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‘ I. Introduction

The results presented in this note are a first step in ob-
taining a knowledge of the current induced on a very long cylin-
drical structure, such as a long wire antenna used in very low-
frequency communication systems, subjected to electromagnetic
transients. The problem is idealized by calculating the trans-
ient axial current induced on the surface of an infinitely long,
perfectly conducting, circular cylinder in free space by a
transient incident plane wave. The incident plane wave has an
arbitrary polarization and an arbitrary frequency dependence.
The geometry of the problem is presented in fig. 1 where the
axis of the cylinder of radius "a" coincides with the z-axis.
The surface of the cylinder is defined by the surface ¥ = a and
the incident wave has a propagation vector k in the p = ¢l

plane and the angle of incidence is defined by ¢l.

The problem is divided into two parts. First, the axial

‘ current induced on the cylinder by an incident vector plane
wave polarized with the electric field vector perpendicular to
the axis of the cylinder is considered. It is shown that the
induced axial current is zero for this case. Secondly, the
axial current induced on the cylinder by an incident vector
plane wave polarized with the magnetic field vector perpendicu-
lar to the axis of the cylinder is calculated. The axial cur-
rent induced on the cylinder by an incident wave of arbitrary
polarization is the linear combination of the currents induced
by the two fixed polarized waves contained in the wave of arbi-
trary polarization. The two fixed polarizations described
above are shown in fig. 2.

The solution of the idealized problem will provide an
early time solution for the real antenna since the assumption
of an infinitely long structure is no limitation in the time
interval of interest. That is, the time interval between the
instant the leading edge of the incident wave reaches the cylin-
’ drical surface where the current is observed and the instant
when the reflections from the ends of the structure have effect.
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From fig. 3 we see that the applicable time interval is from
zero time to the minimum value of

11 22
E—gl - cosel) ' E—(l + coselﬂ

Zero time is referenced to the time that the leading edge of
the incident wave reaches the cylindrical surface where the

current is observed and c is the speed of light.

II. Electromagnetic Fields in Cylindrical Coordinates

The general form for an electric field with zero divergence
can be written asl+

E = E, Z;anﬁ(“ (n,gy,0) + Bnﬁ(“ (n,zy,3) (1)
n=o

where E is some convenient constant with dimensions of volts
Eer meter, o and Bn are appropriate coefficients, and ﬁ(z) and
N(z) are vector eigenfunctions in cylindrical coordinates. Note
that only a particular discrete gy is used in equation (1) thus
simplifying the expression for the electric field as given by
equatioh (28) in reference 1. Zq will be clarified later in

this section.

The magnetic field expansion can be obtained from the
electric field expansion by replacing

1Y n,0,,8) > 28 (0,09

(2)
8% (n,z,8) > LM (a9

where.2 is the wave impedance.

tThe frequency dependence is suppressed in equation (1).
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FIGURE 3. FINITE CYLINDRICAL STRUCTURE AND AN INCIDENT ELECTRO-
MAGNETIC WAVE.
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Similarly an expansion for H can be converted to one for E by
substituting

Y (a,2,,%) + -1z (0,2,

(3)
% (%) (n,25,9) > ~izi (%) (n,20,3)
The M end N functions are given by

(4)
8 n,0,8 = Ly <« B (n,0,,9

where k is the propagation constant, gz is a unit vector in the
z direction and T is a solution of the scalar wave equation

given by

-ikzgl;cos(n¢)}

(2) ey = p(2)
T (nICllo) = Fn (kwc2)e [sln(n‘b)i (=)
with .
2 2 _
242 - 1 (6)

Fél)(kwc ) is one of the cylindrical Bessel functions
I o(kvz,) , ¥ (ke , B{Y vy, B % (kyry) for o =1, 2, 3, 4
1n that order. The thlrd argument of T corresponds to using
cos(n¢) or sin(n¢), respectively.

The M and N functions have the components



(%) :
Fn (kwgz) -lkCl

(2) ey _ (-sin(n¢)|
My (8. = g © % cos (n¢) |
(L) ey _ . (L) k%) (cos (n) |
My~ (n,Ey,0) = —EFpT (k¥Z,) e |sin (n) |
(%) e, _
Mz ( Igllo) - 0
(7)
(%) e, _ . (2) " ~1k2%) (cos (ne))
N, (n,Ty,0) = i 0F 7 (kUgy) e |sin(no)|
(2) :
F (kvg,) -ikze .
(2) e s n 2 1 -Sln(nfi’))
Ny ' (n,8qy,0) = -i%y ] € cos (n¢) |
2.(2) -ikzcl;cos(n¢)[

(2) e, _ )
NZ (nlCllo) = can"(kaZ) e ISin(n¢)‘

The general form of the electromagnetic field expansions
in cylindrical coordinates is described in detail in reference
1. Having the general forms of E and H fields in cylindrical
coordinates we now consider vector plane waves. The general
forms of the electric and magnetic fields of a plane wave with
direction propagation gl in the ¢ = ¢l plane are

—ik-T ~ik-T

E=Ee H=Ha
= 558208 ’ = Ho®3®

or (8)

> > > -> 'j(*--*
E = -E_eje , H=Hge,ye 1x°r

where gl’ 32, and 33 are mutually orthogonal unit vectors with

the relations
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> -> % _ >
1’ e, e; = e; (9)

and k is the propagation constant.

If ¢l =0, Cl = cos(el), and Cz = 51n(91) we have the ex-

pansion
[« <]
2T L L S s 1 =)™ (n, 2,0 (10)
e2e - T n,o i
2 n=o
and
e e‘ii‘; = = E [2-6_ 1 (-)™Y (n,z,e) (11)
3 cz £t n,o r=1-’

as given by equations (50) and (51) in reference 1. The func-

tion Gn ° is the Kronecker delta function.
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III. Axial Currents Induced in the Cylinder by an Incident
Plane Wave with the Electric Field Polarized Perpendicu-
lar to the Axis of the Cylinder

Consider an incident vector plane wave with the electric
field polarized perpendicular to the z axis as shown in figure
2A. The angle of incidence is 61+and the direcEion of propaga-
tion is given by the unit vector k. Note that k is always in
the ¢ = ¢l plane where ¢l is a constant. Since the cylinder
geometry is independent of ¢, ¢1 can be equal to zero without
loss of generality.

The incident electric field is

E ii-;

inc

-> -
—EOF(s)e3e

E F(s) - '
= -2 — ) 12-6_ 1D (n,z 0 (12)



where F(s) is the Laplace transform of the incident field time

history.

In order to satisfy the boundary conditions the tangential
electric field on the perfectly conducting cylindricai surface
must equal zero. And the reflected wave must be outward going
and equal zero for wcz = ®, The second condition dictates that_
2 = 4 for the reflected fields. The first condition requires
that

=0 (13)

and
E. ) + (E_) =0 (14)
[ inc ¢ re cb],w .

The only expansion choice available for Ere that satisfies

equation (13) is

x _ (4)
Ere = EOF(S)ZanM (anl,e) (15)
n=o

The substitution of equations (12) and (15) into equation

(14) gives

Jn(kacz)

; (16)
1(2)
n

4 = -;L__[z (-1) "

-8 ]
n 2 n,o

(kacz)

The total field distribution can now be written as

10




¥
=y

inc re

E F(s)i <« N
- o '~ }E:[Z_Gn,o](i)n —M(l)(n,cl,e)

%2 n=o
J (kaz.,)
(2)! 2 §(4)(H{Cl,e) e (17)
H (kacz)
and
-> EoF(S) = (l)
H = _ZEZ—_ 2[2 $ ](l) (n, Cl'e)
n=o
Jl(kaz,)
(2). 2 N(4)(n,Cl,e) (18)
Hn (kacz)

The total axial current in the cylinder can now be '‘calcu-
lated as -

2T
I = au[ H do
o,

o

akE F(s) 2m
- n+1l (1)
= ZCZ ./; E [2- 6 n,o 1i nCl Fn (kacz)
I (kac.) —ikzg,
n 2 (4) e .
F (kag,)| =———— sin(n¢)do
H(2)'(kac y n 2 ka
n 2
=0 ) (19) .

11



IV. Axial Currents Induced in the Cylinder by an Incident
Plane Wave with the Magnetic Field Polarized Perpendicular
to the Axis of the Cylinder

Consider now an incident vector plane wave with the mag-
netic field polarized perpendicular to the z axis as shown in
figure 2B. The incident fields are given by

> > ik-r
Einc = EOF(s)e2 e
(20)
= EoF(s) > -ik-T
H. = ———— e, e
inc Z\ 3

From equations (10) and (1ll1) we see that Ein can only be

expanded with N functions and ﬁinc can be only ex;anded with M
functions. The reflected electric field then can only be ex-
panded in N functions to satisfy both equations (13) and (14).
Since the reflected wave is outward going, & = 4. Thus, the re-

flected electric field is given by

B =E ) 88,z e (21)

re
n=o

The substitution of equations (20) and (21) into equation
(13) gives

G eEE | e |-
Zly=q D=0 Y=a
1N L o (1) Ll i}
© }:;)[z-an,o] 0™ (n,z .0 + Y 8 NEm,ze) =0 (22)
n= n=o

Solving for Bn gives

12




J (kat,)
B = ~-(2-5_ 1(-1)" =55 2
2 4 Hn (kacz)

The total field distribution can now be written as

> > -
E = Einc + Ere
E F(S) e -
- fe) - -3 n (l)
= =— [2 Gn,o]( i)"|N (n,z;,e)
2 n=o
Jn(kacz)

=(4)
- H(z)(kac ) N (nI;lle)
n 2

and

Jn(kacz)

—(4)
- H(z)(ka : M (nIClle)
n C2

The ¢ component of H at ¢ = a is
E F(S) -ikzz
_ s _O E : _ _:yn 1
H¢ _ = i — [2 Gn’o]( i)" e cos (no)

Jn(kacz)

. | = (2)!
chﬁ(kacz) + Z, H_ (kaCz)

(2)
H (kacz)

The total axial current in the cylinder is

13

(23)

(24)

(25)

(26)



27T
I = ajﬁ H do¢
el

EOF(S) —iszl

— 4 -T?
= 2Tmai —— e Jo(kaCz) +

(2)?
Jo(kagz)Ho (kacz)

(2)
H (kazz)

(27)

By replacing -Jé(kacz) with Jl(kacz) and H£2)'(ka;2) with
(2)
-H

1 (kacz) in equation (27), we have

_ EOF(s)e Jo(kazz)H1 (kacz)
I = 2mail A Jl (kaCZ) H(Z)

(28)
(kacz)

Equation (28) can be reduced by the Wronskians given in
equations 9.1.15, 9.1.16, and 9.1.17 in reference 2 to give

-ikzcl _
EOF(s)e '
I =4

(29)
chzHéz)(kacz)

The substitution of k = -is/c into equation (29) gives

—szCl/c
2ﬂchF(s)e

ZcstO(sacz/c)

I =

(30)

.

21

£L g

where ¢ is the speed of light and the relation Héz)(ix) =
o(x) has been used. For the purpose of this note it is
sufficient to consider only the current at z

= 0 which is given

2nchF(s)
zcsto(sacz/C)

I(s,$;) (31)

14




Now define a normalized dimensionless Laplace transform
variable as

g = sazz/c (32)
and a normalized dimensionless time as

g = S& (33)

By the convolution theorem the inverse Laplace transform
of the current can be written as

=)

2TCE t Y+ie st
o) 1 e ds
Z;Z e 27wi y—1i sKo(sacz/c)

-

where f(t) is the inverse Laplace transform of F(s).

In terms of the normalized variables, equation (34) be-

comes
2mak g /at Y'+ie EA
e} 2 1 e dg

I = f f<—(q-—>\)) —f ——]dk {35)
where A = CT/aC2 and y' = aCzY/C- In reference 3 it was de-
duced that

1 '/-'Y""im e&;)\ E

—— == df = 0 if A < -1 (36)

211 Jov e EKO‘E)

Therefore equation (35) can be written as

2maE q* (aC2 . ) 1 Y '+ice e&(c—l)
=3 fo E\=@* ) 7z j;._iq, w_my 96|ds 37

15



where ¢ = A + 1 and g* is a shifted dimensionless time equal to

g + 1. Equation (37) can be expressed as '
2wan qg* azg,
I=— f f( = (q*-C)>F(C)dC' (38)
o

where F(z) is a characterized function in reference 4 given by

() 1 fY'+i°° &lz-1) as jrm e-g(c-l)lo(i) 5 (39)
F(Z) = 5= = , £ 9
2 Jyrie R (S) o &[x2(e)+n’1i(2)
: "o o

For convenience we can define a normalized dimensionless

current as

_ 21
A= Zﬂan (40)

The substitution of equation (38) into (40) gives

q* (ag,
A = Jf f( S (q*-c))F(c)da (41)
(o}

To calculate the impulse response, let

az,q
£(t) = 6(t) = 6( = ) (42)

where 6(t) is the Dirac delta function. Equation (41l) becomes

q* (az,
A= Jf a( S (q*-c))F(:)dz
(o}

F(g*) , : (43)

|

16



The normalized current response to a unit impulse incident
vector plane wave is shown in figure 4. The first two terms of
the small time asymptotic expansion of F(g*) developed in Ap-
pendix B of Sensor and Simulation Note 110 and the first six
terms of the large time asymptotic expansion of F(q*) developed
in Appendix A of this note are indicated by broken lines.

V. Response to an Exponentially Decaying Field

Consider an incident electric field with a time history
given by

-8t
£(t) = e | (44)

The substitution of equation (44) into equation (41l) gives

- q* .
A= e Bq*f ePlr(oyac (45)
(o] .

where

ag
2
<= BT (46)

In terms of the normalized transform variable £, A can be writ-
ten as

Y'+iw £q

=- e
A= e+ ek 8y 9 (47

1
2Ti Y1 —io

Small time behavior

As § + o the Laplace transform of A can be written from
equation (47) as '

17
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L{n} = 2 [1 ‘g - s+ 0(5‘3)}
q*g e/ET(1 + £) 128¢
v2 1 1-88 -2
=YX 2 |1+ + 0(§7°) (48)
/7 E/E[ 8% ]

where the asymptotic expansion of KO(E) for £ + » with |arg £]

< (3/2)7m as given by equation 9.7.2 of reference 2 and the Bi-
nomial series expansion of (l+B/F,')—l have been used. By the ap-
plication of the theorem in Appendix B of reference 4, the

asymptotic expansion of A for g*¥ - 0 is
2 q* 2
A= EVZq* 1 + 12(1—86) + O((g*) )| U(g*) (49)
As g* - 0 the asymptotic form of A can be written as

A~ 2/35% u(g*) . (50)

Large time behavior

To obtain the large g* behavior of A, equation (46); we
first break the integral into three parts:

- q*
A=e Bq*jﬂ ePlr(r)ac
(@]

€

-Bg* -Bg* M -Bg* q*
e (.oo-)dg.’.e f (ooo.)dc + e f ("")d(:
(o] € M

Tl(q*) + Tz(q*) + T3(q*) (51)

where € is a finite constant chosen such that 0 < £ << I'/2 and

M is a finite constant chosen such that I'/2 << M < », T is the

19



exponential of Euler's constant = 1.7810°++. F(g) is finite

for € < g < M, thus

T. = o(e”Pq%) (52)

2

The first integral can be written as

e Bg _ €
T, = e B2* Tf—zf e 4z + e Bq*f eBC[F(C) - Q]dc (53)
o o 1343

where vV2/mV/7 is the first term of the asymptotic expansion of
F(z) for small argument as given in Appendix B of reference 4

and

V2

F(g) - —| < Ml ’ g L ¢ (54)
L8494
where Ml is a finite constant. Thus, we may write
- *
T, = o(e”PT) (55)

The third integral can be written as

T (g*) = e f E dt + Ry (56)
3 [1n(2c/r)]P

n=1

where the asymptotic expansion of F(z) for large argument as

given in Appendix A has been used. And

- q* -
R, = e Bq*f {eeco([ln(zc/r)] m*”)} dz (57)
M

20




The asymptotic expansion of T3(q*) for g* =+ «» is developed

in Appendix B as

N N- -p) -1 n 1
T, (g*) = Z ap i (n ’ (-1) 'n!
3 [1n(2q*/T) 1P B [Bg*1n(2gq*/T) 1"

. p=]_ n=o

—(N+l))

+ o(I1n(2q*/T)] B #0 (58)

[1n(2g*/T) 1P &4 [1n(2g*/T)]®

a_qg* N- </-p>(-l)nn!
T3(q*) = i P i . n
p=

- (N+1)) 8 =0 (59)

+ o(q*[ln(2q*/T)]

Collecting the results in equations (52), (55), and (58)

gives the asymptotic expansion of A for g* > = with B # 0 as

1 -vy_ g*
1 e 1
A = o+ + o( ) (60)
Bin(29*/T) ~ g (gq*)1n? (2q*/T) 1n> (2q*/T)
where Yo is Euler's constant.
For the case B = 0, collecting the results in equations

(52), (55), and (59) gives the asymptotic expansion of A for

g* + » as

A __TS:TTT T 0 q* (61)
= : + +
In(2q 1n2 (2q*/T) (ln3(2q*/F))

Maximum value of the induced current

The maximum value of A at g* = q; is given by

21



*
-8q* %o
A = e °f ePlr(nyaz (62)

m
(o]
and
3 . F(q;)

Rewriting equation (63) gives

F(q¥)
Am = —5— (64)

The asymptotic expansion of Am for limiting cases of 8 can
be obtained by the substitution of the small and large 8 be-

havior of qg into equation (64).

To obtain the small B behavior of qs, we assume q; to be
large. This assumption shall be justified by the result. The
reader may easily verify that if q; is assumed small a contra-

diction results. For q; large equation (64) can be written as

-Bq* pe _ -Bg* M
T‘:—f e Of eBe /2,062y 1az + e °f efir(naz
(o} 18

-8g* qo _ _ _
+ e °Jr esc[ln L(z)-y_1n?(z)+0(1n 3(c))]dc
M

Y
1 _ e + 0(

= B8 (@) (65)

22




where € and M are constants such that € << 1 and M >> 1 and the
asymptotic expansions of F(f) for large and small  have been

used. Evaluating the first two integrals in equation (65) gives

-8q% (e - -Bg* M -Bg*
2e °f ePe e 2r0(c %) 1az + e °f e®Pr(niac = e “o(1)
o €

" (66)
since F(Z) is bounded for € < £ < M. The substitution of
T = qu - Bz into equation (65) and using the result in equa-
tion (66) gives
et (BT) - v 1n (T 4 0 1a73(25T)]a
s ° B Ye =) n (5 ” E
Y
1 e -3
= - + O(1ln ~(u/B8)) (67)
In(u/8B) lnz(u/B)
where U = Bqé. By the use of a Taylor's expansion of the non-
exponential part of the integrand, equation (67) beccmes
u-BM _ Y . _
f e T[ln(lji/B) e sen iy + 0lln 3(“/8”} dat
o 1n® (u/B) uln® (u/8)
1l Ye -3
= - + O0(1In ~(u/B)) (68)
In(u/B) an(H/B)
Evaluating the integrals gives
e 1 - e ™M (Ll+u(l-y)) _3
+ — = o(ln ~(u/8)) (69)
1n(u/8) uin® (u/g) |

Equation (69) can be rewritten as

23



W = 1n(uln(u/B8)) + O(uln T(u/B)) = g(u) (70)

To solve for u the iteration method can be used i£b

. .
* Uacuzey <1 (71).

=

%g(g(u))

For # > 1 + € for all real € > 0 there exists a Bo such that
for 0 < B < Bo the condition in (71) is satisfied. We can
choose a rough approximation My o= 1l and compute a second ap-

proximation

1 ,-1

M, = g(uy) = Inln(8™1) + o(ln~t(s™h) (72)
And a second iteration gives
- -1 lnlnB_l lnlnB-l
U, = g(M,) = 1lnlnln(B8™ ") + 1lnln|=2-2F | + of=B=2%__
3 2 B lnB-l
-1 -1 In[(1n8~1)1n1ng~?t
= 1In[(1nB 7)1lnlnf 7] + O( ) )
' 1ng

(73)

Note that as q; = u/f > o, B > 0 as assumed. The numerical
comparison of Mg with 4 confirms that My is sufficiently close
to u for the iteration method to be applicable.

The substitution of equation (73) into equation (64) gives

the asymptotic expansion of Am for B - 0 as

_ F(u/8) _ 1 Ye -3
A= = - + 0(1ln" " (u/B)
m B 2y 2(2u
Bln(E—) Bln (ET)
Y b - -—
= B - ————5——— + 0(ln"> [ Inlng ™)
Bln(B8 ~1lninB ] B1n“[B8 "1lnlng ]
. (74)

24



To obtain the large B behavior of q;, we assume qé to be
' small, For small q;, equation (64) can be written as

*
-8q* 9% Bz Yax
Be °f e—[1+§-+o(c2)]ac= 1 4 4°+O(q;3/2) (75)
VT

9
O *

o

where the asymptotic expansion of F(z) for ¢ > 0 has been used.
Now we can make a change of variable T = Bf to obtain

- T _ 1l 3/2 :
e uf e dt + e f eT[:—g + O(T 5 >]d'r
o VT o 3

3/2
=L %g + o(u 7] ) (76)
4" B
where again u =—Bq;. Now let AZ = T and x2 = u, equation (76)

‘ becomes

2,x 2 2 . 2
2xe_xf el [l+0<)\—>]d>\ =1 + O(X—) (77)
. B B |

The substitution of Dawson's Integral
-x2 X 52
D(x) = e jr e’ di
o

gives

dbD (x)
X

xD (x)

+o(B ) =0 (78)

The derivative of Dawson's Integral must equal zero in the
. " limiting case for B + « since xD(x) is bounded for all x > 0.
Therefore the value of x is the maximum point for Dawson's Integral

25



X, = .9241388730°+°, as given by equation 7.1.17 in reference 2.’ ) .

The asymptotic form of q; for B » = is

»

2
* ~ M _ .85403265° -
90 B g . (79)

The substitution of equation (79) into equation (64) gives

the asymptotic expansion of Am for B + » as

2

x _
A, = 2_ ) . Z% + 0(872%) (80)
X /E
_m
Results

The normalized axial current response to an incident plane
wave with a.step-function time history, B8 = 0, is plotted in
figure 5. 1In figure 6, the normalized axial current response

to an incident piane wave with an exponentially decaying time
history is plotted with B as a parameter. The solid curves im
figures 5 and 6 were obtained by numerically integrating equa-
tion (45). The first two terms of the small time asymptotic
expansion given by equation (49) and the first six terms of the
large time asymptotic expansion given by equation (60) for B # 0
and equation (6l1) for 8 = 0 are plotted as broken lines.

In figure 7 the peak value of the normalized axial current
response and the normalized shifted time of the peak are plotted
against the normalized inverse decay constant of the incident
wave. The solid curves were obtained by numerical solution of
equation (63). In figure 7A the first two terms of the small 8
asymptotic expansion of Bq; given by equation (73) and the
large B asymptote of Bq; given by equation (79) are plotted as
broken lines. In figure 7B the first two terms of the small B
asymptotic expansion for the peak value of the normalized cur-
rent given by equation (74) are plotted as a broken line. And .
the first two terms of the large B asymptotic expansion for the
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peak value of the normalized current given by equation (80) has

been used to compute values for the dotted curve.

The relative error resulting from numerically integrating
the integrand in equation (45) is less than 10_4. The relative

4 as detailed on page 55

error of F(f) is approximately 8.1 x 10
of reference 4. The maximum relative error of A can be esti-
mated by the sum of the errors introduced by approximation of

the integrand and numerical integration as in the order of 10-3.

VI. Remarks

There are several conclusions which follow from the ana-
lytical analysis and the associated numerical computations from
the preceding section. The following equations are given as
"rules of thumb" for the induced current upon the surface of an
infinitely long, perfectly conducting, circular cylinder in
free space illuminated by an exponentially decaying plane wave.

The initial rise of the current is proportional to the

square root of time and can be written from equation (50) as

Zﬂan Z/EE;

~ *
I 5 — U(g¥*)
4aE '
- o / 2ct* *
= 7 a Sinel U(t ) amperes (81)

where Eo is the maximum value of the incident electric field
with dimensions of volts per meter; a is the radius of the cyl-
inder with dimensions of meters; c is the speed of light with
dimensions of meters per second; 61 is the direction of the in-
cident wave measured from the axis of the cylinder; and t* is a

shifted time given by

a sino®

t* = t + — seconds (82)
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The asymptotic form of the peak value of the induced cur-
rent pulse for small B as given in equation (74) can be written
as

2rak
I ~ — 9 1
m 28 358" 1n1ne™1]
_ Zﬂch 1 (83)
ZBT sin®

1 1n|—p—a— 1n1n(————£L-—-)
[aBT s:.ne1 aBT s:.ne1

where BT is the inverse decay time constant of the incident
wave with dimensions of per seconds. The asymptotic form of the

shifted time the peak current occurs can be written from equa-
tion (73)

1 o] 1 o] c
o BT aBT 51n61 BT [aBT 51n61 aBT 51nel

(84)

For values of B_ < c(lo—%/a sin®; the relative errors of
equations (83) and (84) are less than five percent.

The decay of the induced current pulse is inversely pro-
portional to the logarithm of time and can be written from equa-
tion (60) as

2rak
(o)

T -~ 1
Z B1ln (g*)
2TCE
o 1
= ZB_ sin® ct* amperes (85)
T 11 (a sinel)

For values of t* > (a/c)(108) the relative error of equa-
tion (85) is less than five percent.
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The analytical development in section five can be extended

for an incident electric field with a time history given by
N -8t
£(t) = E A e (86)
n=o0

The substitution of equation (86) into equation (41) give§

A = ZAnAn : (87)

where An is found by the substitution of Bn for 8 in equation
(45). Now consider an incident field with a double exponential

time history given by

£(t) = e -e ° (88)

The initial rise of the current induced by a double expo-
nential time history incident field is proportional to the 3/2

power of time and can be written as

2maE_dq*vZq¥

I~ —S (a=8)U(q*)

8E (a_-B_)t*
_ o' T T [2act* *
= v sinel U(t*) amperes (89)

In figures 8 and 9, examples of the un-normalized induced
current responses are plotted with the angle of incidence as a
parameter, Z = 120w ohms, a = 3 X 10-3 meters and EO = lO5
volts per meter. The incident wave time history considered in
_figure 8 is a single exponential with BT = lO7 per second and
in figure 9 the incident wave time history is a double exponen-

tial with BT = 107 per second and a, = 5 x 108 per second. The
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waveforms and asymptotic curves were computed by the same pro-
cedure used for the plots in figure 6. Notice that the initial
rise of the current in figure 9 is much slower than the initial
rise of the current in figure 8. But the late time responses
are nearly identical since a. = SOBT; actually a late time rel-
ative asymptotic difference in magnitude can be obtained from
equations (85) and (87) as
o 8T T

I
BT

(90)

Ql'_‘m

,—]

where-IB_E is the current response to an incident wave with a
time history given by equation (44) and I(BT—GT) is the current
response to an incident wave with a time history given by equa-
tion (88). PFor o, = SOBT, the relétive asymptotic difference
in the late time waveforms is 2%.

Finite cylindrical structure

The results developed for the infinitely long cylindrical
structure can be applied to the finitely long cylindrical struc-
ture for the applicable time interval 0 < t* < t;. The shifted
time t; is that time when the first reflection from the ends of
the structure effects the induced current response. It was ob-

served in section I that t; equals the minimum value of
_[21 22
E—(l—cosel) ’ E—(1+cosel)
Notice that as el + 0 the asymptotic behavior of t; is

2
£ 02 + o(e) . (91)

and as 61 + 7 the asymptotic behavior of t; is
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L

_ 2, 2 _ 4
£ = s2(m-8,)% + O((m-6))") (92)

The substitution of equations (91) and (92)  into equation
(81)'gives the asymptotic form of the current response as 61 + 0

at time t; as

I~ o /1y (93)

and as 6, > m, we have

1

4aEO 22
I~ 7 /a—(w-el) (94)

The shifted time of the peak value of the induced current,

for BT sinel << ¢/a, 1is proportional to a logarithmic function
of 61 as given by equation (84). Therefore, for very long
structures such that (21,22) >> c/BT the induced current will

reach or approach its maximum value for a wide range of values
for 61. From equation (83) it is evident that the peak current
is inversely proportional to sinel. Thus, the angle em of the
incident wave that will induce the largest current at t* = t;
is restricted to 0 < 0 < 6_; where 6  is the value of 8; such

* = %
that to ta.

In figure 10 an example of the induced current response at
t* = t* is plotted against 8, for &,/c = 3 x 107% second,
%,/c = 1.5 x 1077 seconds, E_ = 10~ volts per meter, a =

o
3 x 1073 meters, Z = 1207 obms, and B_ = 107 per second. In
this example, 90 ~ ,1397m and Gm = .0874m.
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Appendix A Asymptotic Expansion of F(Z) for § > =

The function F(Z) is given by

( /w e (51 (g .
F(z) = d (A1)
o &k (a)+m 1o (8) ]

As § > «, it was determined in Appendix A of reference 4

that, for n = (Z-1) -+ «,

F(z) = T(z) + o(z™h) (a2)
where
8 -E(5-1)
T(Z) = 5 5 dg (a3)
o E&E[In"(ET/2)+71"]
where ' = 1.7810°+**, the expoﬁential of Euler's constant and § .

is chosen such that 0 < § < 2/T. For convenience, replace 7z - 1

by n

$ e—En
o &[1n"(ET/2)+n"]

Integration by parts gives

s
oo L +/ ne~EN arctan(1n(E0/2))4p o o(o70M, (25)
o]

-2
If we further restrict § such that 0 < § < (2/T)e ™ , then
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s -&n S -&n, 2
-8n f ne f ne m
T = O(e ) - Tn(Er/2) 95 + as
. In(Er72) o 31n>(£r/2)

8 -gn_4
o 51n” (gEr/2)

where the series expansion of arctan z for |z| > 1 and 22 # -1
as given in equation 4.4.42 of reference 2 has been used. Thus,

N
- Z -én
T = Tn + Of(e ) + RN (A7)
n=o
where, with u = &n,
T, = ﬂzngsllsﬂ) /’571 e Zn+T dU  (88)
n n o) [Inu-1n(2n/T) ]
Tn can be written as
' 2n, ,\n &n -u
p =T (D 2n+lf e au (a9)
(2n+1) [1n(2n/T) ] [l- lnu ]
In(2n/TY

Expansion in equation (A9) of

- )
2- =) o

by the binomial theorem gives

720 (-n" Xi }
T = ) P. + (Al0)
n (2n+1)[1n(2n/1")]2n+l k=0 # ™ '

where
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- 5N _(2n+1) e U1nku (-1 *au
Pp = ( k ) K (A11)
1n"(2n/T) .

and
_nk én _
P, = ( 2]1: 1)——]£—]i—f e 91nXudu
1n"(2n/T) Yo
k
= (-2}?-1)___; 1) Cy (A12)
in (2n/T)
where
dn
Ck = f e ulnkudu (Al13)
o i
Ck can be written as
Cy =f e-ulnkudu —f e %1n*fudu
: o) an
- ® - o
= Ck Ck (al4)
o .5
To bound Ck' we can write
Co = e_Gn °°e_x [ln(ﬁn)+ln l+(x )]kdx < E (Al5)
k ° Sl ¥ = %k
where
_Gn o _
E =2 [ e~X(8n1n (8n) +x) ¥ax (A16)
k k ;
(Sn) o
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The value of E, is given by equation (68) of reference 5

k
as

k -8n k k(k-1)
E = ln (61’1)6 1 + 4 oo
k [ Sninfon) * (sn1n(sn)3?
+ ki - (A17)
[6nln(én)]
To bound RM’ we can write
8n = k
R, = Jf e 8 :E: (-(ep+l)) o lqy (A18)
o k=M+1 In™ (2n/T)

The binomial series is bounded by a finite constant M€
multiplied by the (M+1l) term, thus

|. | /‘Sn Mse-u(lnu)M"'l _
< du
e S o

|A

M 1 o 3
€ TTS] ff (lnu)M+ldu + f e_uumdu}
[In(2n/T) 1" l o 1

-1
M e
= € ST [1+m+m (m=1) ++ + *m! ] (A19)
[(In(2n/T) ]

where m is a finite integer »u"™ > (1nufd+l for 1 < u < «, From
equation (Al9) it follows that

1
[In(2n/T)]

(A20)

1)

By = O

To bound RN' we can write
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= 2n,_ (n+1)
o (=1) du (A21)

L
= e 1
N 25541 (2n+1) [1nu-1n(2n/T) 12241

And for a finite constant N, the series is bounded by N, multi-
plied by the (N+1l) term, thus

én e-u
IRN| ij; NE: 2n+1l du

[lnu-1n(2n/T)]

= N'T (a22)

L]
£ N+1

where Né is a finite constant. From equations (Al0) and (A20),
it follows that

1
[In(2n/T) ]

2N+3) (a23)

Ry = Of
Collecting the results of equations (A7), (Al0), (Al2), .

(A14), (Al7), (A20), and (A23) gives the asymptotic expansion
of T for n » «

2n, ,\n Mo et-nk
S ) e LI ) S SR LT

£=4 ) (2n+1) [1n(2n/T) ] & 10X (2n/7)

2N=-2

+ 0([1n(2n/T) 1" ) (A24)

where

tThe terms for (2n+l)M > 2N + 2 are contained in the order
symbol and are to be disregarded.
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(A25)
aQ *© -1
Cl = e “lnudu = Yo (Euler's constant)
o)
o 2
© -ua,_2 - T 2
Cz—fe lnudu—6_+ye
o
For N =2 and M = 2, we have
2 2 2
1 Yo [(v /6)-Ye] ™ Ya
T = - - +
In(2n/T) 142 (2n/T) 1n> (2n/T) 1n? (2n/T)
[(2ﬂ4/15)+2nzyé} »
- + 0(ln ~(2n/T)) (A26)

ln5(2n/f)

The substitution of n = ¢ - 1 into equation (A26) and the
substitution of equation (A26) into equation (A2) gives the

asymptotic expansion of F(Z) for 7 » @ as

2 2 2
1 ve [eeed]
In(2z/T) 152 (2z/T) 1n° (22/T) in? (20/T)
+ 0(1n"3(2z/T)) (A27)

F(Z) can be written in closed form as

4

a
F(zg) = :E: P + 0(ln~2(2z/T)) (A28)
£=1 in(2z/m)1P

where
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Appendix B Asymptotic Expansion of T,(g*) for g* » =

The function T3(q*) is given by
g [ 8z
Ty(g*) = e qf e "F(g)dzg (B1)
M

where M >> T'/2, T is the exponential of Euler's constant, and

./'co e—g (C-l) Io(g)
F(z) = dg (B2)
o &[x2(E)+n?12(8) |

The asymptotic expansion of F(Z) for ¢ + » is given in Ap-

pendix A as

N

F(z) = Za 1 4 o(lin(2z/T)]

- (N+1) |
=1 P wnPeymn

(B3)

where ap is the pth coefficient. The p-coefficients for N = 4
are given in equation (A27) of Appendix A.

The substitution of equation (B3) into (Bl) gives

*) = 'Bq q*
T (g*) = dg + RN (B4)
lnp(ZC/F)

where, for a finite constant Ne'

*
IRyl < e'Bq*fq __P (85)
: € M [in(2g/T)]

Now let g*u = g, equation (B4) becomes

45



N
1 Bg* (u-1)
T3(q*) = E a / g*e —— du +
5=1 P JM/q* [1n(2q*/T)+1nu]P

= iapPp + (B6)

p=1
where
* -
P = —— fl gred" 07 du (B7)
P [ln(2q*/T) 1P JM/q* {l+1 T%nE/P)Jp
n(2qg

Expansion of

[l+ln<§337r)}-9

by the binomial theorem gives

k
1
P = W+ (B8)
P [ln(2q*/T)]p{g;; " Rk}
where
* -
W o= ('Pl/.l g*ef T ) o) (B9)
n 0 IJm/q* [1n(2g*/T) 1"
and
(Y . Bg*(u-1) 2 -p lnu 174, (B10)
Re = ae (n )[anZq*/P)]
M/q* n=k+1

Equation (B9) can be written in the more convenient form
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- 1
n (n )[ln(2q*/T)]n n

where

1
c =f q*ePa* (U-1) (1) Ngy " (B12)
M/g*

Let v =u - 1 and v, = (M/g*) - 1, equation (Bl2) becomes

© Bg*v n
Cn = g* e [(In(1+v) ] dv (B13)
v .
o

The substitution of the series representation of 1ln(l+v)

2

for v® < 1.0 as given by equation 601 in reference 7 into equa-

tion (B1l3) gives

o 2 3 n
BQ*[ v v ]
- % — — — o0
c —qfe v 3 +3 + dv

0
= q*f qu*[v + R(v)1"av (B14)
v
(o]
where
= m
R(v) = Z(-l)m+l = (B15)
m=2

Expansion of [v + R(v) 1™ by the binomial theorem gives
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n_ nf R(v)]"
[v + R(v)]" = vl + —V—_J

L

v 2 2
L v
n - ! LN
= v [l + R'(v)] (Ble6)

where

R = D (2)(BAL) (617)

The substitution of equation (Bl6) into equation (B1l4)

gives

o] * o * <
c, = q*[ PIVGRgy 4 q*f ePTVR (v) v av (B18)
v v '

o

R' (v) is bounded by a finite constant Re and the first

term of the series given by equation (Bl7) as
' R(v)
R'(v) < R, = (B19)

and it follows from equation (B15) that
R'(v) < Rév (B20)

where Ré is a finite constant. Now we can write

o * o *
qijr qu VR'(v)vndv < Réqﬁ/r qu an+ldv (B21)
v v
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Evaluation of the first integral in equation (B18) gives,

for B # 0,

o] n
v

n
o 8 (Bg*)

(B22)

The substitution of equation (B22) into (B18) and (B21)

gives

c = (=1)"n:

-(n+l))
n B(Bq*)n

+ 0((g*)

R can now be bounded by writing equation (Bl0) as

k+1

1
Bg* (u-1) 1nu
lel = ke.j;/q*q*e [ln(Zq* P)] du

"y Crs1

® [ln(2q*/T) 15+

where k€ and ké are finite constants.

From equation (23) it follows that

To bound RN’ we can write equation (B5) as

C, + Ry
|Rgl < NP =N{ —2 ]
Ry Pl = Ve e 1|

and it follows from equations (B23) and (B25) that
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-(N+l))

Ry = O([in(2g*/T)] (B27)

Collecting the results of equations (B6), (B8), (Bl1ll),
(B12), (B23), (B25), and (B27) gives the asymptotic expansion
of T3(q*) for g* » » with B # 0 as

N 1 N- ( l)n .

&= B[Bg*1ln(2g*/T) 1"

p=1
+ 0([1n(2gq*/T) 1~ ¥, (B28)
For k = 2, we have for B8 # 0
N a N-1
pa
Tyla®) = E . P’ E : 1
£=1 siin(2q*/1)1¥ =1 8(Bg*) [1n(2q*/T) 1P
N-—-
p(ptlla . -
+ ; P = + o(fln(2q*/r)1~ 1),
£=1 8(8q*) “[1In(2q*/1) 1P
(B29)

For the case B = 0, equation (Bl2) can be written as

1 n 1 n M/g*
cC_ = qi/r (lnu) "du = q*(—l)njr (ln( )) du = qt/. (1nu) *du
n
M/q* o o

S

1n(M/q*)
q*(-1)7T(n+1) - q*/ e*xMdx (B30)

o]

where x = lnu. Thus, it follows that Cn can be written as
c. = (-1)®nig* + 0((lng*)™) (B31)

The substitution of equation (B31l) into (B24) gives
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—(k+l))

R = O(g*{in(2g*/T) ] (B32)
And the substitution of equation (B31l) into (B26) gives
Ry = O(g*[In(2q*/T) ]~ N*1))

(B33)

Collecting the results of equations (B6), (B8), (Bl1ll1l),

(B31), (B32), and (B33) gives the asymptotic expansion of T3(q*)
for g* » » with 8 = 0 as

T3(q*)

-

For k = 2, we

N
- (-1) "n!
T, (q%) = P)
3 252 P [1n(zq*/r)1p :E: [1n(2q*/r)1n
;
+ O(q*[ln(Zq*/F)]_(n+l)) (B34)
have for B = 0
N q* N-1 N
= [ln(2q*/F)]p £=1 [in(2g*/m) 1P
N-2
p(p+l)a_qg* -
+ B + o(q*(ln(2q*/T) 17 ),
£=1 [in(2q*/M)]
(B35)
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