx Eg . E. +n E? = n Eg

0 s
(2.4)
ﬁg + 10 x ﬁg =nx ﬁz s, 0 ° ﬁ? = na- ﬁg ;
On the screen surface,
AxE] =AaxE;=~0 , a+H =a-H = 0 . (2.5

-~

The tangential component X EI , of the electric field, as well as

~n >
the normal component n * H , of the magnetic field are symmetrical
~ > ~ -
with regard to the screen; other components n * E and |n x H| are

proved to be antisymmetricall*. Thus Bethe's conditions are obtained

for the field components:

~ >, _ 1 > ~ ->. _ 1>
o ° EI; = - —2" EO N nx H? = - 5 Ho ’
(2.6)
~ > - ~ >
.EP - 1 po_ 1
n E2 5 E0 R nx H2 5 Hp

As a result of above relations, we may conclude that the tangential
electric field and the normal magnetic field are not equal to zero on
the aperture and hence, 1f the aperture is closed by a magnetic wall,

a magnetic current and a magnetic charge distribution must be given

> > -+
x (E} + ET) = k*

= B

(2.7)
~ - >
ac+ B +HY) = *

Yy, E. J. Neugenbauer, "Diffraction of Electromagnetic Waves
Caused by Apertures in Absorbing Plane Screen,” IRE Trans. on
Antennas and Propagation, Vol. AP-4, pp. 115-119, April 1956.

11
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T4

since = (0 on the magnetic wall.

->
The dipole moments associated with the aperture current K*

and
charge n* are P and ﬁ » respectively. One half the required
discontinuity across the source is provided by Eg, ﬁg ; the

other half by E? , ﬁe . The effective dipole moments for radiation
into z > O space will be ;/2 and §/2. The total field in the region
z < 0 is equivalent to the sum of the incident field Eo' ﬁo and

the field radiated by dipoles with moments ;/2, §/2 » Since the

perturbation field of - ;/2 and - ﬁ/z cancels one-~half the field

>
radiated by P and M.

12




CHAPTER III

ELECTROMAGNETIC WAVES DIFFRACTED BY SMALL APERTURES IN

A PERFECTLY CONDUCTING PLANE--A QUASI-STATIC APPROACH

A general method! of solving the potential problem for a conduct-
ing disc or the complement problem of a conducting sheet with a hole
is presented. This method requires the use of oblate spheroidal co-
ordinates. There are two particular advantages in using oblate
spheroidal coordinates. First, using such coordinates allows the
separation of variables in solving Laplace's equation. Second, from
the geometrical considerations one can visualize the field and equipo-
tential surfaces, which must coincide with the surfaces of constant
coordinates. In addition, the diffraction problem by an elliptic
aperture 1s examined in the latter part of the chapter. However,
attention will be confined to small apertures in a large, perfect,

conducting plane.

3.1 Oblate Spheroidal Coordinates

Oblate spheroidal coordinates? are a degenerate case of the more

general ellipsoidal doordinates that occurs when it is required that

1y, R. Smythe, Static and Dynamic Electricity, McGraw-Hill Book
Company, Inc., 1950, 2nd., p. 191.

27. M. MacRobert, Spherical Harmonics, Pergamon Press, 1967,
3 ed., p. 194.

13



Figure 1. Oblate spheroidal coordinates.

-N-aperture

conducting sheet

Eo

Figure 2. Conducting Sheet with a circular aperture
in a uniform applied field E0

14



the three semi-axes of an ellipsoid

satisfy a = b > ¢ . The relation between oblate spheroidal coordi-

nates and cartesian coordinates can be written in a quadratic form

—t — -1 = O R (3-1)

together with

X = p cos ¢ R

y = psin¢ ,

where p and ¢ are the usual polar coordinates in the xy-plane. The two
roots of (3.1), 1. e., the solutions for u, along with ¢ form the
oblate spheroidal coordinates. The three independent variables £, n,

and ¢, Figure 1, have the following ranges:
«>E>0 , 0>n>- a®? , 2m>¢>0 . (3.2)

Then the transformation from oblate spheroidal coordinates to cartesian

coordinates 1is given by

2 2
2 = +[E o = JxZayz . |EHaDHED) gy
da Py

The surfaces of constant £ and n become respectively the confocal

oblate spheroids and hyperboloids of revolution of one sheet. A

15



calculation of the metrical coefficients yields

. ' E - n - | £ -n Lo [Era) ea?)
1 4g(e+a2) 2 4(-n)(n+a?) > T3 ] a2

(3.4)
Laplace's equation in terms of these coordinates 1is
4 3 30 3 a0 a? 3%¢
Vo = [VE = Ry =) + /&~n R, 297 + .
=) 6 ° ot an " an (£+a2) (n+a2) 062
\ (3.5)
where R, = (£+a?) V& , R. = (n+a?) v=n . (3.6)

3 n

3.2 Conducting Sheet with a Circular Aperture

A uniform field Eo in the z-direction 1is considered in a region
(the half space z < 0) bounded by a large perfectly conducting sheet
containing a c¢ircular aperture, as indicated in Figure 2. The sheet
is considered to be in the xy-plane for convenience. In terms of the
spheroidal coordinates, the plane may be regarded as the limit of the
hyperboloids of revolution of one sheet; the equation of the plane is

expressed as

1, (3.7)

as |n| + 0

To solve this provlem, a potential function must be found which
satisfies (3.6), which behaves properly at infinity, and which is

finite over the aperture. We presume, therefore, that ¢ is a function

16
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of the form
En
¢ = - Ey 2 F(E) = - E, F(E) — . (3.8)
-a
We need only substitute (3.8) into (3.5) and the ‘equation satisfied by
F(g) is readily obtained as

d’F 4F d

——+ — — n[R = 0 . .
FETIMPTIT: n[R, £] (3.9)

Equation (3.7) is an ordinary differential equation of the second order
and possesses two independent solutions; one solution we know already
to be F(§) = constant and the other is

F(E) .= (comst.) S~ _g&
£ RE

= {(const.) [ 24 tan'l,fg - ] . (3.10)
a

43

N A

The term (- %-) is an integration constant which is included to satisfy

the boundary condition ¢(£,n)—— 0. It is obvious that the dif-

7 >

fracted field caused by a small aperture can be considered to be zero
in the far zone. The constant factor is determined from the fact

that, for z »~ -= (i.e., VE » =) , ®(E,n) —> -Ey z. Thus

const. = - %- (3.11)

Substituting (3.11) and (3.10) into (3.8), the potential function ¢ is

given by
EqYIn| e

- —— [ — cot”
m a

1 -1 . (3.12)

o |

17



Note that (3.12) yields a zero potential, as it should be, on the con-
ducting plane n = 0. At large distance r >> a (r = V22 + p?),

equation (3.12) reduces to

Y JE 3
¢ = -E_°_’ll_ o Ay . B2z (3.13)
m a 353;2 3 ;;;

In the far zone, the electric field is identified as the dipole moment

field of the aperture; the electric dipole moment is

> 4e  F 3 .
Pp = 20 ®0 8 coulomb-meters . (3.14)

3

The potential inside the aperture is obtained from (3.10) by letting

/E = 0 . That is,

E.Y E
o, = _E__D_I- = 0 (a2 - py1/2 (3.15)
™ m

By taking derivatives of (3.15) with respect to p(the polar radius),

the tangential electric fileld inside the aperture is given as

-

E
- -2 . %p (a2 - p2)1/2 | (3.16)

¥
@
LS
[
>

The case of the magnetic field diffracted by a circular aper-
ture 1In a large conducting sheet carrying a surface current which is
uniform before the aperture is cut may be treated with the same
approach as in the foregoing paragraph. The magnetic scalar potential

¢* is defined as

-
H = - grad o* . (3.17)

18




Without loss of generality, we may consider the constant surface
current Ko which is induced by the uniformly incident magnetic field
e

Hy (in the z < 0 space) as the hole is replaced by a conducting disc

to be along the negative direction of x-axis, where

nxHy = -K, (3.18)

-~

n = - z 18 the unit vector normal to the lower surface of the screen.
At large distances from the aperture (in the z < 0 space) the magnetic

field is essentially undisturbed and the potential function is
O * = ¢§E Y W = Hyp cos ¢
= HO'% Vn+a? YE+al cos o . (3.19)

We may seek the solution for ¢* in a form which involves the same

factors depending on n and ¢ as in ¢;E_+ and a function depending

only on £; thus

*

¢ = H, —i-Vn+a2 cos ¢ G(E) . (3.20)
Now substituting (3.20) into Laplace's equation (3.5) yields

Rg dE (R E ) - —-(25 +a2?) 6 = 0 . (3.21)

Equation (3.21) is readily solved to give

-

G(&) Vg J (E+82)R ’ (3.22)

where - RE - Y(c+a2)2 g . (3.23)
19



The limits of integration are arbitrary, but it is easily shown that

the potential is given by

* [~}
¢ dg' dg’
S| ) 2
2 Mpa/e (E'+a®)Rge £'+a?)Rg

. B /= s -1 Vg a/e
— n+a £+a¢ (cot = T Jcos ¢ . (3.24)

At large distances from the aperture, where VE T > > 1 , the

potential becomes

3
a“H X
° (3.25)

3m r3 ’

Q*(E,ﬂ) = -

where X = p cos ¢

Again the far field of the aperture is identifie as the dipole lielc

with magnetic dipole moment

3
H. -
?M = EE_ES_Q X volt + meter : seconds . (3.26)
3

The magnetic field inside the circular hole 1s obtained by taking the

limit of the derivative of ¢* 1in (3.24) as VE ~ 0 . It is

= T z . (3.27)

20




The transmission coefficient t of the aperture is defined as

where § is the

area of the aperture, and

energy transwmitted through aperture

energy incident on aperture

Re { Sg Ed x ﬁd - rds }

R‘{gsﬁincxﬁinc';‘ds}
a

surface of a large hemisphere in z > 0 space, Sy is the

hemisphere. For normally incident plane waves, we have

-+
H1nc

-
Einc

where ;T =

= & Hyne s

,“o
— = 377 ohms .
€o

(3.28)

r is a unit vector perpendicular to the

(3.29)

(3.30)

If the aperture is small, the incident field vectors may be assumed

constant over the aperture.

magnitude of the poynting vector, is expressed as

-+ 1 -+ 1
|Sinc| - E | Re {ginc X Hinc}l - § (120.")

watts
m2

The incident power density, or the

(3.31)

since ﬁo' the magnetic field on the surface of aperture before the

aperture is cut, 18 considered to have unit value (1. e., H

Ampere/meter) .

is given by

Pine

0

1

Therefore, the total power incident on the aperture

- I ginc I (ma?)

= -% (120%) (ma2) watts

21

(3.32)
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The diffracted field may be considered as the superposition of the
magnetic dipole and the electric dipole fields. The electric dipole
does not contribute to the transmitted energy for normal incidence.

The radiated power of the magnetic dipole moment? 1is

p wh 833u° 2
mag 24WC3UO | 3
- 27 (120a2) (k a)“ watts (3.33)
where k = w/c .

The transmission coefficient is, therefore,

Pmag 64
Pinc 27n

7 (k a)* . (3.34)

3.3 Conducting Sheet with an Elliptic Aperture

The evaluation of the dipole moments for an elliptic aperturs
may be obtained from the static dipole moments of an ellipsoid or the
complement problem of an elliptic apesrture placed in uniform static
magnetic and electric fields.

In the preceding section, the potential problem of a conducting
sheet with circular aperture was treated by using oblate spheroidal
coordinates“. Now the problem of a conducting sheet with an .lliptic.

aperture in a constant impressed field is solved in ellipsodial

35ee D. S. Jones, The Theory of Electromagnetism, Pargamon Press,
New York, 1964, p. 156.

4J. A. Stratton, Electromagnetic Theory, McGraw-Hill Book Company,
Inec., 1941, p. 207.
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co~ordinates. The ellipsoidal coordinates are related to cartesian

coordinates by the equations

2 2 2
LA AN
a2 +¢ b2+E &
2 2 2
x b4 -2 -, (3.35)
a2 - |n| b2 - |n| |n|
%2 2 22
y ) -1,
a2 - [¢f gl -p2 g
where a>b; £>0, 0>n>-b2, -b2>¢z2>-a2 . (3.36)

The geometrical configurations of the surfaces of constant £, n, 7 are
respectively, ellipsoids, hyperbololds of one sheet and hyperboloids

of two sheets, all confocal with the ellipse

4+ = 1 (3.37)

in the xy-plane. As |n| + 0, equation (3.35) degenerates into (3.37),
which identifies the conducting plane. The transformation to rectangu-
lar coordinates 1s obtained by solving (3.35) simultaneously for x, vy,

and z. This gives

[ (¢+a2) (n+a?) (g+a2) 172
x o= % az(ai - b?) J ,
(£+b2) (nb2) (z4b2) 177
R : (3.38)



A calculation of the metrical coefficients gives

oL e )
DT 2| (g-a?) (epye? | ’
. y1/2
L. 1 (n-2)(n-£) (3.39)
2 2 [ (n+a2) (n+b?)n? | | .
) L o Y2
3 2 | (c+a?) (z+bD)g? |

Laplace's equation in ellipsoidal coordinates is, therefore,

4 3 30
V2 = [(n-2)R, — (Rp —
(e (=) (o) TR 57 (Re o)

+ -0y 2Ry 22 + (5-n)Re %g‘Rc ggJ] =0

(3.40)

We shall first consider the potential problem of an elliptic
aperture in a large conducting plane which is subjected to a constant
magnetic field. Without loss of generality, we may take the magnetic
field ﬁ to be along one of the axes of the ellipse. In any case, the
field may be resolved into components along the axes, and the resultant
field is a superposition of those arising from each component sepa-
rately.

Considering the H-field along the x-axis (i.e., along the major
axis a of the ellipse) the scalar potential function of the impressed

magnetic field is

1/2

2 2 2
0¥ = - H,x = -y | (Era0)(n+a?)(cta®) . (3.41)

: a2(a? - b2)
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with x in ellipsoidal coordinates substituted from (3.38). The poten-
tial of the diffracted field ¢*(£,n,c) must vary functionally over
every surface of the family § = constant i1in exactly the same manner

as 0;. We consider ¢* as a function of the form:

2 2yy1/2
o*(g,n,0) = —Hl[(“:—a(;(‘*—:z;] F(E) (3.42)
as{ac -

F(§) is a function of £ only and must satisfy Laplace's equation

(3.40). Substitution of (3.42) into (3.40) yields

4arF §y _ 2 =
Re de Rege ) " % L e+ayr = 0 (3.43)

where RE = [€(£+a2)(£+b2)]1/2 . (3.44)

The solution of (3.32) is given by

F(g) = ’£+a2{ . (3.45)

(§+a2)RE

We may rewrite the integral of (3.45) in two parts which correspond
to the two regions divided by the conducting plane (i.e. the z > O

space and the z < 0 space).

ds
s s (2> VE > 0)
2 ’ el ’
TerayRg (3.46)
CRCG
1+4A (s+rad)Rg ° 0> /&> -= ,
25



"

where S is a dummy variable which replaces ¢ to avoid confusion. The

limits of integration are taken so that ¢* >0 as VI > H

* *

" > 9, as /E-+ -

The constant factor A is determined from the condition that &%
is constant over the aperture. For this condition to be satisfied

% %
as & + 0 and with arbitrary n and z, the value ¢/E = ¢ can
ge]

a
be calculated in terms of the total charge which is supposed to be
induced over the aperture. These fictitious charges correspond to a

discontinuity of the normal magnetic field in the aperture; thus

* * ds
¢a = ¢o A (S+a2)RS (3.47)
0
* _ 1 %
It is easy to show &, = §'®0 , since the integrals (3.46) must
approach the same value from both sides of the aperture. Consequently, ‘

the potential function of the radiating field is given by

* ¢’; ds ds
¢ = 2 Jo=/E (S+a2)RS (S+a2)RS (3.48)
0

For large distances, the coordinate £ is large and § = r2, hence

[l
oo

ds - 2rdr _ 2 . (3.49)

v IT 3
/g;/g (S+a2)RS rd 3r

The radiating potential due to the magnetic dipole moment in the

aperture is

* - Hix

¢ = ;;3—(;(7 > (3.50)
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where o
RO _ 9
(s+a2)RS
0

The effective magnetic dipole moment for the diffracted field is,

therefore,

<>

-4 "Uoﬁl
M, = —;;f;j—‘ volt * meter °* seconds . (3.51)

Note that a(x)

is an elliptic integral of the second kind. If a
new variable t is introduced, where t2 = S+a? , this integral may be

split into two integrals:

(x) B 24t
: o t2[(t2-a2+b2) (£2-a2)]1172

2 dt
a2-p2 (t2-32+b2)1/2(t2—8.2)1/2
a

NG <0 A (3.52)
£2(t2-a2)1/2

The above integrals have been tabulated by Jahnke & Emde®. The

solution is

2 1
e AUl LTI IO S) B (3.53)

ac-

1/2

2_12
ac-b
where k = [ > ] = e , the eccentricity of the ellipse
a

SE. Jahnke and F. Emde, Tables of Functions, Dover Publications,
Inc., New York, 1945, P. 58.
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and sin ¢ = 1 . (3.54)
Substituting (3.54) into (3.53),

2
o . o2 o3 [Fle, -’21) - E(e, %)] . (3.55)

F(er%) and E(e,%- are called the complete elliptic integrals of the

first and second kinds and are given as

ug LS 12,4 9
F(e,z) 2[l+4e +e e + ...,
T L 1 3
Fle,) 5 L -ge?-—Tet - ] (3.56)
Furthermore, a(X) of (3.51) mey be replaced by (3.55) to give
> - 2nu0ﬁl ad e? (3.57)
Mx 3[F(e,D) - E(e, )] .
2 2
For small eccentricity, the magnetic dipole is reduced to
8 s 3 2
- H
M = __3931_3. (1 - 22—-— higher order terms in e?)
(3.58)

It is straight forward to evaluate the transmission coefficient, which

1s defined as

energy transmitted through aperture

energy incident on aperture

64 (ka)™ a 3e?
= —_E;;E_ (-g )y [1 - 5 + ... ] . (3.59)
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Now, in the same fashion, the problem of a constant magnetic
field along the minor axis b of the elliptic aperture (i.e. ﬁz along
y-axis) may be readily solved. Here, the magnetic dipole moment of
the aperture should be lying in the y direction, and an expression

analogous to equation (3.56) is given by

3a(y) ’ )
(y) - __da
where o f G+ bz)Rs (3.61)
0

Again, let t? = S + b2 , a(y) is readily expressed as

(==

62) 24t
o - e
€2 [ (%a? ) (25D 172
b o0
2 e24a2-p2)1/2
a2-b? t2(t2-p2)1/2
b
" 1
7(t2—b2)1/2 (t2+82—b2)1/2 ) (3.62)

b

The solutions of the above integrals are also tabulated by Jahnke and

Emde. Thus

O a2 B ge,ny - L,
a [ 7 E(e,z) " F(e,z)]

2 -
[(1 - e?) ! E(e,Iz') - F(e,%)] . (3.63)
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Theretore, equation (3.60) becomes

> -
- 2mug Hy ade?(1-e2)

‘ﬁy = - : (3.64)
3{E(e)1) - (l_e )F(esl)]
2 2
For small values of e, equation (3.64) reduces to
- -833 —ﬁz 9 2 . 2
M, = ——=[1 - = e? + higher order terms in e?]. (3.65)
3 8
Again, the transmission coefficient for small values of ka is
expressed as (see equation (3.59))
64 a Y 9 2
=) (ka 1 -2 e“+ . 3.66
—7 (£ [1 - 1 (3.66)

Comparing the result, elaborated by C. Huang®, of his treating the
diffraction by elliptic aperturesusing the variational method,
equation (3.66) agrees exactly with the lowest term of ka.

Again the electric dipole moment of an elliptic aperture may be
calculated in the same manner of treating the static problem of a
circular hole in a conducting plane placed in a uniform E-field.

First, ‘we seek a solution of the form:

¢ = 9o F(g) (3.67)

Assume that a constant field E is directed along the z-axis, and

consequently is perpendicular to the aperture. The potential of the

applied field is
%, = - E,z2 = - ———= . (3.68)

6¢c. Héuﬁg ;ﬁd E: D. Kodis and H. Levine, '"Diffraction by Aper-
tures," J. Appl. Phys., Vol. 26, pp. 151-156, February 1954.
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Substituting (3.68) into (3.40) yields

iz_F.-C-iF_‘ d_.. 1 (R ) 0 3
ae? " a a et ’ (3-69)
where R = '(e+a®)(£+d2) £ . (3.70)

The solution of (3.69) is

dg
F(E) - A J E3/2 '/(E+az)(5+b2) . (3-71)

The integral is a form of elliptic integral and may be approximgted by
using the binomial expansion. To obtain a rigorous solution of the
aperture problem, an approach is introduced here, however, which i1s
similar to that used in the calculation of the dipole moment of a
dielectric ellipsoid in a uniform E-field’.

The problem for an oblate ellipsoid and also that for an elliptic
aperture in the conducting screen lying perpendicular to the impressed
field Eo is known to be trivial. 1In order that the calculation can
be carried out, the infinitesmal value c, the semiaxis oflellipsoid
along z-axis, is left within the integral (3.71). Formerly, c was

assumed to be zero before the integration was carried out.

—
J. A. Stratton, loc. cit., p. 211.
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The potential functions in different regions are

x

+ . a5 o > VE >
o ¢ C, [/g_ GrchRg ( £ >0C)

¥y Cp s (c > vT > -C) (3:72)

L= ]
[

(% a

——— > VE > —»
) (S+C2)RS]’(O_ £z

¢ = ¢o [1+ C3

where Rg /(s+a2) (8+b2)(S+c2) , S = E, n, org

The constants Ci1, C,, and C3 are to be adjusted to satisfy the

boundary conditions:

+
+ 3¢ 30,
[® = ¢a] + €0 [——] = € [—-—] , (3.73) e
cm 3 3
£=0 2 e 3 cmot
and
: . [awa [ 3d>"] 570
. = & £, | — = en| — . .
a - F1 _ 0 _
£=0 3E JE=O 3 Jeag

where €; 1s the dielectric constant of the aperture. Equation

(3.73) gives

¢, = — — ¢, , (3.75)

and (3.74) leads to

® ds
C2 = 1-GC (S+C%)Rg °
- E
-c3 = 2be fﬂ_e___l_ c, . (3.76)
0 -’
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From (3.75) and (3.76), the constant C, 1is determined

abc €5 - € abc €45 -~ ¢ ds
¢, = [ 0 .__1] [1 - 0~ €1 - ] . (3.76)
2 €0 2 €y (8+C“)Rg
)
The potential is, therefore,
abc €Eg — €1 @
+ 2 € as
b = e — o . (3.78)
abc €,-€ ds (s+C%)Rg
1- J 2 a
2 £, o (5+C )RS

where ¢, must be 2ero since the electric fleld inside the aperture
is purely transverse. The electric dipole moment corresponding to

(3.78) is given by

- €g Eq V “
P e —2 0z, (3.79)
1 - abc (z)
2
ds
where V = éi.abc s af2) o - . (3.80)
3 o (S+a?)Rg

The field diffracted by the aperture is described by the radiation of

an electric dipole P/2 1located at the aperture, thus

P, = 2% . (3.81)

It is easy to prove the relation

% @) 4 o) 4 o2y o 1 (3.82)
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where

CO S . w | %
o go (s+a®)Rg * ° , (SDEg (3.83)

Substituting (3.82) into (3.81)yields

F EOEO 4 2 (3.84)
z 3(a(x) + a(y)) ' .

Now substitute (3.55) and (3.63) into (3.84) to obtain

€gEq 27 ad (1-e2)
2 - L
3E(e 55)

z . (3.85)

oY

-
For small values of e, P, may be expanded in the form

heoE
> €oko
Pz = 3 [1—

2 =
e’ -~ gr e + ...1 . (3.86)

=~ w

In particular, for a narrow slit aperture, consider a >> b so
that e ~ 1 . Considering the field as directed along the major

axis, equation (3.51) is

0‘(x) - = ds
o (s+a?)3/2 (5+b2?)
2 lte
T Ter U 1o 7 ®
- 2 2a _
i L 1) . (3.87)
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Comparison of (3.91) with (3.55) yields

Fle,) = In (22) ,

E(e,%) - 1 ., (3.88)

Consequently, the dipole moments of the elliptic slit are expressed

->
- egEg 21 ab?
3

H, 2r a3

-»> u 1 T a

Mg = 0“—2a , (3.89)
3[1n—b" 1]

e 2
uOHZ 21 ab

\5+

3[1 - (1-e2) 1n'3%
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CHAPTER IV

ON THE ELECTROMAGNETIC FIELD IN A CAVITY

EXCITED THROUGH A SMALL APERTURE

For a cavity which 1s excited through an aperture it is well
known that the solution to Maxwell's equations can be expressed in
terms of the tangential electric and normal magnetic field components
(or equivalent magnetic current and charge distributions) in the
aperture.! However, it is shown here that for apertures whose linear
dimensions are small compared with the wavelength and cavity dimen-
sions, the cavity field may be expressed in terms of the electric
dipole and magnetic dipole moments of the equivalent magnetic current
and charge distributions in the aperture. The approach followed is
similar to that used by Collin? in treating the excitation of a wave-
guide through small apertures. Static or quasi-static approximations
may be used to determine the dipole moments of the equivalent source
distributions in the aperture; and with the aforementioned it is
possible to relate the fields penetrating a small aperture into an
electromagnetic shield with the surface current and charge distribu-

tions on the outside of the shield.

1S. A. Schelkunoff, "Field Equivalence Theorems,' Commun. Pure.
Appl. Math., Vol. 4, pp. 43-59, June 1951.

2R. E. Collin, Field Theory of Guided Waves, McGraw-Hill, Inc.,
1960, p. 285.
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4.1 Characteristic Fields of a Cavity Resonator

The general representation for electromagnetic field within a
8imply connected cavity T which is excited via a small aperture in a
wall can be expressed in terms of a complete orthonormal set of

eigenfunctions.3 That is

E = Z Ag Em ’ (4.1)

=1

- = -
H = grad ¢+ 1w €o Z é% curl E; R
m=1 Km

[ -]

where the {Em}m-l are the orthonormal short-circuit modes of the

cavity and ¢ satisfies Laplace's equation, 1. e., v2¢ = 0.

iwt

Consider E, ﬁ to be harmonic time dependence e , then

Maxwell's equations can be written in the following form:

- -+ ->

curlE = -1 wug H , divE = 0 ,

curl H = 1 w e E , divHh = 0 .
The equations in the first column give

curl curl E = k2 E (4.3)
where k2 = 0?2y, eq .

3For example, J. C. Slater, "Microwave Electronics', Rev. Mod.
Phys., Vol. 18, pp. 441-512, 1946; D. S. Jones, The Theory of
Electromagnetism, Pergamon Press, 1964, Chap. 4.
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The coefficients in (4.1) can be ca culated from the orthonormality

relations:

E > 1 > -
Aq * Epdt = EE' E ¢ curl curl E; dv ,
T T

and

1 > >
Ay = = curl E ¢ curl E; dt .
T

By subtraction and use of the divergence theorem“, we obtain

(k2 - k2) Ay = S. n - E x curl Em ds (4.4)
Sa+5,

where "T" is the volume and "S" is the surface area of the cavity; and
n is the unit vector normal to the surface. Let S = 83 + 5;, S, is

expressed as perfectly conducting walls and S, as the aperture.
> >
We define the Green's function G(r,r') such that

V26 = -68(r-1") |, (4.5)

- -

and G(r,r') satisfies the Neumann boundary condition. That is,
= 0 , (4.6)

where n 1is the normal to the surface of the cavity. Then we have

(2%c-0238) 4 = (Gv2¢ - ¢v2G)dr
S an on T
“i.e., JT div(E x curl Em)dc = fS n x E * curl Em ds
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or

29 _ G = >,
j; ( 3o G [ n ) ds &(r') , 4.7
and hence

+ grad ¢ G(¥,¥")ds . (4.8)

o>

d(r') = f;
S

~ > ~ -+
Sincen - grad ¢ = n +*H on 8 and n+*H=0 on S,

equation (4.8) becomes

o(r') = g a - HG(r,r")ds . (4.9)
Sa

At the surface of a good, but not perfect, conductor there exists

a small tangential electric field®

~ > qu ->
anI =—2—(1+1)n|
51 ‘ S$h
or
R - -»>
n x E l = § wug(l + 1) H I R (4.10)
5y 5)

where § = J;ﬁzg is the skin depth; the magnetic field at the sur-
o
face of the conductor should be essentially the same as in the

perfectly conducting case so that

e hs Ap +>
H | = {uwe — curl Epl (4.11)
Sl ° mz]_ k% Sl ’

SSee J. D. Jackson, Classical Electrodynamics, John Wiley & Sons,
Inc., New York, 1962, Chap. 8.
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P
where H |S is the tangential magnetic field }ust outside the surface.

With this approximation, (4.10)

N > - @ A >
nxE IS = lil § kg Z E% curl Emls . (4.12)
1 ms= 1 m 1

Now consider a cavity excited by a small aperture. Substituting

(4.12) into (4.4) yields

(k2 - k2) A gs AxE -+ curl Em ds

1

Amg > 2
— 8k 3 [curl Eml ds
2 7 ky s,

-

+ g nxE - curl Enhds . (4.13)
Sa

The quality factor, Q , of a resonant cavity is defined as

time average energy stored

energy loss per cycle of oscillation
Then the Q of the cavity is given by (for the mth mode)
1 1 4 2
- = = = g | curl Eml ds . (4.15)
m 2 km 5,
For a lossycavity and a very small aperture, we have
- -> >
(kg - kﬁ) Ay = S n+Excurl E ds
S
a
- 2
+ 1) k§ Am/Qm . (4.16)
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Since, in general, %_ < <1 the equation (4.16) is, approximately:
'm

[kg(l-la—l)-k%]%=g E-Excurlﬁmds . (417
m sa

4.2 Representation of Dipole Moments

An approximate theory, elaborated by H. A. Bethe, is available
which states that the scattered field is considered to be caused by a
combination of radiating electric and magnetic dipoles in the aper-
ture. In section 4.1., the electromagnetic field inside a cavity is
formulated by equation (4.1) which is determined with (4.9) and
(4.17).

In order to represent ;he fields inside a cavity with related

dipole moments, first examine equation (4.9). It is

o(z') = S n-HGe(,r") ds .
S

a

6

+> >
For small aperture®, the Green's function G(r,r') is expanded in a

Taylor's series about the center of the aperture, where ¥ = T

o H]
to get
&> >
G(r,r') = G(;o.?') + grad; G|¢ N (; - ?o) + vue
™r,
= G(¥y,7') +gradg G|, + (F-%F) . (4.18)
=T,

6For apertures whose linear dimension are small compared with
the wavelength.
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Then (4.9) 1s given by

o - G<;o,;'>g i as
)

a

> > - >
+ grad, G(r,z") |, *g noeH(r-1)ds .  (4.19)
s

r=r0

a

The boundary conditions on the field may be satisfied with a
surface magnetic current distribution and also a charge distribution
in the aperture. On the other hand, Schelkunoff’ has presented a
field equivalence principle, in which the normal magnetic field and
tangential electric field are not equal to zero on S, and, hence, a

magnetic charge and a magnetic current distribution is given by

* ~ >
n = n -+ H

- . 5 (4.20)
K = x E

Hence (4.19) becomes (for counvenience r is taken to be the origin)

o (') = G(;o,¥') g. n* ds + grad, G(r,r") o n* ¥ ds
g r=r
a )
Sa
- - -
= gradt G(r,x") |, , PM . (4.21)
r=r
o
where
P = g’ n*rds ,
M
Sa

'S. A. Schelkunoff, "Field Equivalence Theorems', Commun. Pure
Appl. Math., Vol. 4, pp. 43-59, June 1951.
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which is defined as the magnetic dipole moment of the magnetic charge

distribution. And

- -+
« curl E ds

'
1
[
[
-
o
A\ N
-]

cdf = 0 |, (4.22)

oy

= - 1
iwuo C

since the field satisfies the boundary condition E -+ d. =0 which
shows that there is no net magnetic charge on S,, where C is the
aperture contour.

Second, examine the integral at the right side of (4.17),

N
- £ x curl Em ds

-
g
>
o>

-

-
x E * curl Em ds . (4.23)

]
(P N
wn

= )

Now consider the magnetic surface current density K*, which {is

defined as

Then (4.23) is given by

> >
I = K" * curl Ep ds . (4.24)
Sa
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By analogy, curl E. is expanded in a Taylor's series about the center

of the aperture:

- -> > > >
curl E = curl E | |+ {(r - r)) - grad.} curl E |, | + ...
r=r, I=r
o
(4-25)
Next, redefine the co-ordinate gsystem so that r, = 0. Then,
curl Em = curl Em + (T - grad¢) curl Em . (4-26)

o [s)

Subgtitution of (4.26) into (4.24), gives the following approximation:

> ~ - > >
I = curl Ej « K® ds + (r - gradt) curl Em ¢ K" ds
Sa o Sa o
(4=-27)

To evaluate the first integral of (4.27), consider an equivalence
expression for it obtained by using the fact that there is no net

divergence K* from the aperture, That is,

[}

%k >x e
divt(wK ) ds Q" divt K" + K" . gradtw) ds

Sa

§ YK* « nyp de = 0, (46-28)
C

Since the scattered field satisfies the boundary condition

PN

-
n, ° K* = 0 , there is no normal component of magnetic current at

the boundary of the aperture. n; 1is a unit vector perpendicular to

the contour of the aperture and y is an arbitrary scalar function.
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. Let ¢ be replaced first by x and then by y . A vector
N

expression for J K* ds 4s obtained from (4.28) which can be evalu-
a

ated in terms of magnetic charge density as following:

- > -
I K% dg = —J rdivt K* ds
Sa Sa
- imf -{n*ds
Sa
>
= 1w Py s (4.29)
where
divt'[z*=—iun* R
and
-+ R
‘ - Py = rn * ds . (4.30)
Sa

The second integral of (4.27) can be evaluated by converting the

integrand into a form with rectangular components:
(; + grad,) curl -F:m| . K
o]

= x i)—(cm:l E Y, KX + x 8 (curl E ) *
ax mlo x Tx % mlo y &

) = * ) > *
ty 5 (curl Em' )x Kx + ¥ 1 (curl Eml )y Ky . (4.31)
(o] [}



Subtracting and adding the same terms, (4.31) bhe:ores

> > >
(r - grad.) curl Emlo .« K* =

~ > -
XK * [° (curl E -3 (curl E
2 Y mfo)y 3y m’o)x]

), ]

X

- Y gk (2o E
5 Ky [ax (curl Ep .

a I d
)y 5 (curl Ey

(o]

+ x-i— (curl E ) K + vy E——(curl E ) K; + X2 (curl Em ) KX
9% m ) x X 3y MLy 2 ox o yKY
X2 (curlE | ). k¥ +2 2 (cur1 E | ) &
2 3y mjx 'y 2 9x i)y X
y3_ E *
+ 7 3y (curl Ej o)x Kx . (4.32)
The vector expression is given by
hd > * 1 > % -+
(r - grady) curl Ey| + K =35 {(r x K'), (curl curl Em_‘o)z

o}

> ->* > -+* > >
+r - (K* - grad.) curl E | + K" « (r - grad) curl E }

o o
(4.33)
Finally, equation (4.27) is readily expressed as
(t - grady) curl Eml - K* ds
S o]
a
= curl curl Eml S P+ I, (4.34)
o
where
;E = 12.- ;xi* ds »
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- %
which 1s defined as the electric dipole moment for magnetic current, K ,
in analogy with the magnetic dipole moment. Iq represents the quad-

ruple momentss, i. e.,
l - —>* >
I, = ={r « (x* - d rl N
q .gga 3 ( grady) curl Ep o
- -+ -+
+ K* « (r » grad,) curl Em‘ }ds . (4.35)
o

In general, Iq is small compared with the dipole moment since the
quadruple moments involve the square of the aperture dimension and
can be neglected with small aperture. Then the integral (4.24) is

expressed as

n

> -> >
1w Py curl E, . + curl curl Emlo © Pg . (4.36)

8Iq may be written in terms of the last six terms of (4.32) and
use the identity of (4.28) to give

P > 3 -
Ig = 1w {3 (curl Em|0)x Qex + e (curl 1~:,,,|0)y Qyy

+ [ 2 (cur Emlo)y + g-y- (curl Emfo)x] Qy)d

Qex = j’ x2 n *ds |, Qy = y2n *ds |,
Sa s

a

since

Uy = Qyx = 15; xyn*ds .

a
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0,0,d)

—— ] o — = — e —— -

(0,¢,0)

Figure 3. The configuration of rectangular cavity excited
through a small aperture with center at

(b/2, c/2, 0).
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Consequently, equations (4.9) and (4.17), which determine the
electromagnetic field inside a cavity in terms of the dipole moments

in the aperture may be written as

S > > >
¢(r') = grad, G(r,x')|{, , - Py (4.37)

r=ro

2 _i=1y 2 . P . B
(kg 1 -3, ~kml Ay =1 wPBy - curl By
o
-
+ curl curl fml - Pg . (4,38)
o

where

curl curl Em - K2 E, - (4.39)

4.3 Fileld Distribution Inside a Rectangular Cavity

The appropriate Green's function for a rectangular box is

8/nbed mmx’ mny'
G(E,X') = ) cos —— cos :
m,n,p (%)2 + (%)2 + (%)2 b ¢
]
cos Pz cos X cos Ty cos P2 (4.40)
d b c d

It is required that G(;,;') satisfies

and
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The transverse gradient of G(r,r') is given by

> > ~ 2 ~ 3 > -
grad, G(r,r')'+ L = x Ei 5;—) G(r,x") |,
r=r ™=r
o o
8/nbed mmx' mny'
= —~ = cos = cos
mn,p 2+ 2+ B2 c
- (ﬂ%p x s for m odd and n even
\J -~
cos EEE— - (I%O y » for m even and m odd, (4.41)
0 ,» for m, n both even or odd.

From (4.37) and the foregoing equation, the scalar function &(t')

is found to be

. 8/mbed mmx' my'
! =
o(r') mE; L@ B @ cos N cos -
PR c d
- (EED X * ﬁM » for m odd and n even,
mpz' @y .3 £ d n odd 4.42
cos 5 -y PM s or m even and n odd, (4.42)
0 , for m,n both even or odd

Note that the center of the aperture is located at (%-, g-, 0).
It is convenient to separate the total field inside the
cavity into modes; transverse-electric (TE) modes and transverse-

magnetic (TM) modes. These modes in normalized form are,
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TEy,n,p modes

E, = _E: Sed cos kyx sin k,y sin kyz »
-ik1 l 8
Ey = e Abed sin k;x cos k,y sin k,z ’
E, = O . (4.43)
-k .k
Hy = 173 ‘_E_ sin k x cos ky cos k 2z s
whgke Abecd
k2k3 8
Hy = GE;EZ- Abed cos kijx sin kpy cos kjyz ’

kc J 8
H, = oo Tod °os k,x sin k,y sin k,z ’
™ modes
m,n,p
ks —E— k in k in k
Ex = ch /chd cos 1X sin 2y sin 3z N
-k.k 8
E, = 23 |_— sin k,x cos k y sin k,z s
y vk, Abcd 1 2 3
k 8
- c
Egz ; 5ed sin k;x sin k,y cos k,z ’
(4.44)
iwe ks 8
H, = =02 [ _Z_gin kyx cos k cos kiyz
x Yk, becd ! 2y 3
-iwenk 8
0™1
H, & ——on cos k.,x in k cos k,z ,
y Yk, bed oo 1% S 2¥ 3
H, = O s
= T = BT = BT
where k1 b’ k2 - k3 3 R
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[

2 2
kl + k3 ,
and

e g ed h.45)

The integers m, n, and p may be viewed as the number of half-period
variations of E and ﬁ along x, y, and z directions, respectively.
The restrictions, m, n, or p > 0, for the TE-modes and for the
TM-modes, are introduced to avoid trival cases in which E or ﬁ
field components vanish.

In view of(4.43) and (4.44),

E = k—c- _i_ sin M sin 1_11
m
— Y Abcd 2 2
EE ’_E_ , for m , n odd
Y bcd
= (4.46)
0 , otherwise
-»> -
curl Epf, , = - iwu0 Hpls »
r=r, r=r,
8 —klk3 imsokz
- lupg + , for m odd and n even,
bed muoko ykc
= lwug lbcd ook Yo , for m even and n odd,
0 , for m , n both even or odd. (4.47)

Substituting (4.46) and (4.47) into (4.38) Yields,
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for m odd and n even,

1-1 g8 = ~ [ -k, k iweqsk
2 - =y~ 42 = 2 o . 173 4 02
kg (1 m) v4] Al = wiug bed Py * X [m“okc - ] .
(4.48)

for m even and n odd,

k2 (1 - )=~ 2 2 I_- Py * [ -
kg Q Yl Ay = 0% bed M Y wh kg Yk, ’

n»

m
(4.49)
for m odd and n odd,
- 8 > -
[k2 (l—i—er"—)-YZ]Am=ykc o Pp - 2 (4.50)
for m even and n even,
AT[I = O (4-51)

Note that the subscript m on the left side of (4.46) - (4.50) is
symbolic of the three indices required of the expansion coefficients

in the model expansion of rectangular cavity field.

Consider that Qm 10 R

and

kob = ke = kod = 1 , (4.52)
then (4.48) becomes ,

for m odd and n even,

3

n 8 > -mp in

kg Abedl | S TS
Am N _q ol - m2+n2” (m2+n2)(m2+n2+p2) (4.53)
2= - (m?2 + n? + p2)n2]
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for m even and n odd,

w 8 —E - [ -np im ]
—_ I_ MY -
ko A bed /m2+n2 ‘f(m2+n2) (m?+n2+p2?)

- (4.54)
b 1 - -% - (m2 + n2 + p2)1r2]

for m odd and n odd,

. T > .
Y(m2 + n2)(m2 + n2 + p2) =2 ,m Pp * 2
1- _:]-:3 - (m?2 + n? + p2)n?)

for m even and n even,

]
o

A

Now consider contributions from the m = 1, n = 0, p = 1 modes
inside a rectangular cavity when excited through a small elliptic
aperture in the bottom wall of the cavity. From TE;5; the

contribution 1is

E, = -1 ‘_8_ sin X gin 12 |
y bed b d

T 8 X T2
Hy = T wpgd Abed sin = cos = , (4.56)

gl , 8 TX mZ
Hz wuob bed cos b sin q ,

From (4.53) and (3.59) the model expansion coefficient is given by

A w ) ;‘-ﬁM .o 8 uOHIa3e2 (4.57)
101 ~ %k  Abed 272 Tk chd 3n(F(e) - EC(e)] )
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| ~— Substituting (4.57) and (4.52) into (4.1), the contribution to the

field inside the cavity from the m = 1, n= 0, p = 1 mode is

>
+

> > iw | 8 * Py -
E = Aol Ey B k—ollbcd 22 y ’ (4.58)
-+ A101 > >
H = grad ¢ + > (Hyx + Hyp)
27
8 x - _I:M 3 1 ™= iz -
2 [— ———— [(n3 - ) sin — cos — x
Abed 22 2y, b d
+ (3 + =~ ) cos :_x sin z—z z ] . (4.59)
o
where
: - > =-2n “QHI a3e2
e P = R (4-60)
‘ _ x M 3[F(e) - E(e)]
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CHAPTER V
SUMMARY AND CONCLUSIONS

This thesis presents a theoretical formulation treating electro-
magnatic waves diffracted by a small aperture. A modification of the
small-hole coupling theory is used to obtain the field penetration
into the cavity via an aperture. The basic considerations of the
low-frequency diffraction formulation are

(a) to neglect retardation so_that the phase changes in the

field across the apertures (or on the surface of the
complementary obstacles) are negligible and so that the

quasi-static approximations may be used and

(b) to assume that the incident electromagnetic field is uniform
over the aperture. Thus the obtained results are accurate

only for sufficiently low frequency, 1. e., ka << 1.

The dipole moments ﬁx, ﬁy, and Fz of the aperture distributions
are calculated for small apertures in finite as well as infinite
screens. After the dipole moments are obtained, the field transmitted
through a hole in a cavity is calculated by finding the radiation from
the dipoles into the cavity.

In Chapter III, a quasi-static approximation for solving dif-
fraction by elliptic apertures 1s presented along with an investigation
of circular aperture diffraction. The results obtained are in agree-~

ment with those obtained by other investigators who use different
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solution techniques for obtaining the diffraction by apertures in
infinite screens.

In analogy with the treatment of transmission fields through
small apertures into waveguides, Chapter IV presents a theoretical
solution for the field penetration into cavities via a hole. 1In
particular, rectangular cavities are investigated. It is proved
that the field penetration into the cavity may be expressed in terms
of the dipole moments of the aperture distribution. This result is
particularly significant because quasi-static diffraction theory
may be used to determine the dipole moments. Hence a very diffi-
cult boundary value problem may be solved directly by use of few

approximations.
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