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SUMMARY

The response of a balanced four-wire transmission line, terminated
at the ends in arbitrary values of impedance, to an unwanted signal polar-
ized parallel to the conductors, is discussed. The wires are equally spaced
on the periphery of a circle (so that the cross section is a square), and the
diagonal conductors are electrically paralleled at the ends of the line. Suf-
ficient data are presented to permit two and four conductor transmission
lines to be compared on the basis of electrical noise pickup.
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RECEIVING PROPERTIES OF BALANCED FOUR-WIRE TRANSMISSION LINES
EXCITED BY PLANE-WAVE ELECTRIC FIELDS

Introduction

Balanced four-wire transmission lines are frequently used at communication receiving stations to
connect balanced receiving antennas to the balanced inputs of radio receivers. From experience it is
known that four-wire lines, consisting of four conductors fixed at the corners of a square, with diagonal
conductors electrically paralleled at the ends of the line, discriminate more against unwanted signal pick-
up than comparable two-wire lines. The purpose of the present investigation is to obtain formulas for the
currents in the four-wire line terminating impedances when the incident plane-wave electric field is di-
rected parallel to the axes of the line conductors. Using the results reported in an earlier paper?® for
two-conductor transmission lines, it then becomes feasible to compare the performances of two- and

four-wire lines on a sound analytical basis.

Q The Short-Circuit Current in a Four-Wire Transmission-Line
Excited by a Plane-Wave Electric Field Directed Parallel to the Conductors

Figure 1 illustrates the four-wire transmission line to be analyzed. Conductors (1} and (4) have
their centers at y = £c/2, where the upper sign applies to wire No. 1. Conductors (2) and (3) are
centered at x = ¥c¢/2. All wires are parallel to the z-axis. The spacing between adjacent wires, meas-
ured center-to-center is b. Evidently, b = c/V2. All conductors are of the same radius a. For
clarity, i.e., to exhibit the short-circuit current I’c(h) = Isc(—h), one transmission-line loop (wires 2
and 3) is shown displaced from the other loop (wires 1 and 4) in the drawing. The length of the line is 2h.
The inequalities h >> a, Ba << 1, are assumed to hold.

The interfering signal QE:“C arrives at the aximuth angle ®. @ is measured from the positive

x-axis.

‘c. w. Harrison, Jr., "Receiving Characteristics of Two-Wire Lines Excited by Uniform and
Non-Uniform Electric erlds, " SC-R-64-164 of May 6, 1964. A copy of this report may be obtained
from the Technical Information Department of the Sandia Corporation ’ J -
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Figure 1. Coordinate System of Four-Wire Transmission-Line with Conductors Fixed at
the Corners of a Square, and Diagonal Wires Paralleled at the Ends of the Line



The simultaneous integral equations applying to conductors 1-4, in sequence, are 2,3,4,3

I(2) + 1, (2 + 1 (2A +I(z + Iu(z))-c = F,(2) (1)
J4(2) + T (2A + I (202, + I4(2A +I,(2 = F,(2) (2)
3,(2) + 1,2, + (2 + LM, + L(2M, = Fy(2) (3
Ja(2) + L (2 + L(zI + I,(zA + I, (zx, = F (2) (4)
where
by
Ja(2) = Z In(z’)Kd(z, z/)dz’ (5)
_n n=1
d
X.a =2 In(—
d
A, =2/n 3) (6)
d
Kc = 2 fn(—c-)

Be ..
§=s8ind
F,(z) = -j %E é:l cos Bz+ U e 2 ) n
4m -j-%c-colé
Fz(z) = —-Jg—o C, cos Bz+Ue (8)
4 j-gzico-d’
Fa(z) = —jg— C3 cos Bz+ U e (9)
o

2C. W. Harrison, Jr., and R. W. P. King, "Folded Dipoles and Loops, " IRE Transactions on
Antennas and Propagation, Vol. AP-9 No. 2, pp 171-187, March 1961.

3C. W. Harrison, Jr., and R. W. P. King, "Theory of Coupled Folded Antennas, " IRE Trans-
actions on Antennas and Propagation, Vol. AP-8 No. 2, pp 131-135, March 1960,

*C. W. Harrison, Jr., "Antenna Counling Error in Direction Finders, " Journal of Research,
National Bureau of Standards-D. Radio Propagation Vol. 65D, No.4, pp 363-369, July-August 1961.

®C. W. Harrison, Jr., "Missile with Attached Umbilical Cable as a Receiving Antenna, "' IEEE
Transactions on Antennas and Propagation, Vol. AP-11, No. 5, pp 587-588, September 1963.
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4 -3 < sind
: F (z) = - 2lc, cos Bz+Ue (10)
o A
I(z) are the currents in conductors 1-4 inclusive. The currents are assumed to flow in the positive z
direction. C,, C,, C,, and C, are constants of integration. B = 27/A is the wave number.

U= -Einc/B. g, = 1207 ohms is the resistance of space. d is the equivalent radius of the four-wire

4
line. Although not needed in the present analysis, d = ab V2. Kd(z, z’) = exp{-jBR)/R;

R= Wz-27%+ d2.

The following transmission-line equations are easily derived from (1)-(4):

Fl(z) - Fu(Z)

L(2) - 1(2) = F(2) = 21— (11)
ac
F_(z) - F_(z)
1,(2) - I,(z) = F (2) = _2_1_3_ (12)
ac
F (z) -F (z)]A ~ [F_(z) = F (z)|A
1,(2) = 1,(2) = F_(2) =[ 1 2 ] 2> [2’ 3 ] be (13)
A‘Ab - kbc
F. (z) - F (z)}A__ - (z) - F_(z){x
) I(z) - I,(z) = F,(z) =[ 2 ) ;"[2‘ e (14)
; hab - A'bt:
F.(z) - F.(z)]Ax _ - |F. (z) - F, (z)|A
1(z)-1(z)=F(z)=[‘-3]“° [’ b ]“ (15)
1 3 e xz - 12
ab be
[Fz(z) - ]:“,.‘(z)]h.ab - [FI(Z) - }3‘3(z):|lbc
Iz(z) - I“(z) = F:(Z) == 3 7 (16)
A‘nb - kbc
Here
b
l.b = ).‘ - Xb a 2 !n(;)
"bc”‘b"‘e a In2
2 (17
A = -2 = |2
ac a c 3.2

~

2 2

2 b 2b

A4 =A = In[— ||
ab be <2a2> n<a2>



The problem is to find

I,.(h) = I__(~h) = I,(h)+I,(h) - I,(h) ~ I (h) (18)

where Isc(h) is the current flowing in the short-circuited transmission-line terminals. Evidently from

(11), (16), (13), and (12),
I,(h) = F_(h) + I,(h)

I(h) = —F,(h) + L(h)

(19)
—Iz(h) = Fc(h) - Il(h)
~1,(h) = F, (h) - I,(h)
so that
Isc(h) = Fb(h) + Fc(h) - F‘_,(h). (20)

Further, inspection of Figure 1 shows that there are no potential differences between wires at z = th.
Accordingly,

aF (z) aF (z) aF (z)
a - b = < = 0 (21)
az oz 9z -
z=th z=th zsth
From (21), (11)-(13), and (7)-(10), it follows that
C1 = Cz = C3 = Cu. (22)

One now constructs I“(h) from (20), using (12), (13), (16), and (7)-(10). The result is

o
S NE

8 2
Iu(h) = —j __8_19_2_ [E:os <_B?c sin d’) - cos<—§2£cos q’) +j sin<—2c cos Q)]——
l:o !n<2b2)

2? ,,,)

a

[
[

(23)

+|E:os<3—2c- sin (I>) - cos(é.‘% cos <I)> -j sin(%— cos Q)] In 22 _ sin(BTC cos q))
In(b >



Since SBc << 1, the approximations sin x ~x and cos x ~ 1 — x2_ may be used to simplify (23). When
9 these substitutions have been made it is found that I, (h) is given by

2 2
I.c(h) ~ = 7 UB c cos 20 ) (24)

g

But the characteristic impedance of a four-wire transmission line is

2 =2 pa (- 25)
clh 2r n aﬁ - (
Using (25) and remembering that U = -Einc/B and ¢ = bV2, the final expression for I,c(h) becomes
inc

. z 2
I"(h) ~j 2z, Bb* cos 2. (26)

T

Note that when ®=n yQ

n odd, (23) (as well as (26)) gives Isc(h) = 0.

Terminated Two and Fou;-Wire Transmission-Lines

The analysis of a four-wire line, containing load impedances Zhu at z = h and Z_hu at
z = —h, (Zhu + Z_hu), proceeds along the lines set forth in Reference 1. Here an arbitrarily terminated
" two-wire transmission line is analyzed by applying the superposition and compensation theorems. In the

interest of brevity only the results of each analysis will be given here.

For a four-wire line:

ine
E
1,(0) ~ - Z;T;ab’ cos 28z, sin 28n+ jZ_, (1 ~ cos 2h)] (27)
inc
Iu(—h) ~ - 21=)u Bbz cos Z(I’[Zcu sin 2ph + jzhu(l - cos 2B’h)] (28)
. 2 .
Du = Zc“(Zhu + Z_hu) cos 2Bh + j (zhuz_hu + Zcu) sin 2gh. (29)

Here Iu(h) is the current in the impedance Zhu and I,‘(-h) is the current in the impedance Z_h“ .

10
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For a two-wire line:

Eincb sin ®
L ~ -2 [zcz sin 26h + iZ_, (1 ~ cos ZB’h)] (30)
E:ncb sin @
R [z‘=2 sin 2Bh + jZ,,(1 = cos 2Bh)] (31)
= . 2 .
D2 Zez(th + Z-hz) cos 28h + J(thz_hz + Zcz) sin 28h (32)

where Iz(h) and I,(-h) are the currents in the terminating impedances Z,, and Z_, ,, respectively, and

Zc 20 the characteristic impedance of the two-wire transmission line, is given by

z_, = 120 !n(-:-). (33)

Equations (27)-(32) make it possible to compare the radio-frequency noise pickup of terminated two- and
four-wire transmission lines, when the polarization of the interfering signal is parallel to the axes of the

line wires.

Example: Let the two- and four-wire transmission lines be constructed of A.W. G. No. 12 wire
{radius a = 0.0404 inches) spaced distance b = '1.3 inches apart. Assume that th = Z_h2 = Zcz',' and
Zhu = Z_hu = Zcu. Let E:nc = 1lvolt/m at f= 12 mc/sec.; ¥ = 30°% and Bh = 37/4. Then,

Zcz = 416.54 ohms and Z_, = 187.48 ohms. It follows that for this situation I,(h) = 0.02802 ma in

416.54 chms, so that V,, = 11.67 mv noise for E:“C = 1v/m. Also, I, (h) = 0.2583 pa in 187.48 ohms,
so that V,, = 48.43 uv noise for E:nc = 1 v/m. Hence lIu(h)/Iz(h)I = 9.219 x 10™°. These figures give
some idea of the efficacy of four-wire over two-wire lines for connecting balanced antennas to the bal-

anced input of radio receivers at communication frequencies.

Conclusion

One may conclude that in general a balanced four-wire transmission line is vastly superior to the

comparable two-wire line from the point of view of radio-frequency noise pickup.
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