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Abstract

Methods are presented to éalquate the electromagnetic penetrability
due to an aperture in a perfectly conducting sphere and cylinder. The
formulations for each geometrv are quite different. Dual series equations
result from the analysis of the spherical problem, while the analvsis of
the cvlindrical problem leads to an integral equation. These analyses
have the potential, for low frequencies, to lead to quantitative error
bounds for a class of shielding problems. This report presents the low
frequency limit to these two particular problems and outlines the procedure

for obtaining low frequency corrections.
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T. Introduction

The general problem treated in this work is the low frequency electro-
magnetic penetrability of finite structures which contain an aperture. This
problem is necessarily difficult because the simplest canonical problem,
the infinite perfectly conducting planar sheet with a circular aperture, has
a very complex solution [1], [2]. This planar problem has been extensively
treated by various approximation techniques (3], (47, (5], [6] and they yield
a more tractable solution. We have discussed the planar sheet problem, not
only to indicate the limited state of the art, but because the planar solution
is used in the approximate analysis of the penetrability of finite structures
which contain an aperture. This approximate analysis uses the fact that when
the internal Green's function of a structure is known, or equivalently the
modes of the closed structure, then one can calculate the fields that penetrate
Into the structure if one has some limited knowledge of the fields in the
aperture. The approximation in this analvsis is that the fields in the aperture
are the same as those that would be present in that same aperture if it were
cut in an infinite planar sheet rather than in the structure of interest. The
usefulness of this method.is that it is a tractable procedure for obtaining
solutions to very difficult problems; however, its limitation is that there
is no self-contained procedure for placing quantitative bounds on its accuracy.
If one had a cononical solution to compare to the one obtained by the preceding
procedure, then one could better assess its domain of validity. Providing
solutions whose accuracy is known is one of the two purposes for undertaking
this present work. The other purpose is to examine these solutions and infer
from them both qualitative and quantitative shielding effectiveness of structures
as a function of their size, the aperture size, and wavelength.

In this work we consider a plane wave incident on both a perfectly con-
ducting sphere that has a circular aperture cut in it and on a circular cvlinder
that contains an infinite slot. For the cylindrical case the incident magnetic
field is parallel to the axis of the cylinder. We treat the spherical problem
and cylindrical problem bv two different methods. We treat the spherical
problem by using a method that has previously been used by Sommerfeld in analyvzing

a scalar cylindrical and a scalar spherical scattering problem [71. This



method allows us to solve for the electromagnetic field that penetrates to
the center of the sphere in a manner that allows us to place quantitative
bounds on the accuracy of our solution. It suffers, however, from a short
coming not mentioned by Sommerfeld. In following Sommerfeld's procedure,
there appears a step where it seems a parameter should have been introduced
which should be analytically determined. Instead, this parameter has been
effectively set equal to unitv. In our vector problem we explicitly introduce
two unknown parameters and carry through our solution in terms of these para-
meters. The problem remains to determine these parameters. If we can justify
setting these parameters equal to unity then we have our desired procedure .
and solution. We have set these parameters equal to unity and have considered
the static 1imit. The resulting expressions show that tor apertures that are
only moderately small, very little of the incident field penetrates into the
sphere. The results also show that the shielding is four times more effective
for the electric field than it is for the magnetic field.

In analyzing the cvlindrical problem we use an integral equation approach
that avoids the introduction of the unknown paramecters. Using this approach
we can show that ir the static limit the cylindrical structure allows complete

penetration of the incident magnetic field.
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I1. Scattering by a Sphere With a Circular Aperture

Consider a perfectly conducting sphere with a circular aperture oriented
in the coordinate system that will now be described. The origin of the coordi-
nate system is at the center of the sphere described as r = a and the aperture
occupies the region r = a, " = 8 =2 a. We consider a plane wave incident on

this structure given by

E. =ae , H. =Yae (1)

1 1 _:
where Yo = (eo/uo)f, k = w(uoeo)ﬁ’ and the suppressed time dependence is e lwt.
This situation is depicted in figure 1. We will analyze this scattering problem

by introducing the Debye potentials u and v. That 1is

E

v x 7 x (rv) + imuOV x (ru) (2a)

and

H=797 ~ 7. x (ru) - imEoV x (rv) (2b)

Next we determine uy and v, so that when they are substituted into (2) they
yield the incident field given by (1). The procedure for obtaining these
quantities is as follows. First we note that the radial component of E is
given in terms of v alone, while the radial component of H is given in terms

of u alone. That is

2 .

r - E, = r(ii— + kz)(rv ) = r sin 8 cos ¢elkr cos 8 (3a)
- =i 2 i

ar

and

82 2 ikr cos 8
r «- H. L =r(—— + k7 )(ru,) = Y r sin 8 sin ¢e (3b)
- i ar2 i o

Using standard relationships we obtain

2

P 2 1
r( 5+ k )(rvi) = 1 cos )

(1) (2n + l)jn(kr)Prll(cos 8) (4a)
3r n

1
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(4b)

sin ¢ ) ()% (2n + l)jn(kr)Pi(cos 9)

and
2 Y
3 2 : 0
—— = ———
r(—5 + kD (ru) = 5
ar n=1
From (4) it follows that
Yo e n _2n+l 1
u; = 77 sin 9 nzl (1) T jn(kr)Pn(cos 8) (5a)
and
1 © .0 2o+l 1
v, = 1g cos ¢ nZ1 (1) Y Jn(kr)Pn(cos ) (5b)
We will now argue that the solution to this scattering problem can be obtained
bv considering two decoupled scalar scattering problems. If u and v satisfy
@ +PHu=0 (6a)
@ + v =0 (6b)
then E and H given by (2) satisfy Maxwell's equations. Furthermore, if u
satisfies the boundary conditions
u = 0 on conductor _
(7a)
u and %% continuous through spherical aperture
and v satisfies the boundary conditions
3
2Gy) 0 on conductor
(7b)

ar
v and T— continuous through spherical aperture

-

then the tangential component of E vanishes on the conducting portion of the

RS
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sphere and the tangential components of both E and H are continuous through
the aperture. Thus, we can satisfy Maxwell's equations, the perfect conductor
boundary conditions, and the continuity boundary conditions by considering
(6a) and (7a) and (6b) and (7b) as two uncoupled independent scalar scattering
problems with the corresponding incident fields given by (5a) and (5b). If
edge conditions were also satisfied then we could be assured that the solution
obtained through the analysis of the two uncoupled scalar problems is unique.
We will proceed with the analysis of the two scalar problems with the under-
standing that edge conditions should be verified.

We now consider the problem posed by (5a), (6a) and (7a). Let

u = u, + u; r<a (8)
and
= +u D)
u = ui uS raa
where
= 3, k) n o
u_ = z 7 (ka) {anoPn(cos 8) + 2 (anm cosm¢ + bnm sin m¢)Pn(cos 3)} (10)
n=o “n m=1
and
, = 2P a _
ug {c oPn(cos 8) + Z (cnm cos m¢ + dnm sin m¢)Pn(cos 9)} ,(11)

n=o h(l)(ka) n m=1
n
then application of (7a) leads to

o n
m
nzo {anoPn(cos 8) + mzl (anm cos m¢ + bnm sin m¢)Pn(cos 8) = - ui(r=a)

0 <8 <a (12)

and



™ n
nzo Wn(ka){anoPn(cos 8) + mzl (anm cos mo + bnm sin m¢)P:(cos 8) =0

a<e<1‘|’ (13)
where
kj;(ka) khél) (ka) ik
W' (ka) = = - = (14)
n Jn(ka) h<1)(ka) jn(ka)h(l)(ka)(ka)2

n n

and the prime associated with the Bessel and Hankel function indicate differ-
entiation with respect to ka.

We have made use of the fact u; = u; for all 6 in order to conclude
that an = %m and bmn = dmn' Next we use the fact that (12) is valid for
all ¢. Since the ¢ dependence of ui is sin ¢ we conclude that the only non-
zero expansion coefficients are bnl' These are still an infinite set of
unknown quantities; however, we will be primarily interested in the electro-
magnetic field at the center of the sphere and this requires a knowledge of

only bll' In order to solve for b11 we form the following quadratic form

a
N
Qy = ( Z b ., sin ¢ Pl(cos g) + u (a))2 sin 9 de
N n=1 nl n i
o
[ 1 2
+ J ( T Wb P (cos 8))° sin 9 ds (15)
unnlna
n=1
where
W = aW' = i
n

n . (1)
Jn(ka)hn (ka) (ka)
We obtain N equations for bll’ ceey bVl from the requirement that these

coefficients should be chosen so that Q; is a minimum. Explicitly these

equations are

=0 m=1l,...,N (16)
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and the approximate solution for b is a function of N the validity of which

11
is assumed to improve with increasing N. The reasons for considering the

minimization of Q; as a criterion for obtaining the bn 's are the following.

1
If the sphere contained no aperture, a = m, or if the conducting part of the
sphere were removed, a = 0, then (16) would yield the correct solutions for

the bn 's for any N. As N approaches infinity we know from (12) and (13)

1
that each integrand in the two integrals comprising Q; approach zero. We
also note that each of the terms in (I5) is positive so that minimizing the
sum guarantees that each term is small. The procedure of introducing Q;
for our spherical electromagnetic scattering problem is essentially the same
as that used by Sommerfeld in analysis of a scalar cylindrical and a scalar
spherical scattering problem _7]. If we followed his analysis more closely,
we would set the factor Ty 1. His arguments for doing this are not clear
and we carry T, @s an unknown factor until the end of the analysis. Since
the edge conditions together with the boundary conditions we have already
imposed guarantee that our solution is unique, it is believed that the
imposition of the edge conditions should determine Ty

Before we perform the operation indicated in (16) we modify (15) by
replacing u, by an expression which is the best possible least square approx-
imation to ug which contains N Eerms. It is assumed that no more accurate

expression for u, is justified by our approximate analysis. We now write

“-a<§<b +q )P y)2sin ade + 2ﬂ<§w Pl (cos 8))%sin 8d8  (17)
QN = nl q )P (cos ) sin Ty LW b Ph cos sin
n=1 n=1

o

where
N Y
1 _ o ,..n 2n+l
u; o~ n-z-l q P (cos 8) , q = (1) ety dnk®)

Performing the differentiation indicated in (16) we obtain

a

N

1 1 .

nZl(bnl + qn) J Pn(cos S)Pm(cos 8)sin odse
o

v
N
+ Tz z WWHhH J Pl(cos B)Pl(cos f8)sin 8de = 0 (18)
u nmnl n m

n=1
o



Next we define

™

1 1

hnm = J Pn(cos G)Pm(cos 8)sin 8ds , (19)
a

consequently

2 (ml): s = h (20)

a
1 1
a ) { a =
J Pn(cos U)Pm(cos 8)sin &8d8 7+l (m=1)" ‘om
o

Substituting (19) and (20) into (18), we obtain

N N
2 (m+l)} _ _2 =
2m+l (m-1)! (bml + qm) nzl(bnl + qn)hnm + ‘u nzl wnwmbnlhnm =0
m=1l,...,N (21)
@)

This is the equation that enables us to algebraically solve for b11 . Before
presenting the computational results for bll’ we will derive the equation

corresponding to (21) for the Debye pdtential v.

Let
vEv, + v rs<a (22)
i s
and
v =v, + v rT=>a (23)
i s
where
. o jn(kr) n m
v = 7—7227 {enoPn(cos 0) + ) (enm cos m¢ + fnm sin m¢)Pn(cos 9)} (24)
n=o Jn m=1
and
N © hél)(kr) n m
v = Z —TTS————-{g oPn(cos 8) + Z (gnm cos mé + hnm sin m¢)Pn(cos )} (25
n=o hn (ka) n m=1

10
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Application of the boundary conditions (7b) leads to the equations

] n
m
Z rn{enoPn(cos 8) + Z (enm cos m¢ + fnm sin m¢)Pn(cos 8)

n=o0 m=1
avi
=E—Vi—a—'—ar] 0 <8 <a (26)
T=a
and
ngo Bn{enoPn(cos 8) + mEl(enm cos m¢ + fnm sin m¢)Pn(cos 8) =0

a <8 <7 (27)

It is not necessary to separately solve for 8 and hnm as they are simply

related to e and £ by
nm nm
re =sg , rf =sh (28)

The quantities remaining to be defined in (26) thfough (28) are

dj_(ka)
ka n
Tn ” L+ jn(ka) d(ka) (29a)
ka dhél)(ka) (
S, 7 b 29b)
n h(l)(ka) d(ka)
n
rn
Bn =175 (29¢)
n

We now note that for our particular incident field, the only ¢ dependence in
v, is cos ¢, so that from the fact that (26) is valid for all ¢ we can conclude
that the only non-zero expansion coefficients to be determined are the enl's.

Finally we form

Q= | ( ? (r e, +t )P (cos 8))%sin 8do + 2 | ( § 8 e P (cos 0))%sin 2de (30)
N o] D nl n’' " n 0% sin v nel P nl n 0% n

11



where

(31)

v, ©
(v, + a — = cos ¢ z t Pl(cos 8)
* ot r=a =1 ° 0
so that
dj_(ka)
1 ,.\n 2n+l . n
tn ik (1) n(n+l) (Jn(ka) + ka —ETEET—)
. 2 . 2 . e

Again 1, serves the same role as did Ty Choosing e ) to minimize (30) and

using (19) and (20) we obtain

2 (m+l)!
2m+l (m-1)!

( 2

N
r’e . +rt)=~- J(re.,+t)rh + o2
m ml m m £ n nl n’ m om v
n=1 n=1

N

Z Banenlhnm =0

m=1,...,N

(32)

This equation serves the role for the v potential that (21) serves for the u

potential. As mentioned before

tribute to the scattered fields

putation
<oy jl(kr) )
Ys T P11 jl(ka) sin
< 3 (kr)
v cos

s %11 j (ka)

For r ~ 0, we rewrite (2) as

it is only the bll and e, terms which con~

at the center of the sphere. For this com-

¢ sin 6 + non-contributing terms

¢ sin 6 + non—-contributing terms

2 . 2

3 < 1 3 1 9 <
Hrs‘~ ;;E (rus) ’ Hes r 3r38 (rus) ? H¢s r sin 9 3ro¢ (rus)
2 2 2

3 < 1 3 < - 1 9 <
F‘rs‘~ ;:5 (rvs) ’ Ees r 3r3d (rvs) ’ E¢S r sin 6 3rd¢ (rvs)

Using (35) and (36) at the origin we find that

12
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(34)

(35)

(36)
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and

HT = Hi + Hs
Equations (37) and (38) are exact
b

If we set N = 1 in each of these e

11 and ey To approximate these

mations for these quantities to be

S (D

11
and
R
where
y =
and
§ =

2 11 —
(1 + E'EITEZT)Ei a3n
kb
s a2, Puoo
= (1 + 3 Z, J.l(ka))ni (38)

but we must use approximations to determine
quantities we return to (21) and (32).

quations then we obtain our first approxi-

The quantities Wl, rl, 81 and h11

(19). Substituting (39) and (40)

=(1)
Er

and

3Y j, (ka)
ol > (39)
2k(- 1 + tuy)
3ji(ka)
S e, 40y
2k (1 + rv6)
2
11
2
8. h
> L1 (42)
have been defined in (15), (29a), (29c) and
into (37) and (38) we find
136 -
= — Ei (43)
1 + 1768
v
rzy
S S— (44)
-1+ 1ty +

13



If we could justify setting WS 1, then (43) and (44) would be our
desired result. For the sake of presenting some numerical results that are
easy to obtain and are of potential usefulness, we set 4 and T, equal to

unity as suggested by Sommerfeld's analysi- [7land consider the limit ka - 0,

to obtain

=(1) _ 9 4=

ET ig € Ei (45)
and

(1) 9 4%

HT 7€ Hi (46)

where ¢ = 7 -~ o and ¢ is assumed to be small for the validity of (45) and (46).
This shows that the shielding of the electric field is four times greater than

that of the magnetic field.

In future work it is intended to obtain the next corrections to (45)

and (46) by letting N = 2.
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III. Scattering by a Cylinder With an Axial Aperture

We consider a plane wave incident on a cylinder with the magnetic field
directed along the axis of the cylinder. We introduce the natural coordinate
system (r, 8, z) with the origin at the center of the cylinder so that it is
described as r = a. The cylinder is perfectly conducting but it contains an

aperture corresponding to the region 8, £ 8 < 8,. This scattering problem is

l 2
depicted in figure 2. The incident field is
i = H,eikx
zi i

and the total magnetic field satisfies the equation
(@ +1Pu_ =0

where

2
1 3 1 3 3
v Lr + 2 .2 ’ Lr r or (r ar)
r ' 36
with the requirement that the scattered magnetic field satisfies the radiation
condition at infinity. We now introduce the two Green's function appropriate

to this problem. The external Green's function Ge satisfies the equation

e+r'2a
W k36 .= - st -6 -8") = - 8(c -~ ")
e,l ' - =
T Sa

I~>r
the boundary condition (ace)/(ar) = 0 on the entire cylindrical surface and
the radiation condition at infinity. The internal Green's function GI alse
satisfies the preceeding equation and the boundary condition (BGI)/(Br) = 0,
but the additional boundary condition is that it should be finite at the
origin. It is straightforward using standard procedures to solve for Ge and

G The resulting expressions are

1°
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A7

(1) '
Hn (kor )

ty o L ' ¢)) (' in(6-3")
G (xix") =~ ; {3 (kaH "’ (kr) - J_(kr)H (ka)}e
e 41i o Hr(ll) (ka) n n n n }
as<r<r'
(1)
® H (kr)
o 1 n . (1), (1)* in(6-5")
G (xlr) =v | o (I ka)E " (ke") - I e (ka)le
e 4i = Hél) (ka) n n n n }
r'<r <o
o J (kr) . ,
' 1 1 L4 4 f -3
G xleh) = Hng-m 33-(—1(—5 {HIS ) (ka)J_(kr') - Hrgl)(kr )Jn(ka)}em(e 55
0sr=<r'
w© J (kr'")
. 1 c ()" , in(6-6"
G (xlz) = ¢ nL, J_:TE)— D kada e - 1 e 3 (kayfetn -2

r'' < r<a

where prime denotes differentiation with respect to the argument ka. In

iaty ey
o

order to derive our integral equation we now use the Green's theorem
2 ' 'y (o2 2
B (V" +1006(]r") - 6(zjz) (7" + kDHH, =7 - (H,9G - GVH_)

and integrate this equation over the internal and external regions. The

integration over the internal region yields

27
) 2
- ' = . - x
Hz(£ ) J a_ (HZVGI CIVHz)a ds %7
(o]
Using the facts that a_ - VGI = 0 at r = a for all 8 and a_ VHZ = 0 on the

conducting portion of the cylinder (47) becomes

3H_
— G (z]r")ade (48)

92
H (') = f
®

The integration over the external region yields

-




27 2m

. - - 2

- ' = . hy - - - -

Hz(r ) lim J a (Hz7Ge GeVHZ)rde J a_ (HZVGe GeVHz)a ds (49)
o o

The first integral on the right hand side of (49) is equal to the negative of
the total field, HzT’ that would be present if the cylinder contained no
aperture. One could prove this by substituting the explicit expression for
Ge and noting that at infinity it is only the incident part of the total Hz
that could contribute to this integral at infinity. Another way to see that
this is true is to note that the second integral in (49) vanishes if there

is no aperture. Im fact it is only the integral over the aperture in the

second integral that is non-zero. Using these facts (49) becomes
6
2 8Hz
' . - —_ !
H (') = H 5 J s G, (r|r")ads (50)
®
We now combine (48) and (50) using the boundary conditions that HZ and

(aHz)/(ar) are continuous through the aperture to obtain

5]
Z SHZ
' —] ———
HT(£-> = [ =T (GI + Ge)ade (51)
%

In order to use more standard notation we interchange the role of 8 and 8'
and define the known quantity HT(r) 2 £(89) and the unknown quantity

(3HZ)/(8r') = ¢(6'). Equation (51) then becomes
5]

2
J $(8')K(8,9')de' = £(8) (52a)
®
where
™ iein(e-e')a
K(8,8") = | 55— X (52b)
n=-» 1 (ka)“J'(ka)H (ka)
n n
and
~2iH, E (i)ne-ine
£(9) = ; (52¢)
nka = oo Hél) (ka)

17



(1)

We now use the asymptotic forms for Jn and Hﬁ for small arguments

(n’ _2i (' ! -n-1
Ho (u) P Hn (u) ~ %r C%) n nx1

f(g) ~ - & ") ~ —1 — @yl
JO(U) 5 > J @) D) (2) nx1
where u = ka.
Using the small argument asvmptotic form-
3 2 pu !
NN a . u ¢ cos n(é-8"')
K(g,»" ~ =5 {ir + 7(5) 2 ) ———n——-—} (53)
T U n=1

The sum that appears in (53) can be expressed in clesed form as

sgs_r}éi-_“_l = 1n|2 sin(e_ze’)l Go

Wr~18§

n=1

Substituting (53) and (54) into (52a). we obtain

?2 P .
1 : -a!
- Jl 8 (8 ;a dg' +2inj $(8")1n|2 sin(eze Ylade' = £(8) ~ H (L + 2iu cos 8)(55)
Tua
1 ®

For (6-8')/2 << 1, 1n|2 sin((6~2')/2)| =~ lnle—e'l, (55) is a Carleman integral
equation and it can be solved exactlyl 81 It is not necessary to solve (55)
to get the low~frequency limit for the field that penetrates to the center of

the cylinder. Returning to (48) we can write the field at the center of the

cylinder
°2
= 1 I (1)' - (1) ' ' '
H_(0) ‘_'—_41Jc’,(ka) (87 (ka)J_(ka) - H] (ka)Jo(ka)} J 5(6')ade
¥
5, |
- 1 5 4 1
HZ(O) = Jé(ka) (ka)Zn ." v(5 )ade (56)
)
1

In the limit ka - 0, u - 0, we find from (55) that

13
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°2
J $(6')ads' ~ - Hirr(ka)2

8

substituting this into (56), we find that
w(ka)zHi
B0~ -5 (ka)J? (ka) =~ By

This is true no matter where the aperture is located.

19
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Summarv of Results

A method for calculating the electromagnetic field that penetrates a
perfectly conducting spherical shell containing a circular aperture is
presented. This method has the potential for allowing the determination of
quantitative error bounds on this shielding problem. It also allows ome to
readily obtain the low frequency limit. In this limit the electric field
is reduced four times as much as the magnetic field.

The effect of an axial aperture in a perfectly conducting cvlinder is
studied in a manner that would allow low frequencv corrections. The static
limit for the field that penetrates the structure is found when the incident
magnetic field is axiallyv directed. For this case their is no shielding
and the entire field penetrates through the aperture no matter where it is

located relative to the direction of the incident field.

P
&
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Figure 1. Spherical scattering geometry.
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Cylindrical s

Figure 2.
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cattering geometry.

*



References
1. Andrejweski, W., Naturiss, 38, 406, 1951.
2. Nomura, Y. and Katsura, S., Science Repts. Ritu, B (Elec. Comm.),
10, 1958.
3. Levine, H. and Schwinger, J., Comm. Pure and Appl. Math., 3, 355, 1950.
4, Bethe, H. A., Phys. Rev., 66, 163, 1944,

5. Haung, C., and Kodis, R. D., and Levine, H., J. Appl. Phys., 26, 151,

1954.

6. Eggimann, W. H., IRE Trans. on Microwave Theory and Techniques, MIT-9,
408, 1961.

7. Sommerfeld, A., Partial Differential Equations in Physics, Academic

Press, Inc., pp. 29-31, pp. 159-164, 1949.

8. Carleman, T., Math Z., 15, 111, 1922.

23



