IN 79

SC-CR-715058

INTERIM REPORT -

RESPONSE OF A MULTICONDUCTOR CABLE TO EXCITATICN
BY AN ARBITRARY SINGLE-FREQUENCY, CONSTANT-IMPEDANCE SOURCE

BY
SIDNEY FRANKEL

Sidney Frankel and Associates
P. 0. Box 126
Menlo Park, California, 9L025

for

Sandia Laboratories, Albuquerque

April 1971

Prepared Under Contract No. DOAF(29-601)-6L-LL5T



TABLE OF CONTENTS

Summary

Glossary

1.
2.

5.

Introduction

Basic Model: Line Schematic

2.1 Generalized Thévenin Theorem

2.1.1 Further Discussion of the Terminal Networks
Line Analysis: Thévenin Source and Load

3.1 Special Cases: Termination Matrices Proportional
to Line Matrix

k., =«: Constant-Voltage Source
k, = 1: Matched Source

ki — 0: Constant-Current Source
Source Matrix Alone Proportional to Line Matrix

.1 Effect of Varying a Single Load Admittance,
Yk, Starting with Proportional Terminationms

3.2.1.1 Ranges of Parameters for Which the Ratios of
Output Voltages to Bulk Current Are
Relatively Insensitive to Variations in Yﬁk

3.2.2 Discussion of Results
Miscellaneous Additional Results

3.1.
3.1.
3.1.
3.2
3.2

4.1 Norton's Theorem
4.2 Compensation Theorem
4.3 Response of an N-Line to Current Sources

Conclusions

References

Appendix A

Appendix B

Page

11
12
12
14
16
21

22
23
23
24
26

41

45
46
46
50
52
33
54
55
67

i,



v LN -

LIST OF ILLUSTRATIONS

Parameters and Terminations of an N-Line
N-Port Generator Connected to N-Port Load
Generalized Thevenin Generator
Short-Circuited N-Port Source

Source/Load System in Which No Current Is
Delivered to the Load

Generalized Thevenin Source and Load
Illustrative Example

(a) Quiescent Source Network (b) Load Network

Compensation Theorem: Admittance Change

Generalized Compensation Theorem: Admittance

Change

Page

13
15
15
48
48

58
60
63
68
69



SUMMARY

The purpose of the phése of the cable study discussed in this interim
report has been to develop a formulation relating cable output voltages to
total output current as a function of the parameters controlling these
quantities, and to determine, if possible, under what conditions this
relation might turn out to be particularly simple,

Starting with certain canonical equations of multiconductor line theory,
it is a straightforward matter to obtain matrix expressions for terminal
voltages and currents in terms of the generalized Thévenin source, a
generalized "Thévenin" load, and the various parameters of the line. These
results, as usual, are recognizable as generalizations of the conventional
two-wire line results., Except for the broadest kinds of statements, hand
analysis of these results is impractical for a cable of more than two or
three conductors plus shield; for thorough study the model must be referred
to a digital computer.

However, to obtain some initial feel for how the cable behaves, a
particularly elementary case received special attention. It was assumed,
initially, that source- and load- ternination matrices were proportional to
the line admittance matrix, with inderendent constants of proportionality
for source and load, and that all source open-circuit (Trhévenin) emf's
were equal, The effect of varying one diagonal element* of the load
admittance matrix was then investigated. The ratio of the output voltage
on any terminal to the bulk output current was found to be insensitive to
(but not entirely independent of) this admittence variation, and, as a
corollary, to variation of the line length and operating frequency, only
vwhen the load-admittance proportionality factor was high, and when the
(common-mode) mismatch of the source to the line was not great, the
sensitivity increasing in proportion to the mismatch.

No explicit effect of the number of conductors in the cable was
observed,

In addition to the generalized Theévenin's theorem, other generalized
theorems were devised and discussed in this report. However, they were
not found to be necessary or particularly useful in the present phase of
the study.

*Equivalently, one admittance branch connected between a load terminal and
ground.



GLOSSARY

Note: numbers in[:]correSpond to reference list, page 54.

A: eq. (31)
/\
A: adjoint of A [4]
a = ~-j cot ©
13 element of ith row, jth column of A
Qij: element of ith row, jth column of @
Byy: cofactor of a;; in A (4]
b =3 csc 6

bjk’ byt eqs. (49)

NCR: combination of N things taken r at a time
= N(N-1) (N-2) -+ (N-xr+1)/(x).

ciy’ eq. (5)

D,: determinant of A [4]

li: line current input matrix, amp. [1]

1°: line output current matrix, amp. [1]

I1%°: short-circuit current matrix of equivalent Norton source, amp.
13: element of jth row of I°, amp.

I%: output bulk current, amp.

N
Ip =:E:Ij
j=1

F: unit matrix (NxN)

i: matrix-~- or summation index



GLOSSARY (cont.)
j+ (@) -V-1
(2) - matrix- or summation index
ki: source-end termination-admittance proportionality constant

kg load-end termination-admittance proportionality constant

K;: voltage coupling coefficient between ith and jth conductors:
eqs. (74)

M: egs. (5)

N: egs. (5)

N-line: system of N parallel conductors in the vicinity of an
(N+1)st reference conductor

P° = 2Y°

Rl _ gl{_i

Qi: inverse of E?

u: a parmeter proportional to AYtk: eqs. (74)

y?: generalized Thévenin emf of source, volts DJ

!;: line input voltage matrix, volts [1]

V°: line output voltage matrix, volts (1]

Vg: common N-port source voltage when V% = Vg’ i=1, «-+, N

V%: element of the ith row of V&

y: ozt

XF: minimally general load admittance matrix, mhos (section 2.1.1
and reference l); not equal to Y°

g?: terminal admittance matrix of Norton source, -source currents
set equal to zero.

Xi: source-end termination admittance matrix, mhos [1]

Y°: load-end termination admittance matrix, mhos (1]

not equal to XF

Vi da,
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GLOSSARY (cont.)

. . L
increment in Y

¢ 1increment in YP.
1]

increment in Y°

common-mode,- or even-mode characteristic admittance of jth

conductor: eq. (59)

common-mode, - or even-mode characteristic admittance of whole

N
line; YS =ZY?
j=1
element of jth row, kth column of XF
element of jth row, kth column of g?
element of jth row, kth column of X?
element of jth row, kth column of ¥Y°
line impedance matrix: Xfl
@h
(o)~
eq. (27)
eq. (20)

Kronecker delta: eq. (60) ff.

ratio of ith conductor output voltage to output bulk current:

eq. (63)

Electrical length of line, radians.

9-10



INTERTM REPORT
RESPONSE OF A MULTICONDUCTOR CABLE TO EXCITATION
BY AN ARBITRARY SINGLE-FREQUENCY, CONSTANT-IMPEDANCE SOURCE

1. Introduction

This is the second interim report submitted in partial fulfillment of
the requirements of Contract No. 11-1756. The first interim report dealt
with the response of a cable to excitation by a single-frequency source at
an open break in the shield [1]%. The present report deals with the response

of a cable to a single-frequency, constant-impedance, but otherwise
arbitrary source at one end of the cable. The source is assumed to have N
terminals (plus ground), at any, or all, of which source potentials may
exist,.

In their essential physical behavior the two configurations differ
only in that, for the broken-shield problem, the model is that of two
lines in series with a single independent excitation voltage from which all
conductor potentials are determined, while, in the present instance, only
a single line is involved, but each of the N conductors may be subjected
to an independent excitation potential derived from fixed emf's within an
arbitrary source network. '

This report deals with the response of an N-line¥* when subjected to
such an arbitrary set of potentials., Expressions are derived for the
line response in terms of these potentials, the line parameters, and a
sufficiently general class of line terminations (including source
impedances).

In order to avoid unnecessary generality of terminal conditions,
generalizations of Th&venin's and Norton's theorems are presented. (The
assumptions of constant source, load, and line parameters justify the use
of the superposition theorem.) A generalization of the compensation theorem
was also obtained in the expectation that it might prove useful for some
aspects of analysis. However, no applications of this theorem are used in
the present report.

In an attempt to gain some insight into the effect of variation of the
termination, results were obtained for terminal voltages and bulk terminal

current in terms of a load admittance matrix equal to the sum of a matrix

*Numbers in [] correspond to Reference List, page Ll.

**See reference 1.
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proportional to the line admittance matrix and an incremental load
admittance matrix. Behavior for various values of the proportionality
constant was investigated. '

2. Basic Model: Line Schematic

Sandia's Request for Proposal on Transmission Line Analysis, attached
to D. E. Merewether's letter of June 17, 1970, to Sidney Frankel and Associates,
indicates the need for analysis of the behavior of a shielded line and of
en unshielded line excited at one end in the interior of one of the terminal
boxes of the cable (Figs. 3 and 4 of the Request for Proposal, respectively).
To the extent that both of these configurations can be simulated by TEM
structures, there is no essential difference in their method of analysis.,
This assumption is made in the subsequent discussion. Thus, a common schematic
for the two configurations is shown in Fig. 1. As in the previous report,
(1], the N conductors above ground are indicated by a single line, with
currents, voltages, terminal admittances, and line impedance parameters
presented as matrices. The previous report introduced the concepts of a
line impedance matrix, Z, and a load admittance matrix XP. In that report,
ZP was chosen, for an N line, as a set of 1 N(N + 1) admittances inter-
connecting all possible pairs (W + lf:2 of N terminals. More complicated
terminating networks are possible; but insofar as line response (currents
and voltages) is concerned, a network of (v + l)Ce]admittances is a sufficient
termination, and all linear passive networks with (N + 1) accessible terminals

are externally equivalent to it.

The source in Fig. 1 is a generalized Thevenin source. Generalized
Thévenin -~ , Norton - and compensation theorems are discussed in the next
section, and in sections 4.1 and L.2,

2.1 Generalized Theévenin's Theorem
We first state the theorem in its usual scalar form: [Ref. 2, Chapter II,

Section 11].
If an impedance, ZL’ be connected between any two points of a circuit,

the resulting (single-frequency) current, I, through the impedance is the
ratio of the potential difference, V_, between the two points, prior to the
connection, and the sum of the values of (1), the connected impedance, ZL’ and
(2) the impedance, Zg, of the circuit, measured between the two points, when

Vg = 0. That is,
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Figele Paraneters and Terminations of an N-line.
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v
I=2—:‘i—- .
g A

In other words, the network with two accessible terminals appears
externally like an emf, Vg, in series with an impedance, Zg. The voltage,
Vg, is the "open-circuit" source voltage.

A generalization of this theorem for an (N + l)-port is derived in
Appendix A, See Fig. 2, which shows an (N + l1)-terminal generator
(N terminals above ground) connected to a driving point admittance, YL,
representing the input to an N-line.

Suppose the line disconnected from the source, so that the N
terminals of the source above ground are open-circuited. Measure the
open-circuit potentials, Vﬁ, k=1,.., N, of these terminals with respect
to ground. Next, set all internal emf's within the termination equal to
zero and measure the 3 N(N + 1) admittances between all pairs of the
(N + 1) terminals. Call the resulting admittance matrix g} = (gi)'l.

Then it is shown in Appendix A that the generator termination is externally
equivalent to a passive termination, I;: which has an emf, Vg, in series
with its kth terminal, k = 1,..., N, (Fig. 3). This is thek;eaning to be
attached to the source of impedance,!?;and voltage, z%,of Fig. 1.

2.1.1 Further Discussion of the Terminal Networks

In Ref. 1, cable terminations were described in terms of (N + 1)
nodes, corresponding to the N terminals of the cable plus the shield.
However, the termination may have additional internal nodes which are not
connected to any conductors of the N-line. (To simplify the mathematical
description we will assume that every conductor of the N-line is connected
to the terminal networks. In case some line, say the kth, is not so
connected, this fact merely specifies that the connected admittances are
Y;J:j =0, J=1,..., N).

Suppose the number of additional internal nodes is P, so that the
total number of nodes is (N + P). This additional complexity may be

handled in one of several different ways, depending on the requirements of

the problem.

o
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Seen from the N-line the termination (assumed linear, passive,
reciprocal) is, as we have seen, specified by all the admittance measure-
ments that can be made between any combination of the (N + 1) terminals
(ground included), the number of such measurements being & N(N + 1),
corresponding to the number of independent Y?k, Y;k (3, k= 1,00.5 N) in
the termination matrices,

If these Y?k, ng are to be determined analytically from specified
termination networks, the method to use depends on the complexity of the
termination and the generality of the required solution. If a single
configuration with specific numbers is to be used, actual measurements
might prove simplest, unless a simulating computer program happens to be
already available, If only behavior at the line terminals is of interest,
a formulation yielding the (N+1)C2 elements of the terminal admittance
matrices is adequate. On the other hand, if quantities intermal to the
terminations are required, such as the current in some branch, or the
potential between one of the P internal nodes and another node, then

the formulation has to consist of a mixed combination of network equations
and transmission line equations. An example of such a formmlation is

the problem dealt with in Ref. 3. (See, especially, Appendix D of the
cited reference.)

3. Line Analysis: Theévenin Source and Load

For simplicity, and without loss of generality insofar as line
behavior is concerned, we assume a generalized Thevenin source specified,

for an N-line, by N open-circuit terminal potentials and i N(N + 1)
available admittance parameters. We further assume the load to have
the same general description (with generally different parameters) as the
Thevenin source with all emf's set equal to zero. Such a load will be
termed a Thévenin load.

Referring now to Fig. 1 for notation we have [Equations (1lu),

Ref. 1],

<t
]
o
N
=
+
o
1N
i

<}

]

&
109
M,

1

™
N
)

(1)



where

a=-jcot 8
(2)
b= jesch .
Terminal conditions are
at the load end: I° =Y° V° 1
o . (3)
at the source end: \_f_g -7t Il = zl

where g_l = (f‘) "l Use Equations (3) to eliminate ’\_Il and f’ in Equations (1).

R S L F R
()
VewzIl -2z ¥ .
Write
P°-2y
iﬂ:unit matrix
and
M=ad+p°
(5)
N=of+ap®

17
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Then after re-arranging, collecting terms, and solving, we have from

the second of Equations (U4)
Vo= -bN 2TV . (6)

Substituting Equation (6) in the first of Equations (4)

ozt aazrt e on 2 1Y

Re-arranging and collecting terms,

flaf-vP Py z+2i1t =vE . (7)

The coefficient of Z in Equation (7) is reduced as followvs:

a -2 Pt et an (29 - 2]
_° N—-l [a(P+ = Eo)(zo)'l ) ,D.ewﬂ
_ 0 H-1 [a(go)-l (a2 - ) v
= v @) e g

S S G

- M (8)

since

-1

18
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Furthermore, for purposes of comparison with the broken cable shield
analysis [1] it is worth noting that the product y-l M is commutative.

For we have

N = (L+aP)(abt P
s (L+a) P ra (297
while
ME = (aF+ ) (F+ e P
2 0 0,2
=adf+ (1+a%) P +2(P )" =NM . (8a)
Multiplying both sides of the equation on the left and on the right
by ML then yields '
_'l (M N) Mt - M'l (N M) Mt
whence
LV s (9)
Using (8) in the coefficient of I” in (7) gives
(laf-v"P°n M z+z)=vruz+z =untz+z
-M+zImEte
-+ mEtz (10)
where we have written
i i 3,71 i,°t
Q@ =2 Y=(p) =(zY) . (11)

19



Substituting (10) in (7) and solving for I
i i L
I=yv(m+an v¥ | (12)

Next, solving for V° by substituting (12) in (6) ‘

Yeontzyy megtmt B
i -1
=-bM+Q m VB . (13)
Next, since
lc> - ¢° !o
Equation (13) yields
. -1

Finally, using (12) and the second of Equations (3),

Fev a1
N I

(el - gty o8

cngty v (25)

Collecting the results [Equaticns (13) - (15)] for convenience, we
have \

<
[WH
]

MM+t w7t VB

i

+Q N) v8 >

[
]

LN

=

(16)
= b (et mt 8

° - 3 1f_o (i + _Qi N)-l v8 )

20



where M= 34"' Eo

N=of+ap°
(17)
_130 -z Io
2C) = E!i = (Qi)"l
g:i. - E:’L ¥ P
3.1 Special Cases: Termination Matrices Proportional to Line Matrix
Let
Yi =k, Y
-— l —
. (18)
Y=k ¥
- O —
then
i i -1
P o= ki‘*_p IS ki J
o
P -k of
M= (a + ko) c_ﬂ (19)
N=(1+a ko) &
lj*ﬂlE-Y (ki’ ko 3 a) &

21



where

l1+a(k, +k ) +k, k
i o i o
y = = . (20)
i
Then Equations (16) easily reduce to
a+k
Vi = o Vg
— Y ——
l+ak
- °y vE
- Y -~ —
(21)
v-.2 y8
-— Y —
o b ko g
I =- YV
—-— Y - - .
The effect of the source admittance is contained entirely within the
scalar quantity, y. Some special cases follow.
3.1.1 k, =@ Constant-Voltage Source
For k; = @ we have, from (20),
ak, +k, k
Yok a)w —E 12 -ark .
Equations (21) become
vt - v )
1 l+a ko z
Z = a+k ! \_’
o
5 (22)
o __ g
K - a+ k 2
o
b k
[o) = - (v) - £
l a + ko I z .

22



3.1.2 k, = 1: Matched Source

i

For k., = 1 we have, from (20),
i

VL, ks e) = l+a(l+k) +k = (1+a)(1+k) .

Equations (21) become

<

A

<3
I

(o)

a + k

=(1+aﬂf:k9

l+ak
(e}

ve

-9 - !Vg

1+k =
[o]

3.1.3 ki - O0: Constant-Current Source

For k, = O we have, from (20),

v (ky

Equations (21) become

= 0, ko; a) =

b
T T +a)(TFE)

DI N Y v

v - (1+x) e

+
1 a ko

k. :

1

-39 e (23)

(2k)

23
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Now as ki - 0, assume that Yg - f_(at least one element of yg - )
in such a way that k, y? remains, in the limit, finite and different from

0. Then by the second of Equations (24), this finite value is given by

vl &+ ko 7 Ii
- l+ak ==
o]
o b i
V=-77a% 21 ' (25)
Q
Io b ko Ii
= '1+ako—. .

3.2 Source Matrix Alone Proportional to Line Matrix

In this section, although we permit the load matrix to be completely
general, we write its value in such a way that it becomes relatively easy

to use it for simple deviations from the cases discussed in the previous

section. Thus,as before, take
Pl oK

but write, without loss of generality

w4
n
=
(oS
+
o
s

|
o)
|
I

and



Therefore

gt -k

M= (a+k) oL+ 2ar°

N=(1+ak)L+azay’
M+Q N =i (5 M+ N

i

-l le ez [0 ran) ez

2 ki o
=vd+ Z AY .

k. —
1

Substituting these results in Equations (16) yields

1 2tk -1 ol a + kg o1t g
vt 2 [ e T zal e itz e®)
.. l+ak a + k., -
i o i o a g
I'-——2td o5 E/ll]][g?+—l+akoéﬂl]!
(26)
a+k =]
o) b [ i o
v -2 |F+ Z AY v8
b k a +k -1
-2yt zar’] [tz vE .

25



Let
a+k, ° a+k

i
B = = = - D (27)
Y ki 1+ a(ki + kO) + ki ko

We are particularly interested in further manipulation of the third
and fourth of Equations (26). Substituting Equation (27) we have

-1
- -2grn e 18 l
(28)
1° = - 2% Y (£+ kT 2 AYO) (P B Z AYO)-l vB )
= - Y - = 0 == J B__. -
or, more compactly,
vO = - 2,18
-— Y— —-—
: (29)
o) bk -1
1°=-—2yBaAvE
— Y - e a— -——
where
A=cP+BZAY
(30)
-1 o
B=gP+k =~ ZAY .

3.2.1 Effect of Varying a Single Load Admittance, Yik, Starting With

Proportional Terminations

The remainder of this section deals with a simple case of QXO in which

only the admiftance between the kth output terminal and ground has an

f'l“f.“\

26



incremental component different from zero. That is,

L
AY #0
AYY, =0, 1o0r 3 fk
iJ ’ ‘
Therefore
o] L
AYkk-AYkk;‘O
while
(o)
AYij=O,ior:j;4k .
Thus,
O * o
o_ "o AL
AY "= AYi
0 ‘.
u o
Zu’ . - . ’Z]_N_l O.
EA°= ® L] L] . L] L] * L]

27
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B (x) 7]

L
0,0, + o .0, 2 AV, 05 . . ., 0

L
= O, O’ e a o O, Zek AYI{J{’ O, * o o O (3Oa)

0,0, + . .0, Z AYik, 0, . ..,0

| i

where the sumbol (k) above the column of non-zero quantities indicates that

it is the kth column, Then

(k) -
[ L
A=wf+B2ZAY = 1,0,0, « v o ,0,82, AY ,0,...,0

L
0, 1,0, « v« ,0,B2, AV ,0,...,0

. . . ° . 3 L . . (31)
(k) 0,0,0, « .., 0, L+32, 8% ), 0,...,0

. . . 3 - L] . .

0, 0,0, . .., 0, a'sz AYik, Oy, v o o, 1

where, again, the symbol (k) above and to the left of the matrix indicates

—ad

the kth colum and the kth row respectively.
We require next the inverse of (31). Use the standard relation (4]

AT = D" A (32)

where DA is the determinant of A and g_is the adjoint of A, If aij is the

element of the ith Tow, jth column of A and Bij is the cofactor of aij in

A, then the element of the ith row, Jth column of'ﬁ is

8. =B..,i,3=1, ..., N (33)

that is, g_can be obtained by replacing each aij in A by its cofactor Bij

and then transposing the resulting matrix.



The elements of DA are the same as the elements of A given in Equation

(31). The value of D, can be obtained by summing the products of the elements

of any row or column by their associated cofactors:

N N
DA=EaijBij=j§laiJBij,1,;j=1,...,N . (34)

In particular the summation may be performed in the kth column

N
- 259
DA = .: aik Blk (35/

i=1

where
a. =B 2, AY” 14x
ik ik kk

(36)

- L
148 7y 0T

e

th h

To obtain a cofactor, Bik’ in the k¥ column of DA’ the ith row and kt
column are removed; B.k is the resulting (N - l)t;t order determinant, except
for sign.* Removing the k ~ column leaves the k row as a row of zeros.
Any determinant containing that row will be zero. The only non-zero
determinant is the one obtained by striking out the kth row, and it is
clear that this is a diagonal determinant with all diagonal elements equal

to one. Thus

B 0, 14X

ik

(37)

n
o]

Bk

i -
*The appropriate sign is (-1)* k

29



and, consequently

L
Dy =&y =L1+82Z, &v. . (38)

Analysis of Cofactors of DA

Consider the cofactors, Blj’ of the elements of the first row of

DA' We have
- 1+j o
Blj = (-l) Dl,j, Jd = l’ soey N (39)
where Dlj is the determinant obtained by striking out the first row, jth
column of DA' But this leaves the first column as a column of zeros

[see Equations (31)] unless j = 1. With j = 1 the resulting determinant has the

same form as D, except that it is of a lower order. The same reasoning as used for

A
evaluating DA then yields

D11 = %k
so that

B11 = %k
(ko)

Bjg=0 341 .

Considering, next, the cofactors, 132 3 we have
- 2+
Bej = (-1) DZJ (b1)

30




where D2j is the determinant obtained by striking out the second row, jth

column of DA‘ The resulting second column is a column of zeros. Reasoning

in the same way as before we get

Bop = g
(k2)
B2,j=o’ 3#2 .
Similar arguments apply for all Bij’ i<k, j=1, ... , N. That is,
we have
\
= i <
Bijg “8g » 15K
Bij=o, 'j%l (hv)
'j=1’ ooa,N . /

For 1 > k the reasoning is again the same as above, so that in (L3),

the restriction i < k becomes i £ k.

Finally we have to evaluate the cofactors Bkj’ =1, «..5 N.
For J = 1 we have
(2)(3) (x) (k+1)
B . = r(-l)k+l] 0, 0 0, & 0 0
k1 -L s 9 o+ o s ] 1k ? s * 2
1,0, . « . 5,0, qok? 0, « » 0
0,1, . . . 5, 0 a3k, 0, - » 0
(k"l) O, 0, « o s 9 1’ ak—l,k EY O, . .,0
(k+1) 0, 0, « « « 0,1, G,+. 5 0
o, 0, s o o 3 0, aNk, o’ L | l .

31
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Expanding in terms of the first row yields only one term, namely the
product of 8y and its cofactor. The minor of &qy is the unit diagonal
determinant, and since a,, is the (k - 1) st element of the determinant of

Bkl’ we have, altogether

[ [P @]y

For Bk the same process applies, except that expansion is done in the

second row to yield

i
'
o

Beo ok

and, in general,

Bkj = - ajk’ ik (4h4a)

while it is evident by inspection of Equation (31) that

B = 1 . (4up)



To summarize,

I>>

= [Bji]

vwhere,

for i ¢ k, \
13 = 05 £1i
i1~ “kk

for i=k

P
<
"
_——

-ajk’ tj % k

®
I

k= 3 z‘_jk Ayik, J#k

1+82, AYik

f

(45)
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Thus

mw @ 6 (k) ()
(1) 8k? 0, O, ... 3=89p3 o o 0 0
(2) 0 5 8,40 0,...,-aZk,...,O
N (3) 0, Oy« 578y, ¢ 0 0 (46)
(k) o, 0, Oy « o o 5L 5 o ¢ o 0
(W) 0, Oy, Oy v v o8By o+ &
" _
while
At -t (47)

by (32) and (38).

To continue the process of evaluating Equations (29) we write next,

using (30a) in (30)

o+ kT z Ay

B=w/+k ~ZA4Y
. (k)
1, O, o,...o,b]_k,o,...,oT
0, 1, 0y ...0,by;305¢..50
= 0, 0y 1,...0,b5,0,...,0

(L8)

(x) [0, 0, 0, . . 0,0,

O, O’ o, . . . 0, b ’ 0’ e o 3 ) l



where [cf. Equation (30a)]

-1 L
L k zjk AY s £k
(k9)
-1
Pge = 1 F RS T AYik .
Thus
At -aln?
L (x) _
=a,kk a}{k, O, 0,...,0,blk-8.1k,0,...,0
0,akk, O,o-o,o,b2k aak’o""’o
O ’ o’ akk’ e o o 3 o’ b3}{ - a'3k, O’ . b O
(50)
(k) 05, 0, 05 . 0,Db, 0, . « ., O
L_-o, O, Oy o o v 50,0, =840, 0, .. 8,
By (36) and (L9)
-1 L
o - 8y = (K7 = B) Zyy B¥, 14K
(51)
= cik’ say .
Write b = ¢ for uniformity of notation. Then the first of Equations (29)
becomes



1<

o5
[oc}

-
vy
O ? a]{k’ . o LI} -aak, . e o 9 o Vg
0 ] 0, e ] . 3 ‘aBk, . ' » F} O vg
(52)
&) |0, 0y .¢e, 1,...,0 vﬁ
0 O . . . - . . V‘g
| 9 O » Oy Pre| | w ] -
For the second of Equations (29) we first find
- — oo
Yu, L ] L ] L] Ym %’ 0’ L ] L] ® ’ o, cn, o’. . [ ] ’0
°’°kk" . . ,0,c2k,0; e s+ 50
@: . . 3 3 Y * - . . . »
o ’ o’ L] L ] * ’ o’ c&’ o’ * * .’ o
Ym’ L ] [ ] [ ] YNN— bo ’ o’ ® * L] ’ o’ CM’ o, * . .’ M
— N (k) -
[+
Y1 % Yao B Ya3 B 2 ¢ 0 o0 Y Yas e ¢ ¢ 0 Yon
X
Y21 k0 Yoo %’ Yo3 B 2 ¢ v c0 § Vo1 Caweo ¢ ¢ ¢ 0 Yon B
—3 L ] L] e * L] L] N. L] * . L]
Y1 P Yo Mot T3 B 2 00 0§ Vi a0 oc 00 Yiew B
N L] [ ]
Yyt e N2 Moc w3 %k 0 0 0§ Y Smer v - - ’YNNa'k.k_J




Y Y 'lg Y., ¢ Y -]
= ’ 3 o e o - 3 o o o
Sk 11’ ‘12 ] 1 Uik 1N
. N
Y21’Y22”"’akk§Y2icik""’Y2N N
=& Y, say,
—1N
Yyys Yyos » o 0 0 B £ Yys Gy o v e s Yy
i -
- . AN
and ypat-ypler-1 .
Then the second of Equations (29) becomes
(x)
— LN alits
Y s Yops o v v s B B Ypy Cs o e Yol | V8
1
. bk :
1° = - 1
Y Yo10 Yppr 0 0 v s a'k.kEY2i ik’ » You| | V3 (53)
..]_N .g
Em’ Yoo + = = s akkEYNl 2 0+ oo Il [ Vi .
e L —

The C i being defined by (51) for i # k, and ek = Pric

‘To simplify the problem still further, assume all applied emf's are
equal:
V§=Vg, i=1, ..-,N . (5)4)

In that case, Equation (52) becomes

bV — ~
vo - - —8& 4k T %1k
- Y Sk .

Pk PNk .
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That is,

bV
= --—7%33 (g = 25

= O
<

E

[1.+-B(zkk - zik) AYik] . (55)

Eﬂ’

From (53) we have, in general,

o Dk V (N 1 &
=B Yy rag 2 Y e ( sd=1 0., N

3 Y =1 3 i=1
bk V N '
[ S - -
RN {g;% (ayy + ¢5y) Tii 7 %k ij} . (56)

From (45) and (51) we have, for i # k, the coefficient of in in (56):

- -1 L .
B *Ca = LB g + (kT - B) ZikJ Mg » 14k (57)
For i = k, the whole coefficient of ij in (56) is
(a., +c ) - =b. =1+k7* AYE
ke © Ckk! T %k T Pk o Ax Mk -
But this is exactly the same value as would be obtained by setting

i = k in the right member of (57). Therefore, this expansion may be
substituted for all i in (56) to yield
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Define

bk V
—2o &

bk V
o g
Y S

|

DI

i=1

+

-1
ko - B) A Y

g1 ¥ 8 Iy

N

Y.,
J §=f 9t

<
o
1

Zix in} .

common-mode, or even-mode

g%% {oe[Bmg + 057 - 8) 2] srt vy

characteristic admittance of

the jth

Also note [5, Chapter 2] that since

1

o~
W
=
Ca
[,
|
On
R

conductor .

(58)

(59)

(60)
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where

6; = Kronecker's delta \l
=0’k#j

Substitution of (59) and (60) in (58) yields

1?:-—\(—:;}:—5 {[l+,32.kkAY§'k_-|Y§+(k;l-B) 51{&;}} . (61)

{[1+,3 ZkkAYLmJjZl:;-Y§+(k;l—ﬂ) AY}I:k} .

Define

4
i

o common-mode, or even-mode characteristic admittance
of the whole line

N e

=3, Y,
=1 J

and the last equation becomes

o bk V
SRRl U LENE SN CRR T (62)

A quantity of particular interest in this study is the ratio of output
voltage on any conductor to the bulk output current:

40
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From (55) and (62) we get

v° 1+8 ( -z, ) AYY
i i L Xk ,i=21, ..., 8 . (63)
T

= e e L
k, Y+ ] k (Yo Zige - 1) + 1] aY.,

A particular question to be investigated is: For what values of
the available parameters do the o, (i=1, ..., N) remain relatively
independent of variations in AYik? This question is pursued in the
f:1lowing sub-section.

3.2.1.1 Ranges of Parameters for Which the Ratios of Output Voltages
to Bulk Currents are Relatively Insensitive to Variations in

L
gk

In (63) write

o'
]
w
—
23
]
N
[
=
g
7

0
I

O?F‘
o]

8 (6k)

o}
i
w
w

o
~~
2
oo
]
}-J
L
+
'_.l

Then (63) may be written

1+ bx
oy T eA & (€5)

and we inquire what combinations of the quantities b, c, and d make Iy

relatively insensitive to x.
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Assume all source and load admittances are pure resistances, so that
k, and k_are real. Assume also that AYL, = x is real.

A natural attack on the problem is to expand the right member of (65)
in a Maclaurin's series. One easily obtains as a result of such an

expansion

2
bccé d ¥ [1 - (55) + (gf) ... ] . (66)

1
= =+
Oi(x) c

It is immediately evident that o is independent of x if

However, we will now prove that this result is unrealizeable.

Substitution of the appropriate quantities from Equetions (6U4) in (67) yields
3k Yo (2, -2.) -8Bk (Y -1) -1=0
o "o Zkk ik T 7o Yo Zkk

whence:

B = — A, say (68)

i) T

vhere, in virtue of the middle member of (68), A is real. But by Equation
(27)

ki+a
sk =Xk "
o o (1 +k, h07’+ (ki + koja

In (69), all quantities are real except

a =-j cot 8



But since B ko is real in virtue of (68), we must have, in (69),

k l+k, k
i_ i o
= +
1l ki ko
whence
k> = landk, =1 . (70)
i i

Equation (70) is a necessary condition that o4 be completely independent
of x. Substitution of (70) in (69) then yields

k

- o
3% = TFE (72)

so that this quantity is also independent of a, or cot #. (This is, of
course, evident by Thevenin's theorem when ki = 1.) Equation (71) in
(68) then yields

k =—-—=——'—'l (72)

whiéh is impossible, since both Y: and Zik are greater than zero. Thus,

Gi cannot be made completely independent of x under the specified assumptions.
Next, inspection of Equation (66) suggests that the effects of varying

x might be minimized by meking c large. The second of Equations (64)

suggests that this implies making k0 large.
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For ko -+ =, we get

a . A
c k
(e}

Therefore, Equation (65) becomes

1+ (1 -K. u
g (u) - ( lk)
i e 1+u

where
Bee . G L
U= X= AYkk
o] o
K'k = a voltage coupling coefficient
i

2o P -

44
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(74)
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Further inspection of Equation (66) suggests that letting d = O
could minimize variation with respect to x. However, analysis quickly shows
that this leads to the requirement

which is impossible.
Thus the only clue to minimal variation is Equation (73). This

result is discussed in the next section.

3.2.2 Discussion of Results

Equation (73) is independent of source impedance and line length.
However, the result is predicated on the assumption that k_ is "large."
More specifically, it is assumed large enough so that, in Equation (27),
g~ l/ko. This, in turn, implies that

1+ ak,
‘x >> L

o a + k.
i

e

that is %
1+ ki cot2 8
x >>
© k? + cot2 8
i .
Write
1+ ki cot2 )
F=—3 5 (75)
k., + cot™ 0
i
and say that a satisfactory approximation is achieved if
k,210,F . (76)
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The quantity,./F, may be recognized as the conventional generator-
impedance magnitude transformation for a l-line, with ki or l/ki representing
the VSWR of the source. Thus /F fluctuates between the values k; end l/k,
as 8 ranges over a complete cycle (27 radius). For Equation (73) to hold
within an approximation limited by (76), we must have

% o L
10 ki

2> the larger of ki

One has to keep in mind that this problem has been investigated for an
artificially simple situation in order to derive the beginnings of some
insight into the line behavior. A possible next step might be a statistical
approach, assuming some reasonable distribution of source and load
admittances.

4, Miscellaneous Additional Results

Section 2.1 and Appendix A discuss the derivation of a Thévenin
generator matrix. During the course of this phase of the study it was
thought that generalizations of other network theorems and other N-line
formulations would prove useful; accordingly these results were obtained.
Although this report contains no applications of those theorems, they are
set down here for the record for possible future use. We will discuss (a)

a generalization of Norton's theorem, which is the network dual of Thevenin's
theorem (b) a generalization of the compensation theorem (compensating-
current form) and (c) the response of an N-line to current sources. These
are discﬁssed in turn in the succeeding sections.

4.1 Norton’s Theorem
The conventional (scalar) form of Norton's theorem is the circuit dual

of Thevenin's theorem. It may be stated as follows [cf. Ref. 6]:

The voltage across any admittance, YR, connected to two terminals of a
network, is the same as if YR were connected to a constant-current generator,
whose generated current is equal to the current which flows through the two
terminals when these terminals are short-circuited, the terminals being shunted
with an admittance equal to the admittance of the network looking back from

the terminals in question when all generated currents are set equal to

zero.




The'derivation of the corresponding generalized theorem for an N-port
source is straightforward, and, in fact, is the dual of the derivation of the
N-port Theévenin generator (see Appendix A).

Fig.U4(a) shows an N-port source with all terminals grounded. The

corresponding short-circuit currents flowing toward ground are the elements
of the current vector

jH
[l

2 (77)

Add another set of currents, -gs,(with respect to ground) as shown in
Fiz. 4(b), so that the net current flowing to ground in each of the I
circuits is zero. Under this condition any admittance may be inserted

between any current node and ground, or between any pair of nodes. Thus
L

we can consider the grouﬁds to be replaced by a minimally general load Y,

[1], of % N (N + 1) independent components, as in Fig. 5.
Now suppose the currents of the original source (marked "Source") all
set equal to zero, and find the effects of the external (temporary) source.

On the kth line we have the node equation

where Iﬁ is the current flowing toward the quiescent generator and :; is the
current flowing toward the load. If the line voltage vector is

|
vy

<
]
n

(78)
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then

=1
(79)
I° - ZN: Y. v
k =1 kji J
where
P g |
Yoo - s Yoy
¥ 1. .. L. (80)
g g
s, ..., Y
N1 NN
n _

is the admittance matrix of the quiescent source. Thus the current flowing

from the external constant-current source is

e-(Brhy

whence the resulting voltage vector is
-1
v-- @B+ 1I° .

Therefore the current in the load due to the external source a_ove is

L) - XF v

-1
-~ ey

The current in the load due to the original source alone must be the
reverse of this; thus

-1
iR LR e B ~ (81)
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which is the same as the current that would flow from a constant-current
source to the load, _Y_L, vhen it is paralleled by an admittance, Zg, which
;.,s the admittance looking into the source at its terminals when all
internal sources are set equal to zero. This is the generalization
of the scalar Norton theorem.

The result is also readily obtained directly from Thévenin's theorem.

From Appendix A we have
.28+ 2h 1

where _\[g is the Theévenin emf vector of the source.
The output short-circuit current of the source (ZL = 0) 1s given by

-z .

Combining the last two equations gives

1l

1 -
and z" = (¢")  and simplifying readily yields

whence, using gg = (f)
Equation (81).

4.2 Compensation Theorem

The compensation theorem is useful for finding the behavior of a
network in terms of the behavior of another network from which it may be
derived by making a small number of changes in the impedance (admittance)
elements of the latter.

The theorem may be stated in terms of voltages compensating for
impedance changes or currents compensating for admittance changes.

In scalar form (one impedance change) the voltage-compensation theorem
may be stated as follows [2]:
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If a network is modified by making a change AZ in the impedance of one
of its branches, the current increment thereby produced in any conductor of
the network is equal to the current that would be produced in that conductor
by a compensating emf, acting in series with the modified branch, whose
value is - I.AZ, where I is the original current which flowed in the
modified branch.

In computing the effect of this compensating emf it is assumed that
all other sources in the network are temporarily set equal to zero.
Subsequently the total currents are computed by superimposing the original
currents and the currents of the compensating emf,

Correspondingly the scalar case of the current-compensating form of
the theorem may be stated as follows:

If a network is modified by making a change, AY is the admittance
between a pair of its nodes, the voltage increment thereby produced between
any pair of nodes of the network is equal to the voltage that would be
produced between those nodes by a compensating constant-current zenerator
connected to the first pair of nodes, acting in purallel with the mcdified
node-pair, whose value is - V-<AY, where V is the original voltage acrcss
the node pair.

In computing the effect of this compensating current, it is assumed,
as in the previous case, that all other sources are tLemporarily set equal
to zero.

If these concepts are to be generalized to apply to the terminal
matrices of an N-line, then, consistent with ideas already noted in this
study, the more convenient terminal formlation is in the Y-matrix form.

It follows that a generalized theorem is more useful in the current-
compensation form. The theorem, derived in Appendix B, may be stated as
follows:

If an N-port network, driven by a system of sources in another N-port
netvork, is modified by meking a change, AY, in its driving-point admittance
metrix, Y, the voltage increment thereby produced between any pair of nodes,
either in the driving, - or the driven network, is equal to the voltage that
would be produced between those nodes by a compensating (vector) constant-
current generator, i, applied to the modified network between the N

terminals and ground, given by
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1=- (0

where V is the original voltage vector at the terminals of the N-port.
Again, this compensating effect is superposed on the original voltage
obtained before the network was modified.

4.3 Response of An N-Line to Current Sources

In the discussion of the compensation theorem of the preceding section,
no restriction was placed on the driving network other than that it be
a (linear) N-port. Such an N-port could actually be an N-line with an
N-port source at the far end. 1In order to determine the effect of the
compensating current-source, i, of the preceding section, it is therefore
necessary to have a formlation for the response of an N-line to a current
source. This formulation may be derived starting with an appropriate
canonical formulation from Ref. 5. However, recall from section 4.1, that
a Thévenin source is easily converted to a Norton source by the transformation

v& = z* 18

. . -1
where El = (1}) , and Ig is the strength of the current source.
Making this substitution in Equations (16) (Section 3),

. . =1 .
vVi-MM+rng) z 18
1 -1y
f-ynm+dy z' 18
(82)
e el mtgt 8
- M+in it ® .

LR



5. Conclusions

The chief purpose of the phase of the study reported here was to dis-
cover whether there were conditions under which voltages appearing at
output terminals of a driven cable tend to depend only on the bulk current
entering the output terminals, and to be relatively insensitive to load
variations, line length, frequency, and the number of conductors in the
cable., The problem is generally impractical to analyze without machine
assistance. However, we investigated an elementary special case in which
we assumed source and load termination matrices to be proportional to the
line admittance matrix, and all source emf's to be equal and then observed

the effect of varying one diagonal element of the load admittance matrix.

We

found that the terminal voltages/bulk current ratio tended to be insensitive

to this variation only if (1) the source were approximately matched to the
line and {(2) if the load admittance was much larger than <ae admittance of
the line. 1In that case, a corollary of the first of these necessary
conditions is that the ratio is also relatively insensitive to line length
and frequency. All arguments and conclusions assume lossless lines.
Existance of relatively large line losses may be expected to relieve the
restrictions under which the conclusions hold.

No explicit variation of the voltage/bulk-current ratio with the

number (N) of cable conductors was observed.
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Appendix A

Generalized Thévenin Generator

Refer to Fig. 2 of the main text which shows a generalized source
matrix connected to a generalized load. If the load 1s disconnected from
the source the following measurements can be made:

1. The Open-Circuit Potential Difference Between All Possible Pairs of
Terminals

As usual, there are

1
(N+1F2 = 5 N(N + 1) of these.* However, they are
h

not all independent. Let V be the potential of the k°® terminal referred
to ground, (k = 1, ..., N), and let V8 ve the potential of the jth terminal

ik
referred to the k 0 terminal, (j, k=1, . . . 5 N; J # k). Then

v? =-v§j=v§-v§,;j,k=1, cees N, 3K

= 1 ' g*
These are . C, = 3 N(N - 1) of the ij

which are thus linearly dependent on the Ve, The number of independent

potentials is, as expected,

1 1 _
(N+1)Cz - 5o = EN(N + 1) - -2-N(N -1) =N

and ‘these are simply the Vﬁ, (k =1, . . ., N), or y?.

—
Assuming that the distinction between the potential of the jth terminal
referred to the kth and vice versa is trivial.
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2. The Various Admittances Between Pairs of Terminals When the emf's
Internal to the Source Network Are Set Equal to Zero.*

Again, there are % N(N + 1) of these, but this time they are all
independent. In fact, whatever the physical nature of the network, it may
(at least, at any one frequency) be replaced by a system of % N(N + 1)
admittances joining all pairs of terminals.** Furthermore, these admittances
are readily related to the measured terminal admittances of the network [1].
Designate this source admittance matrix seen at the (quiescent) source
terminals by Xi. |

Suppose these two sets of measurements to have been made, Restore the
y?, so that the source is in its original condition, with the terminals
still open-circuited. Then, if, in series with each terminal of the source
we add a generator of emf, - Vi, the net emf appearing at each terminal is
zero, If the load N-port is connected to this arrangement, no currents
will flow in any of the connecting conductors to the load. The result is
the same as though the added generators, - Vi, were respectively in series
with cancelling generators, Vﬁ. If the source generators (Vﬁ) are once
again turned off, the response of the system is to a source, - Yg acting

. . . i o .
on passive terminations Z" and Z~ in series, where

N
1

. =1
bl

N
]

-1
Q (IO)

The response of the load to the source generators, !?, alone, is the
negative of the previous response; that is, it is the same as though Yg were

i
in series with the terminals of the passive impedance matrices, Z=  and g?.

*
Or, as it is sometimes stated, when the generators in the source network
are replaced by their internal impedances.

** - ) L)
Insofar as its external behavior is concerned.



Consider Fig. 1-A, which diagrams this result. Clearly, we -have

\

I--yfvtary
and >
vaevBov
= - /
. o) i
To eliminate V™ and V" write
0=‘g_iy_i+_‘f_°y_°=Yivi+‘_z_°(vi+Vg)
whence
‘li - . (Xi + lo)-l X_,o Y.E )
Then
vVsy +vE
i o-:L o)
[@- ey ) f

"
7~~~
]
[¥S
+
<
0
—
1
fur}
4
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and

1= y8
- !O (.!i + YO)- _Y_i vg
-1 -1 -1
=2 @+ (gl 8

[z' (¢ + 1% 2217t 8

-1
(° + 21y ¥8

1
-1

-1 -1
=[x +@hH 1 B

This justifies and interprets the symbolism of the source as given
in Fig. 1 of the main text.

As an illustrative example consider the schematic of Fig, 2-A. This
shows a source and load with N = 2. The source contains an emf of 1 volt.
All impedances are resistors with velues indicated adjacent to them.

Solving the network first in the standard manner we have the mesh
equations

811-,412"13-1

b1) + 151, - 515 =0

-il - 512 + 7i3 = 0
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with solutions

)
."Ll = 0.169

i = 0.0698

2

13 = 0.07)40 . )
Then

Il - 12 = 0.0698

I, = 13 -1, = 0.00423
that 1is,

0.0698
I =
- 0.00423

To apply Thévenin's theorem, disconnect the load. The source terminal
voltages are, respectively,

v8 4 +1
1-——r——3+ +la

that is,
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To compute the equivalent source impedance matrix and the load
impedance matrix, it is convenient to first determine the admittance matrices.

Fig. 3-A shows the separated quiescent source and load networks. In the
source matrix (Fig. 3-A (a)) ground terminal No. 2, and apply a potential,

Vl, to terminal No. 1. Then

11

=

Vo0

This is just the admittance of the 3-ohm and the Y-ohm resistor in
parallel:

wi+=
+

Fi+
"

Rl
:

i
Y11=

At the same time we get

2=0

Noting that I, is the reverse of the current flowing in the L4-olm

resistor,
\'
1,1 _ i _ 1
Ip=-§ 3 Y=Yy =-§ me-

Next, grounding No. 1 terminal and applying a potential, V2, to the
No. 2 terminal we have

[
<|+4
n

22

)
<

1=0
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with the l-olm and 4-ohm resistors in parallel to yield

i

Y22-1+,’f-z- mho.

With this same setup it is, again, evident by inspection that Yi’z = - g;-

In the same way one obtains for the load matrix,

o 6
In=1i§

To compute the currents flowing between source and load we have the

previous result

v ]
o L
1
-
i
+
B

0.730 , -0.27h

-0.27 , 1.h21

e




To invert, we have the determinant

D® = (0.730)(1.k21) - (0.274)2 = 0.963

(D').l 1.03
= . 9 .

Thus,
. .1 1.k21 , o0.27h
(" +¥%) =1.039
0.274 , 0.730
1.478 , 0.284
0.284 , 0.758
then

[0.147 , -0.024k 1.4k78 , o.284| [0.583 , -0.250| | 5
1
I =
=" 8 | -o.0244 , o0.171] |0.284 , 0.758])|-0.250 , 1.250 |1}
-
0.0701
0.00433

The discrepancy between this result and the conventionally obtained

result
0.0698
1=
0.00423

is undoubtedly attributable to slide rule error.
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Appendix B

Generalized Compensation Theorem

(Compensating Current-Source Form)

The scalar case (single admittance change) is discussed first. Consider
Fig. 1-B. At (a) are shown two nodes of a network between which the
admittance to be modified is connected. At (b) an admittance, AY, and a
current source of strength, 1, are shown, If i = V-AY, where V is the
voltage drop across the terminals, no current flows out of the box, so the
combination of i and AY leaves the rest of the network unaffected. If, now,
another source, -i, is added, as at (c), the net physical modification
to the system is the admittance change, AY, while the net dymamic change

in the system is as though a current source,

-i = - V-AY

had been added to the modified network.

For our purposes we pfefer to think of the system as consisting of a
source network and a passive load network connected with a pair of wires as
shown at Fig. 2 (main text), with N = 1 in that figure, rather than as the
single network of Fig. 1~B. Obviously, the source network of rig. 2 can
be considered as being included in the box of Fig. 1-B.

In Fig. 2 of the main text, assume the load to be in the minimal
Thévenin form, so that each of its % N(N + 1) admittances is accessible at
some pair of its (N + 1) terminals.

Consider changing an admittance, Yyk’ connected (internally) between
the jth and kth ’
between the kt

admittance is

terminals of the load. (The admittance Yik is connected

h terminal and ground; see Fig. 2-B). The voltage across this
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where V j is the potential from the ;jth terminal to ground.

The scalar compensation theorem just proved states that the effect of
the modification, AYg'k is accounted for by adding a current source

Lo = - Y?k (Vg - V) -

Now suppose that, in general, every admittance of the load network
is modified. The method of derivation of the single port theorem is
extended by adding, simultaneously, a compensating current source for Each
change, so that the net dynamic effect on the system is nil. Then, by
adding the negatives of these sources at the same branches we conclude with
a net physical modification consisting only of admittance changes, and a
net dynamic modification represented by the second set of added current
sources acting on the modified network. Their effects are then added to
the original network response before modification to obtain the total
modified response. .

Admittances connected to the j°0 terminal are Yg'k, k=1, ..., N.
The effects of changing all admittances connected to this terminal are
summed as the current source

N N L L
1, = é}l L ™ ﬁ\;l [-AYJk (v, - vk)] - AY, Y,
(1)

Note that 1 Ik = -Lk 3° Continuing,

N N
i, = - k;lmr?kvg -g;;ug'k v,
(3)



L L
- - v‘1 & Ade - . Ade- Vi
(3)
Note that [1]
ng == jk ? J { k
N

o] L

b A E Yo

For incremental load admittance changes these yield

L

o
AYJk = - AY;]k

N
o]
aYS, = Eugk

Substituting these in Equation (1-B),

3 370 T Ve
(3)
o
--ki;lAYJka

(1-B)
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That is

where

1=-500¥

AYNl’ o o o 3




