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Penetration of Electromagnetic Fields
Through Small Apertures into Closed Shields
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ABSTRACT

An approximate treatment is presented for the penetration of electro-
magnetic fields through a small aperture into an otherwise closed shield.
The formulation 1s a modification of the treatment of cavity coupling
through small apertures. The shield is considered to be a thin walled
rectangular cavity and aperture is considered to be a circular hole in one
side. General model expansions for the field components inside the cavity
are derived and expressed in terms of the fileld components that would be
present if the aperture were completely shorted. A method is presented and
discussed for obtaining the latter field components.
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CHAPTER 1
INTRODUCTION

The ideal electromagnetic shield is a completely closed highly
conducting shell. But invarigbly small apertures are present in most
practical situations. It is obvious that a degradation of shielding
properties must accompany the presence of small apertures. To obtain
this degr3dation requires the solution of a horrendous electromagnetic
boundary value problem. And it appears at the present that an exact
solution for any physical configuration is virtually impossible. Thus
some approximating methodology is in order. It is the purpose of this

thesis to present an attack on this problem by using a modification of

the treatment of cavity coupling through small apertures.

The problem formulated is that of determining the electromagnetic
field produced inside a perfectly conducting cavity by an external
field when an aperture is present in the cavity wall. For convenience,
the cavity geometry is taken to be rectangular, and the dimensions of
the aperture are considered small as compared to the wavelength of the
incident radiation. General model expansions for the field components
inside the cavity are derived and the expansion coefficients are
expressed in terms of aperture fields for an arbitrary shaped aperture,
The theory of diffraction by small circular apertures is then used to

obtain the aperture fields. However these fields are expressed in



terms of the field components that would present if the aperture were
completely shorted. A method is presented and discussed for obtaining

the latter field components,




CHAPTER II

ELECTROMAGNETIC FIELD PENETRATION THROUGH

SMALL APERTURE

The various formulations dealing with the problem of electro-
magnetic field penetrating through small apertures have been reviewed
by Bouwkamp.1 Under the restriction that the aperture dimensions be
small compared with the wavelength, it is found that the Rayleigh-
Bethe approach may be used. This formulation is based on the use of
fictitious magnetic charges and currents in the aperture which has the
advantage of automatically satisfying the boundary conditions cn the
conducting screen. Although the higher order terms in the obtained
expressions for the aperture filelds apparently are not correct, the
zeroth order terms are consistent with other formulatioms.? The
primary reason for using this formulation is that it may be readily
adapted to the treatment of the coupling of cavities or the field
penetration through small apertures where only the zeroth order terms
in the aperture field expressions are used.l

First, consider the hole in an infinite, perfectly conducting

i

screen to be placed at z = 0. Let Hol, E,” be the field on the upper

side of the screen if there is no hole.* Then the actual field for

*
Following the procedure of Raference 6.



this problem can be represented as ~
Hs= Hoi + Hy for 2< 0
H = Hy for z >0

and similarly for the electric field,

The boundary conditions for the fields at z = O:

Eiten = E2tan in the hole 1))

Ejtan ™ Eztan = © outside the hole (2)
- - i

Byran ~ Pitan ™ Hotan in the hole (3

For plane waves, it is obvious that the boundary conditions for the
normal components are automatically fulfilled if those for the tangent~
‘{al-cenpotentitare gatisfied,

The solutions for the field components will have certain symmetry

properties becguse of the form of Maxwell's equations and the

considered geometry.3 These are:
Etan ( x, y, 2z )= t Etan ( x, Yy, -z )

H (x,y,2)=4%H (x,y, -z)

tan

Ez ( X, ¥, 2 ) =F Ez ( X, ¥, -2 )

Hz (x,y,2z)=1 H (x,y, =z2)
Each odd solution, whose tangential electric field components vanish

in the aperture as well as upon the screen, describes a field configu-

ration with the plane z = 0 completely occupied by a perfect conductor.

So the fields El’ E2, Hl’ Hz attributed to the presence of an aperture

then must belong to the class of even solutions, i.e.

Eltan (x,y, -z) = E2tan (x,y,2) 4)




Hltan (%, y, -2) = -HZtan (x5, 2) (5
Elz ( X, ¥y, -2 ) = -EZZ ( X, ¥, 2 ) (6)
H, (x, 9y, -z ) = H,, (x,y,2) n

These four equations are consistent with Maxwell's equations.
Inserting (5) into (3), it is found that H must satisfy the
following boundary condition:
- i )
HZtan L HOtan in the hole (8)
The normal component of the electric field is known to be continuous
and the use of (7), we get a similar:
= i i
E22 X EOz in the hole (9)
Now the problem turns out to be the technical procedure to

calculate the field E2, H2 which satisfies the boundary conditions

mentioned above which hold for an aperture of any shape. For con-
venience, take the shape of the hole to be circular, with radius a.
In order to satisfy the aforementioned boundary condition on the
magnetic field component assume a magnetic current density J* and
charge density Q*& The J* is not simply 0 x E as for the "no hole"
probleﬁf The time dependence of all quantities is assumed to be of

+iwt
the form e .

-

V.H‘—‘-‘:‘a/’ *

_)

vxE+jwuH=-J%

he interchange of Stratton's notation into field point T and
source point T'.



implies
v-f*-i-jW(’*:_— 0 (10)
Instead of using magnetic volume currents and charges, it is.sufficient
to use magnetic surface current density _f and surface charge density j .
Then according to equation (10):
vk =-jng
Scalar and vector potentials help to simplify most problems.

b
Consider the vector potential F and scalar potential V.

- -
E=yxF (1)
faelk
Ha= - 12
€5 vy (12)
Using the Green's function \P(|T -T'|) = %’T and the gauge
r -t
condition,a—g-.‘rz - F-.:O » yields the following relationship:
F (@) = -j REHP(IT - ') ) ar (13)
v@ = [IEONPCIE - e (14)
Substituting these results into (1l) and (12), will yield the

field equations .

- -, = I Y

E (D -_[K(r’) x vy df

- . - -t

(D) -/[;&K(r') P-1(F) vp] dé
where the integral goes over the area of the hole, Because the hole is
very small, the retardation,which is of the second order of ka may be
neglected. Then (12) and (14) reduce respectively to:

-

Ha - 7

— ryj JF’
) = r = =
¥ G fy( ) T




In order to satisfy the boundary condition on the normal component of
the electric field, the magnetic current distribution f is used.
According to the foregoing:
E E (vx F)
2z % 0z vx z
T 1060
and a sultable form of F is
i

- - -
F=%E, " xr

Neglecting retardation, (13) yields
—> =, d?l — 2 — I/ E X r
J Ry =~ F(f =-4E,
IF-Fl
which implies

T xE,?
2m(a*-r)%

- -,
K(rjy=
provided Eoi is constant over the aperture region.
—
Note that v+« K =2 (0 ,
So that the obtained expression for the magnetic current does not con-
tribute appreciably to the magnetic charge density.
Now consider the magnetic field
R S
- | ~ -
Htan =7 Hotan VY.

The foregoing suggests

-

N
\7‘."—:'"/2 Hoi.r ' {15)
Since a constant inside field is produced by a uniform distribution of
dipoles on an 2llipsoid and the surface density of dipoles is propor-
tional to the ordinate of the ellipsoid,7 i.e.
;____ ( a*- r'z)'/z

the appropriate surface charge density is then,



- g -
-) . H’. l
He coHoI'Vﬁd'Cf’ (a*- r/g)’é . (16)

By direct calculation, we found C°= 7%:.6 Then the magnetic charge

density is

I —_ s
- T2 (0% 1'?)"% Hpt- r' .

The foregoing expression is used by Bethe to obtain a first order

contribution to the magnetic current density, However, an erroneous
result is obtained. Bouwkamp correctly obtains this first order
contribution and it is of the order of ka and hence may be neglected
in comparison to the zeroth order term at low frequency.

The tangential component of electric field is given by
- A -
Etan=27TnXK

—l’ »

r E 1
T(a*-r?)% “oz .
Expressing the electrical field in the aperature in cylindrical

coordinates: ’ ;

r'cos 8 E 1

Ex = T (a3- %)% oL
r'sin@ £ i
T (a*-r?)2 “or
, 1

Ez = ) Eoz .

The normal component of the magnetic field is given by:

m
~<
|

Ho= 274
Then the magnetic field components are

Hx-‘: ’/2 HO;
sz Ié Ho)i'

! - 1 F/
He= - <riai—ra& Mo * 1,




Note that the origin of the coordinate system coincidesswith the center

of the hole.



CHAPTER I1II

CAVITY THEORY

The theory of wave guides and cavity resonators is well formu-

lated in almost every field theory boo_k.8 For convenience the cavity

shown below islconsidered. é{ 8 I

|
P r—-£ d

o L,

X
The medium of propagation is assumed to be vacuum and the walls
are assumed to be perfectly conducting. The electric field in the

cavity then can be written as

. Py y ~ Z(Wt-ng)
E - (oni +E0]J'+ EOZ*) e

E are functions of x and y only with the z dependence

where on, Eoy’ oz

in the exponential term, and kg is the effective propagation constant.
The magnetic field has the similar form

o A A A ,‘{wT-/@Z)

H = (Hoxl + Hyyf+ Hoz k) €

From Maxwell's equations, the following formulas are easily

obtained:

10




z Z k‘ ( _Ke 35:,'_ ZHoz
0X

Wa S5x a2y
_ wi ____K's_ 252 2'/7’02
Eoy" _%EE W« i ax) an
\ K%
oF.z _ € DMz
Hox = c ( Loz K2 X
— 952 e >tfez
Hey = K-/?( =y a))-
According to Maxwell's equations
ixy;-r ;}% HK2ZG)Y =0
where'ybis E oz °F H . For the T™M mode (H = 0)
4322%2 _+_4? é%z K )fZF = ¢
where 2% 1})/ ( “”
> 2
(/(/)}:: K — K% .
.— A solution of the g{regoing is
E,7=(A 5inks X +8CoSKxX)(CSim Ky +Dcos Ky j)
where
k}—fK} (K

From the boundary conditions on the cavity walls, Kx = n7/p

and Ky = nli/q 7T'/
X m
Sin —-~L
Edz',ﬁqéﬂin SinTp P Z’
The same procedure may be followed for the TE mode (E oz ™ 0)
2°H 2 Hoz a _
0% + 92 +(K7) ng =

2
2 X’ )
1s the equation for Hoz' Using the appropriate boundary condition on

Y e



the cavity walls yields

nwrx mn)
Hoz K nm F 8

So the general expression for the field within the cavity is a linear
combination of both modes, including the explicit z dependence.
That 1is:

_ —z'%z r15% nrx mry
’,Lm(énme G € ) Sin P Sin g

EOZ =

E-;m f’%}CSHTTXCos.ﬂéZZ.

From (17) , if G, Gm’ , and F__ and Fm; can be determined from'

l4oz==£%;(r%m

boundary conditions, the fields in the cavity will be specified

completely. The other field components are:

Eax=,§-’ cos ";x 5:‘/7%"2 ( A € %7 O(,.m é 1% )

-3z VA
g 4 B0 5 5 (a5 e
- ’ F 4 v
+_1_Ig_ nﬂsnnnxcosmrfy(]:nmel&_*ﬁ,mf’ ’?)J
P P P
_ *If o"%z
Eoy = ,%'n sin "_F_l €05 E%l( 6nm 6nm )

. Z ks
iy B[ 45 o pin B (Gun | e

- Zz
+ A, M o5 OTX 5 MY (F € J:‘*ﬁm 719)]

% P 8
where
T wﬂ rnrr
0/nm _(,Z?‘)ﬁ_ L G'nm (K')2 F”’"
O(n:n;"{_:':&z"‘rfl:lé"m*% ’%ﬂan

12




tKe mr Ffwau_ nm
Gnm= - '%ﬁ' _5_ én/m- (KI)Z F F;;m

. .
Bom= - L% 2T G, - 44 P L

C(K* ()P P
On the z = 0 surface:
on = EO)’ =0 . .
” / . .
Therefore d,,m = - ;)/,,m , 5/,”' = —r-?”.m mAr'c'[ /rryJ//es
/
é}nm = —'é;h”7

/
an= - an

By using the foregoing, the tangential components of the electric field

become

= N X <0 MY <.
EOX-:’%'Z]O/,-;”;COS n‘g Sin g J/n/(gz

mT1Y

> o hTTX <y
_5 DTX oS SinkZ
e Eoy= 520 B 50 157 (00 T gE
By using the following orthogonality relation:

job sin %y Sin ’—"f] d1=8 Sy
J'P c0S —'{IXCO.S N7 dx = f;é gin
N

fog cos _%Eys,‘n -’%E] dy = 8—’/2 Eom

ff cos ALxsin 2T x dx =P &in
o P P
where

gem and é-in are Delta functions
/ 4‘ ,)J-rn]
Ein= PLATL (/' -

€ii=0.

"’ 13



For the cavity problem, on the z = d surface it follows:

X,-r/a (%=X, )*
nmx mny
Z?o{'m P&&”'?df’ coTp dx)' J o(x-Y ) on,Sln ] dj

(oS
2¢ Bom= Pgsmlggd xo—aSln d)( o= (x-xo)* *Y ; J

It is convenient to transform the cartesian coordinates into cylindrical
coordinates in the expression for the aperture field. I the origin of
the coordinate system is then shifted to the (xo, Yo? 0) point, the

calculation will be much more convenient Then for m and n even:

0SB co56+ Xo)
2Jdnm PSS n&d_/ l’dl’/ de EOZ (I’CO.SB-+Xfr)~ (Oa P 2)/4 0

- sin gk (r5m9+Jo)

2] Con= ng nl§dj’ I’drf de EOZ (rsin@+Y%)Sin'p p (f6059+7(o)

T (a- )%
. oS 2T (rsing+ Yo)
and for m and n odd integers: 8
I (reose+xs)sin‘5 (rcose+x,)
2]O’nm gSlngd/rdeeE T (- rJ)'/z

¢ COS 8 (I’Sme-fyo

: -4 (rsing+ %) coS p P 7 (rcosg+ %)
2f Crn Pgsinlgdf rdrfdof T (a*- [?)%
- Sin—— 8 (I'Sln9+]o)

where (xo, Yoo 0) are the coordinates of the center of the aperture.

Integrating with respect to r first and using the approximation

P,q>pa, than for m and n even:

14




Ejdnﬂ— TTPSSE(;A’gd fdgcos H(O-Se'f‘xo) I/'-"aj,,,@,/)
( Sith
- (AT oS8+ 4X,4)
2§8m= Tr—pgg,“ﬁ@zf dasin*g- (acasd +Xelcos gasing+))
(a Tsing +4%4)
and for m and ﬁ odd integers:
24 Om= ngs,n gdfdesm (4 COS@'*Xo)COST(aSInG-P)/)
( a’mcos6+ 4X.0)
24 8o TrPgSE(;)ZK fd@cos””(acoséﬁ(a Szn?—(a sing+ %)
@- gd
- (a'Teoso+4Y,a)

Because of the restriction that a be very small, we can use the

following approximation*:

sin ( Tasing)~2 '%”asme

~ N
Sih (——-acoSO) > -5 a CoS6

oS (i”—ra 5in0) 2 |
o5 (””acasé):fi |

The previous'relation yields:

*
Of course the approximation becomes inaccurate for very large m

and n., However the approximation is valid when m<¢q/30a and n<p/30a,
The error of approximation will be less than 0,00016. The knowledge
of O/pm and G,,,,) of those m and n should sufficient, -

15



For m and n even:

0y

_ E . )(,,Sln——
O(nm’—-\'-) —P—ZLSI_—'?Z@— (4100605 f; XJ)

B, 2~ 5@5)1(36{ (4,45 FXoCOS ; yi)

and for m and n odd 1ntegers.

Ol = gfzz,(gd (4 X0 Sin —,;XOCOS"’Y)

1
6. Péfgm(gd (4 yoatos Bl sin 2 5 )

As noted earlier in chapter II, Bethe's approximation comsiders only
a single plate. In this problem, there is a reflected wave contribution
to the fields in the aperture. A means for determining if this approxi-
mation is valid in this problem would be to compare the size of the E,

field induced in the cavity to the impressed field, Eoi. 1f the induced

field is small in comparison with impressed field, then the above
approximation should'be good, since the aperture radius is small compared

to the wavelength.

16




CHAPTER 1V
SCATTERING CONSIDERATIONS

According to the forgoing formulation, in order to determine the
field inside the cavity, it is necessary to find the impressed
electric field., Obtaining the impressed field components is simpli-
fied somewhat by not having to consider the aperture present,
provided the cavity walls are good conductors. Then

Eoiz = e/é
where {? is the surface charge density on the outside wall of the cavity
at z =d,

For harmonic time dependence, the equation of continuity yields

=L [ZT 0N+ 5Ty (%))
Therefore '

Eo=de (& T (XN +55 Ty ()]
which expresses the impressed field in terms of the surface current
density. In general, the surface current is a periodic function of
position. Hence the interior fields are proportional to the surface
current density that would exist at the position of the aperture.

A theoretical-numerical approach may be used for solving Maxwell's
equations, directly applying the finite-difference methods suggested by

K. S. Yee.? 1In theory, this numerical attack can be employed for the

most general case. However, because of the limited memory capacity of

17



present day computers, numerical solutions to a scattering problem can
probably be obtained only for the two dimensional problem. In order
to fit this restriction, it is assumed that p is very large and the
incident electric field is polarized in the yz plane so that all field
components,. incident and scattered, have little variation in x coordi-
nate, requiring the cavity to appear more like a waveguide.

From symmetry considerations, the only nonzero field compoents are

EOZ

Jfoy_ ZHox

2t T xZ

2Epz . _ ZHa

€ >t E34

—U 2ox _ SFEoz _ 2foy
2t T Y 2L -

The system of equations is particularly suited to solution by

and Eoy' Then Maxwell's equations give:

difference technique. The method proposed by Lax is used to set up the
difference equations.10 It automatically '"centers' the difference
formulas thereby reducing the translation (or round-off) error.

The resulting difference equations are:

A,C[E,,, 3,441 Eo/f’(; e G V(3]
L (ESH 0 A-Ey (gett )= S (Mol ‘- Hox (3 4)
=L {5 g A)-Hae (34 }zg( ”*@M R)-Ery A 3-16.R)]

_ (B he)- B “His 44

Letting
A
T = AT =
T=Ccot=Tre
— [ _ .
Z =% = 3767
then:

18




- N
E;;%f,ﬂ*'/;)’f; /’2/07/'(+/2 #‘?'E[Ho:(;' K11)-Hyy /;/*?)]
E”/?;f )= 7yt ) -E i ) Ho! - %/J
)
(]() Hax(itf) g«y[fN A(f*éf’() E% t-3
1'33 Ve [Zi;y (?7 ‘@7V) e/ (}? f, ///ii
The value for H (g,h), E k(g, h+k), E %(g+%, h) are obtained from
the incident wave. For further discussion in the mechanics of
solving the difference equations, the author defers to Yee.9
The quantity that is needed for the aperture problem is the
value of the normal component of the electric field at the surface
containing the aperture, in particular Eoi(xo, Yoo d, t). It is
pointed out that the difference formulation is carried out in the
time domain whereas the previous formulation is developed for the
frequency domain. As the input for the frequency domain the Four-
ier transform of Eoi(xo' Yoo d, t) must be used. Then the calcul-
ated values for the interior fields of the cavi;y are interpreted
as the Fourier transforms of the interior fields for an incident
electromagnetic pulse (the particular pulse that is used to

obtain Eoi(xo, Yor d, t)).

19



CHAPTER V
CONCLUSION

By choosing a rectangular cavity with a small aperture in one side
it has been possible to use small aperture diffraction theory to obtain
the field penetration from the cavity exterior into the interior of the
cavity. Also the same formulation can simply be extended to include the
treatment of penetration of fields through small apertures into wave
guides., Bethe predicted that similar field penetration through small

11 This leads one to conject

apertures in curved surfaces would occur.
that the results obtained for the rectangular cavity considered in this
thesis would also apply, at least qualitatively, for cavities or shields
of arbitrary configurationm.

With the advent of higher capacity high speed digital computers the
basic formulation presented in this thesis could be used in the treat-
ment of more complex shield or cavity configurations, Also it i:
observed that a knowledge of the field configuration within the cavity

would allow the calculation of the pick-up by small antennas inside the

shield,

20
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