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ABSTRACT

A general theory is advanced for determining the currents in the
load impedances of an N-conductor isolated transmission line excited
by an electromagnetic field with the electric vector directed parallel to
the wires. The number of impedance loads in the circuit is 2N, An
impedance is connected in series with each conductor at its ends., At
each end of the transmission line the impedances emanate from a
common node, There is no requirement that the conductors be of the
same radius, be equally spaced, or lie in a common plane; however,
their axes must be parallel, Evidently the cross section of the line
must be sufficiently small in terms of the wavelength that trans-
mission line theory applies.

Numerical values for the load currents in a three-conductor
model are given,

Scattering from end-loaded multiconductor transmission lines

is considered., It is shown that for configurations lacking geometrical
symmetry such problems become arduous if not solved by computer,

scattering, impedance, transmission lines
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GENERALIZED THEORY OF IMPEDANCE LOADED
MULTICONDUCTOR TRANSMISSION LINES
IN AN INCIDENT FIELD

Introduction

The problem of determining the currents in the load impedances of a multi-
conductor transmission line excited by a plane wave incident field was encountered
in studies at Sandia L.aboratories related to the electromagnetic compatibility of
rockets., The purpose of this paper is to set forth the techniques and procedures
required to effect solution of the problem when the structure consists of N parallel
wires with a load impedance at the end of each conductor. All impedances at each
end of the transmission line emanate from a common node, The theory is sum-
marized by solving the problem for three coplanar conductors containing six load
impedances illustrated by Figure 1. A portion of the paper is devoted to the theory

of scattering from such obstacles.

Description of the Circuit Analyzed

Figure 1 represents a transmission line consisting of three conductors termi-
nated at their ends in load impedances. The length of the line is s. The gpacing
between wires is b and their radii are a. The phase reference is taken at the lower
end of the middle wire labeled 1. The outer wires are designated 2 and 3, Coin-
cident with the point of phase reference is the origin for Cartesian and cylindrical
coordinate systems. The conductors of the transmission line are parallel to the
z axis and lie in the y0z plane. The incident electric field 7Eiznc arrives at the
angle 6 measured counterclockwise from the positive x axis. The field is orthogonal
to the x0y plane and is directed upward. The currents Il(z), Iz(z) and 13(2) flow in
the positive z direction in wires 1, 2, and 3, respectively. The notation used to
designate a load impedance is made clear by two illustrations: The impedance Zsl
is connected in series with wire 1 at z = s:; Z is connected in series with wire 2

02
at z = 0,
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Figure 1. Three Impedance Loaded Coplanar Conductors Driven
by an Incident Field
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The Boundary Condition for the Total Electric Field
on the Surface of Each Conductor

The wires composing the transmission line are assumed to be perfectly con-

ducting, The boundary condition for the total electric field on the surface of each

conductor is
E1nc + Escat =0 . (1)
Z A

The requirement stipulated by (1) is expressed by the simple differential equation

2
. d"A (z)
ine ., w z 2 _
Ez -3 —Bz ———azz + B Az(z) =0. (2)

Here w= 27f is the radian wave number, 8 = 27/A is the free space propagation

constant, and Az(z) is the total vector potential on the surface of a particular wire.

The solution of (2) is

-1 _ . 47 .
47”.10 Alz(z) = -j ———CO (C1 cos Bz + D1 sin Bz + Ul) (3)
arp A (2) = -5 2T (C. cos Bz + D, sin Bz + U.) (4)

0 "2z g, 2 2 2
47ru-1A (z) = - j ir (C,cosBz+D,_sinfBz+1U,). (5)

0 3z g, 3 3 3

In (3) through (5), By = 47 X 10-7 H/m and CO = 1207 ohms are the permeability and
characteristic impedance of free space, respectively, The constants of integration
are C and D, The conductor under consideration is designated by the integer sub-

script., For example (4) applies to conductor 2, The excitation functions are de-
noted by U.

The Excitation Functions

As mentioned earlier the phrase reference is taken at the point x = y = z = 0,
i.e,, at the lower extremity of conductor 1, Figure 1. For E;nc in the positive

z direction the solution of (2) yields

U, = B (0)/8 (6)



Inspection of Figure 1 for the particular value of 8 selected shows that conductor 2

leads conductor 1 by the phase angle b sin 8§, and that 3 lags 1 by the same angle.

Hence
inc
0y . .
U2 . _=Z g eJBb sin6 7)
opadi (1)
Uy = Ep PSR ®)

For a complicated configuration of wires care must be exercised in writing down the

excitation functions, especially when the angle of wave arrival 6 is arbitrary. Often

interest centers in obtaining the response of an impedance loaded transmission line

for a fixed value of 8, This specialization may simplify the problem, In any event

only plane geometry and simple trigonometry are involved., Suppose, for example,

6 = 37/2 radians, The incident wave is traveling in the positive y direction, so
inc

that E°° (y) = E;nc 0) e ¥, When y = -b and 6 = 270° (8) is obtained, Similarly, .
when y = b and 6 = 270°, (7) results. .

The Simultaneous Integral Equations for the Currents
on the Three Conductors

The three integral equations for the currents in the circuit pictured in Figure 1

are
s s s
f Il(z')Ka(z, zYdz '’ +f Iz(z')Kb(z,z’)dz’ +f IS(Z’)Kb(z,z’)dz' =
0 0; 0
. L8 (C. cos Bz + D, sin Bz + U.}) (9)
T, 1 1 1

S s S
f Il(z’)Kb(z, zdz '’ +f 12(2 N Ka(z, z Ydz’ +f 13(2 ) Kc(z,z’)dz' =
0 0 0

- flj—r-(CzcosBz-!-D

CO sin Bz + Uz) (10)

2
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Il(z N Kb(z, z')dz’ +f

s
] / ] ’ ’ r
Iz(z )Kc(z, z)dz +j I3(z )Ka(z,z Yaz ' =
0 0

;4
CO

(C3 cos Bz + D, sin Bz+U3). (11)

3

Equations (9) through (11) apply to conductors 1 through 3 in sequence, Here

1 .

Ka = —RT; exp(—JBRa)

K, = %b exp(-i8R,) (12)
K = 2— exp(-i8R_)

¢ R e’/

2b

where

R;J(z -2+ 8%, Rb=4(z -2+ p Rc=4(z S22 44 . (13)

It is now desirable to employ the device that relates linear antenna theory to

transmission line theory, It consists, for example, in writing

S S

f Il(z') Ka(z, z)Ydz’ gf Il(z')Kd(z, z Ndz'+ Il(z)zpa . (14)
0 0
In this expression
= 1 »
Ky = R, exp( JBRd) (15)
Ry = (- 29 +d? (16)
and
_ d
b, = 2n (g) . (17)

1R. W. P. King and C, W. Harrison, Jr., Antennas and Waves: A Modern
Approach, MIT Press, 1969, Chapter 7, p. 489, Eqg. 7. 3.6 through 7.3, 8.
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The parameter d is a quantity related to the effective radius of the conductor cage,
It must be known to determine the scattering cross section of the circuit, as ex-
plained later, The principle set forth in (14) may be applied to every integral
appearing in (9) through (11), provided that fa < Bb << 1. When this is carried
out, (9) through (11} yield

T (C1 cos Bz + D1 sin Bz + Ul) (18)

!
1
Code

Jd(z) + Il(z)z;’)a + Iz(z)zpb + IS(Z);bb =

Tf2) + 1 (@), + L@, + L)Y, = -] C—;i (C, cos Bz + D, sin fz +U,)  (19)

Jd(z) + Il(z);bb + Iz(z)zbc + 13(z)¢a =7 (C3 cos Bz + D3 sin Bz + U3) (20}

In the above equations:

s 3
Jd(z) =f 1 (z')Kd(z, z’}dz’ (21)
0

n

z,ba is given by (17)
9, =2 in (%) (22)
by, = 24n (g—b) . (23)
Also,
BZ In(z) = IT(z) = Il(z) + Iz(z) + Is(z) (24)

n=1
By Kirchoff's current law,
1.(0) = I.(s) = 0.
That is

11(0) + 12(0) + 13(0) = 0 (25)

Il(s) + Iz(s) + IB(S) =0, (26)

12
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In order to eliminate Jd(z) from (18) through (20), it is convenient to subtract (19)

from (18) and (20) from (18). Thus,

o _ 4 Arm .
Il(z)lbab - IZ(z)z})ab + Is(z);bbc = - z, (Cy, cos Bz + D, sin Bz + U, ,) (27)
. 4r :
Il(Z)d)ab + 12(2);Dbc - 13(2);bab = - Co (C13 cos Bz + D13 sin Bz + U13) . (28)
In these expressions
=y -4 = b
z’bab wa z’bb =2 ﬂn(a)
Yo = ¥ - b, = 2 In2 = 1.3863
Cig= Gy -Gy
€137 C -G
. (29)
D;5=D; - Dy
D;g= Dy - Dy
inc
B (0) . .
- _ -z _ _iBp sme)
Ujp= Uy - U,y = =25 <1 e
Einc (0)
- _ _ 2 _ _-JjBb siné
UlS—U1 U3————B (1 e )

When z = 0, (27) and (28) may be written

¥ p11(0) - Co¥apla(O) + ¥y olg(0) + j4mC,, = - j4mu,, (30)
Co¥apli () Co¥poTp(0) - Lob pIg(0) + §47C, 5 = - j4nU, o (81)
Also,when z = s, (27) and (28) become
' Co¥aply(s) - Colapla(s) + Eo¥pclsls) + j47C,, cos Bs + j47D, , sin Bs =
-3 32
347rU12 (32)

13



Cowabll(s) + gowbclz(s) - Coqbabls(s) + J47TC13 cos f3s + 341rD13 sin s =

- J41TU13 . (33)

The Voltages Across the Load Impedances

The scalar potential on each conductor is obtained from the vector potential

with the help of the Lorentz condition. It is

. W dAz(Z)
¢(z) = j — e (34)
B
Applying (34) to (3) through (5),
qb'l(z) = - C1 sin Bz + D1 cos Bz (35)
¢2(z) = - C2 sin Bz + DZ cos Bz (36)
¢3(z) = - C3 sin Bz + D3 cos Bz . (37)

In obtaining these formulas, use was made of relations MO/CO = 1/vp and Vp = w/f.
The potential of the shorting bar at z = 0 is designated ¢>O (refer to Figure 1});

the potential of the bar at z = s is designated ¢S. These potentials are unknown but
serve as an aid to the writer in avoiding errors in sign, Since all currents are

assumed to flow in the positive z direction,

8 - 8,(0) = 1,(0)Z, (38)
8o = 0500 = I(0)Z (39)
8o = #5(0) = L(0)Z,, (40)
¢1(s) -8 = II(S)Zsl (41)
Byls) -0 = I,(8)Z_, (42)
¢5(s) -8 = 1(s)Z_5 - (43)

14
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By subtraction ¢O is eliminated from (38) through (40) and <bs from (41) through
(43), The result is

Dy, - 1,(0)Z, +1,(0)24, = 0 (44)
D13 - 13(0)203 + 11(0)201 =0 (45)
C12 sin 8s - D12 cos Bs + Il(s)Zsl - IZ(S)ZS2 = 0 (46)
C13 sin Bs - D13 cos fBs + Il(s)Zsl - 13(5)253 =0 (47)

where use has been made of (35) through (37),

The unknowns are 11(0), 12(0), 13(0), Il(s), Iz(s), 13(5), C12, C13, D12 and
Dls—ten in number, The following independent equations are available for deter-
mining these unknowns: (25), (26), (30), (31), (32), (33), (44), (45), (46), and (47)—
again ten in number, One is now in a position to write a system of equations, shown

in Table 1, for computer snlution, The constants C C 30 etc., need not be read

12° 71

out inasmuch as they are not needed. If the programmer does not trust the avail-
able routine for solving complex matrix equations, he may separate the equations
into real and imaginary parts forming a 20 x 20 matrix to solve the problem

presently under consideration.

Suggestions for Solving More Complicated Problems

The reader may get the impression that determination of the load currents in
a multiconductor transmission line driven by an incident plane wave field is a
formidable undertaking., Actually this is not the case, The following suggestions

for solving these problems are proffered:

(a) Write down expressions for the excitation functions U.

(b) Write down a system of equations like (18) through (20)
by inspection of the circuit, There will be one equation
. for each conductor involved, Eliminate Jd(z) by subtraction,
( longhand, (Note that this can be done by computer. )
Observe that the wires in the model must be of the same

length but need not be of the same radius,

15
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TABLE I

Complex Matrix for Determination of the Load Currents

( Y( ) )
1 1 1 0 0 0 0 0 0 0 Il(O) 0
0 0 0 1 1 1 0 0 0 0 12(0) 0
Colar “Co¥ap Co¥be 0 0 0 jam 0 0 0 1,(0) -j4U
Col[)ab cOwbc —COwab 0 0 0 0 jam 0 0 I1 (s) -j41rU13
0 0 0 Cozbab —Cozbab COwbc j4mcos Bs 0 jaw ginfs 0 ><Iz(s) —thU12
0 0 0 Cod)ab COd)bc —Cozbab 0 j4mcos Bs 0 j47 sin Bs IS(S) -j4'rrU13
Z01 —Z02 0 0 0 0 0 0 1 0 C12 0
Z01 0 --Z03 0 0 0 0 0 0 | 1 C13 0
0 0 0 ZS1 —ZS2 0 sinfls 0 -cos fBs 0 D12 0
L 0 0 0 ZSl 0 —ZS3 0 sinfis 0 -cos f8s ) P13 ) 0

AU S



(c) Write down a system of equations like (35) through (37),

There is certainly no difficulty in doing this!

(d) Write down expressions corresponding to (38) through

(43), leading to equations like (44) through (47).

(e) Write the complex matrix, and request a programmer
to invert it by machine, reading out the magnitude of

the load currents.

Back-Scattering Cross Section of an Impedance Loaded
Multiconductor Transmission Line for Parallel Polarization
of the Incident Field

Normally, interest centers in obtaining the load currents in a transmission line
exposed to an incident field, Now and then it is desirable to obtain the radar cross
section of the structure for parallel polarization of the incident field. This problem
is very straightforward, provided that all conductors have the same radius and their
axes are oriented on the vertices of a regular polygon. If either of the above con-
ditions is not met, the problem may become horrendous. Inasmuch as the structure
illustrated by Figure 1 does not possess the symmetry needed to achieve simplicity
(there is a middle conductor), it is a suitable circuit to illustrate the fact that

determination of the back-scattering cross section is sometimes arduous.

It is convenient to shift the origin of coordinates to the middle of conductor 1,
Figure 1, The ends to the transmission line are now at z = +h (s = 2h). The

definition of Jd(z) in (18) through (20) now becomes

h
Jd(z) =f IT(Z’) Kd(z, z ')z’ (48)
-h
Since
IT(ih) =0 (49)

it is not possible for any of the load impedances, which are all located at z = +h,

17



to have any effect on IT(z). It follows that for normal incidence of the electric field .

the total current IT(z) satisfies the symmetry condition

IT(z) = IT(-z) . (50)

It is possible to obtain an expression for Il(z) in terms of IT (z} by solving (27)

and (28) for Il(z), adding Il(z) to both sides of the equation, and summing. The

result is
31.(z) = I.(=z) - [I (z)+1 (z)] $bc -j 4T [(C + C,,) cos Bz
1 T 2 3 ;bab Colbab 12 13
+(D,, +D,g) sin Bz + (U, + U13)} . (51)
If one remembers that
12(2) + I3(Z) = IT(Z) - Il(Z) ’ (52)

the following formula for Il(z) may be obtained:

_ [-‘bab - d)bc s 4m
ek ) '?‘bab Ve : Lol3¥,y - )

[(Cl2 + C13) cos Bz

+ (D12 +D13) sin Bz + (U12+U13)]- (53)

Adding (18), (19), and (20) yields

33 02) + 1, (@) (@ +28) + 1,00 + 15| [o, + 0y, + 0] =

. 47

- j -‘:—6 [(C1 +C2+C3) cos Bz

+ (D1 + D, + D3) sin Bz + (U1 + U, * U3)] . (54)

2

18
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In this equation the current [Iz(z) + 13(2 )} drops out if one sets

¢a+¢b+¢>c= 0 ' (55)

3
d = \2ap? . (56)

Substituting (53) into (54) subject to (55) yields

so that

2n (4) £n (%)

2.

Ig2) v g7 = 1(2) =
b
f“(“s)
43
carm JC1 TG\ 1 anqa
‘JE‘ 3 -3 5 C12+C13 cos Bz
£n —-E
4a
D, +D_+D
1 2 3 1 In (4) ( .
+ < 3 > -3 b6 D12+D13> sin Bz
,Qn <'——6—>
L. 4a .
C 7
N S R\ O O+ Y23 B (U +U ) : (57)
3 3 b6 12 13
. 4a -

The coefficient of cos Bz is just a constant denoted hereinafter by C. The coefficient
of sin Bz must be zero because of (50). The remaining term is a complicated ex-
citation function designated Ueff' Its value is determined later. Equation (57) now

takes the form

Jd(z)+ ——___)I (z) = -jgf (C cos BZ+Ueff) . (58)

19
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This is a Fredholm integral equation of the third kind., It may be reduced to a
Fredholm integral equation of the first kind as follows: The integral J'd(z) is
defined by (48). Observe that the antenna current IT(Z) occurs under the integral
sign. Thus, the left side of (58) is in the same form as (14). Accordingly, (58)

may be written

h
—3‘/3\!(2-2')"’+g2 £n (4) £n (—E)
¥ e 1 2 23. _
IT(Z) dz +IT(z) ) g | *
2. 2 g b
{(z-z') +g (En _—é)
-h 4a
. 47
-j E—(; (C cos Bz + Ueff) (59)
where
d)g =2 4n (%) . (60)

One is at liberty to set

2
w+-§————-———=0 (61)

in order to determine g, It is

2 (62)

6

b

4a

where use has been made of (56},
The final form of the integral equation is
o B8
_j R
1y &7 8 g oo AT ( )

IT(z ) =) dz’ = -j 7 C cos Bz + Ueff . (63)

-h g 0

20




An approximate solution of this equation is2

IT(z) > j % Ueff K (cos 8z - cos Bh).

Here
-1

K = [de cos Bh - sz(h)]

h

lde = (1 - cos Bh)-lj (cos Bz’ - cos Bh) x
-h

[Kg(o, z’) - Kg(h’ Z )j‘ dz

h
{bU(h) = J—h (cos Bz’ - cos Bh) Kg(h, z') dz

1
K = — -iBR
g gexp(JB g)

R, = J(z-z')2+g2 .

The back-scattering cross section for parallel polarization is

2
Erad

011 = 47rr2 inc
E
VA

where
h

g8
= E—I‘— IT(Z)dZ .

-h

Erad
Z

2Ref«arence 1, Chapter 8, p. 520, Eq, 8.3.19b,

(64)

(65)

(66)

(67)

(68)

(69)

(70)

(71)
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It is easily shown that

Einc
U = _Z 1+2cos (Bbsin@) 4 4n (4) Sinz (Bb sin 9)
eff B 3 6 2
b
3 in (—'—6)

4a

Einc

= 5 Q6) (72)

using (6) through (8) in the last bracketed term in (57). Substituting (72) into (64);
" (64) into (71) and (71) into (70), sequentially, and carrying out the indicated mathe-

matical operations yields

(o]
—% = 2[Q®)K (sin Bh - fh cos pm]% . (73)

12
This is the final formula for the normalized radar cross section of the impedance
loaded multiple wire line for parallel polarization of the incident field. Since Q(6)
as defin-d by (72) is a function of 6, it follows that the value of 011/ 7\2 varies as

the aximuth angle 6 of wave arrival changes.

-

~

Numerical Results
In the numerical results reported in this paper Elznc (0) = 1 volt/m, ¢= 270°,
a= 10-3m, and b ='}0-2m. In the tables E-n means 10-n; for example, E-5 = 10-5.

All currents are given in amperes and impedances are expressed in ohms,

Example I: Z01 = ZOZ = Z03 = ZSl = Zs2 = ZS3 = 500 + j0. 0.

s = 1,0m,

22




s = 1,5 s=3,0
/1,(0)/ = 9.076 E-8 7.736 E-7
/12<o)/ = 1,767 E-5 5,461 E-5
/13(0)/ = 1,766 E-5 5.454 E-5
/Il(s)/ = 9,076 E-8 7.736 E-T
[15(8)/ = 1.767 E-5 5,461 E-5
/13(s)/ = 1,766 E-5 5,454 E-5

RIS PP SR B,

[}
n

Example II: Z 50 ~ j25; Z 100 + j100; Z03 = 25 + j25;

01 02
Z_, =50+ j25; Z_, = 100 - j50; Z_, = 150 - j50 .
s =10m.

s=1.5 s=3.0
/Il(O)/ = 1,065 E-5 2.728 E-5
/12(0)/ = 5,644 E-5 7.240 E-5
/1,(0)/ = 6.255 E-5 8.884 E-5
/1,(s)] = 1,220 B-5 2.751 E-5
/1,(s)/ = 2.784 E-5 5,918 E-5
/14(s)/ = 3.650 E=5 3.179 E-5

e = = = 0; = N
Example IIT Zsl Zsz Zs3 0;s 10m
Zog = g3 = 0
s=1.5 s = 3.0

Z, 1,000/ 1,00/
100 4,023 E-8 8.040 E-8
10t 4,023 E-8 7.530 E-8
102 4,020 E-8 2.066 E-8
103 3.760 E-8 2.137 E-0
104 1.023 E-8 2.138 E-10
10° 1,057 BE-9 2,138 E-11
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108 1,058 E-10 2.138 E-12
107 1.058 E-11 2.138 E-13
2oy = %oz =0

Bs = 1.5 s =30
Z02 /12(0)/ /12(0)/
10° 5.563 E-5 5.561 E-5
10l 5.563 E-5 5.344 E-5
102 5.561 E~5 1.818 E-5
10° 5,340 B-5 1,922 E-6
10% 1.801 E-5 1.924 E-7
10° 1.902 E-6 1,924 E-8
108 1.903 E-7 1.924 B-9
107 1.903 E-8 1.924 E-10

Zyy = Zog = 0

Bs=1.5 s=3.0
Z43 /13(0)/ 113(0)/
10° 5.563 E-5 5.561 E-5
10! 5,563 E-5 5.344 E-5
102 5.561 E-5 1.818 E-5
103 5.340 E-5 1.922 E-6
104 1.801 E-5 1.924 B-T
10° 1.902 E-6 1.924 E-8
108 1.903 E-7 1,924 E-9
107 1.903 E-8 1.924 E-10

Example IV: 202 = .Z03 = Zsl = ZS3 =0 .
Zy =10+]0.0 Bs=1.5, s=10m, .

s s




z_, /1,(0)/ zZ, /1,(0)/
0.0-j 1, 0E3 2.102 E-4 0.0-j 6.0E3 1.033 E-3
0.0-j 1.5E3 3.921 E-4 0.0-j 6.5E3 9.589 E-4
0.0-j 2.0E3 6.795 E-4 0.0-j 7.0E3 9.021 E-4
0.0-j 2,5E3 1.152 E-3 0.0-j 7.5E3 8.575 E-4
0.0-j 3.0E3 1.797 E-3 0.0-j 8.0E3 8.216 E-4
0.0-j 3.5E3 2.061 E-3 0.0-j 8.5E3 7.922 E-4
0.0-j 4.0E3 1.788 E-3 0.0-j 9.0E3 7.676 E-4
0.0-j 4.5E3 1.488 E-3 0.0-j 9. 5E3 7.467 E-4
0.0-j 5.0E3 1.278 E-3 0.0-j 1.0E4 7.288 E-4
0.0-j 5.5E3 1.134 E-3

In this work the N x N system of equations was separated into a 2N x 2N real

system of equations., Also, the N x N complex system was solved directly. Identical

results were obtained. Inasmuch as two different programs were employed, the writer

has confidence in the accuracy of the numerical results presented.

Conclusions

A unified treatment has been developed for determination of the load currents
in an impedance loaded multiconductor transmission line in an incident field. The
possibility of reducing a complicated loading network to simple series impedances at
the ends of the conductors forming the transmission line should not be overlooked.
Although the theory presented herein employs a three conductor model, familiarity
with the procedures and techniques involved in the solution of this specific problem
per:mits the reader to write down by inspection the needed equations to determine the

currents in the load impedances of a more complicated circuit.

A formula for the back-scattering cross section of impedance loaded N con-

ductor transmission lines may be derived easily, provided that the structure possesses

the required symmetry.

25



