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SYMBOL GLOSSARY AND INDEX

a,: Egs. (16)

2;.0 Eq. (51)

'Eq. (48)

b: Egs. (4)

+¢ Eags. (16)

C: Line capacitance-coefficient matrix; Eq. (9)

Cij(i’J = 1,...,N): N-line capacitance coefficient between

ith and jth conductors; element of ith

th

row, J column of C.

f: Frequency, Hz

@)

I, I': Egs. (3)

;i, 12: Fig. 10. See, also, accompanying text.

th

(k = #1,...,2N): 1Input current, k conductor; Egs. (3)

I (k =42%1,...,tN): Output current, yaas

conductor; Egs. (3)
gﬁ Unit matrix; Eq. (18)

ﬁeg: Unit N-vector; Eq. (1L4)



SYMBOL GLOSSARY AND INDEX (CONT'D)

I%: Bulk output current
N
o _ o]
Ip = Ty
k=1
j= VI

+1 Ea. (20)

L, L,: Egs. (22)

2: Line length, meters
My, N,: Egs. (17)

N-line: A line consisting of N conductors plus a reference
conductor; i.e., (N + 1) conductors in all.
Section 2.1

P,: Egs. (17)

v®: Eq. (13)

v8: Thévenin generator open-circuit emf; Eq. 12

Egs. (3)

y&, YE: Fig. 10. See, also, accompanying text.

YO: Fig. 9. See, also, accompanylng text, Section 2.3.

VG: Shield voltage source

th

v8: k"® component of V&(k = 1,...,N)
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SYMBOL GLOSSARY AND INDEX (CONT'D)

th

.,EN): Input voltage, k conduc

Il
1+
[

-

th condu

£]1,...,2N): Output voltage, k

Speed of propégation, meters/second

Line admittance matrix; Section 2.1

N-line admittance coefficient; element of
jth column of ¥(i,3 = 1,...,N)

Canonical passive termination matrix, "i"
Eq. (11) ‘

Canonical passive termination matrix, "o"

cr. ¥

th

th column of Y

Element of the 1 row, J

th oolumn of XO

Element of the ith row, J
Fig. 10. See, also, accompanying text.

Common-mode characteristic admittance of m
with respect to ground; Eq. (26)

Common-mode admittance vector; Eq. (27)

th

tor; Egs. (3)

ctor; Egs. (3)

the ith row,

end of line;

end of line;

conductor

Common-mode characteristic admittance of whole line;

Eq. (30)

Eq. (31) and accompanying text
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SYMBOL GLOSSARY AND INDEX (CONT'D) .

Line impedance matrix; Eq. (6)

N-line impedance coefficient between ith and jth
conductor (i,j = 1,...,N); element of the ith row,

jth column of Z.

Y(ko, k,3 a,): Eq. (34)

J.
Gk.

I+

{=

12

Kronecker delta; Eqg. (48a)

Dielectric permittivity, F/meter

Electrical length of line or cable, radians; Egs. (5)

Fig. 10. See, also, accompanying text. ef. "OO

Eq. (19). See, also, Section 2.5.2. .
Magnetic permeability, H/meter

3.14159

Eq. (52)

Angular frequency, radians/second
w = 2nf
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1. INTRODUCTION

This report summarizes results of a study of the transmission
properties of multiconductor cables excited in various related
ways, and coordinates the analyses and data presented in the
pertinent interim reports.l—uszsr The investigation supplements
one part of an overall study undertaken by Sandia Laboratories,*
with the purpose of developing rational procedures for analyzing
the effects of an electromagnetic pulse on missiles and aircraft
in flight.5 According to the approach adopted by Sandia (op. cit.),
the effect of such a pulse on some electrical device or circuilt
i1s to be analyzed by concelving the physical environment as a
sequence of transducers (Fig. 1). Such a sequence could consist
of (1) the external surface of the missile or aircraft, (2) some
coupling means between body sufface and the conductors of a
cable (e.g., a radiation slot on the*missile surface), and (3)
the cable itself, connected to the affected device or circuilt.
The assignment for the study reported here was to develop the
relations among the dynamic quantities (currents and voltages)

of the third element in this transducer sequence.

The essence of the work statement included in the applicable

contract (No. 11-1756, Aug. 7, 1970) reads as follows:

*Under Contract No. DO.AF(29-601)—6M-4M57

13
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The analysis of simple circuits should provide
much of the desired information. Consider wires
interconnecting two packages of electronic equip-
ment, completely enclosed in a metal sheath except
at one point where the sheath is broken. Some
interfering voltage is assumed to be impressed
across the gap in the shield.

The analyéis of this circuit is to reveal:

A. The internal input impedance (contribution
due to components inside the cable shield)
across the broken shield at the breakpoint
as a function of location, cable length,
number of wires, the load impedances, and
the frequency of the excitation.

B. The voltages across the various load
resistors as a function of the bulk current,
and the dependence of this voltage distribu-
tion on break location, cable length, number
of wires, load impedances and excitation
frequency are to be established.

It is recognized that wire diameters, sheath
diameter, insulating materials and cable wrap
will affect the mutual capacitances and induc-
tances within the cable. The effect of varying
these parameters is to be established as a part
of this study. However, average or typical
values may be used in (A) and (B) above.

The second situation to be considered is similar
to the above except that the cable in this case

shall be assumed to be unshielded and excited by
a local source at some location along the cable.

For this circuit is required:

A. The input impedance defined as the ratio of
source voltage to bulk current. The depen-
dence of the input impedance on source
location, cable length, number of wires,
excitation frequency and the load 1mpedances
are to be evaluated.

B. The distribution of voltages on the fterminat-
ing load impedances should be related to the
bulk current entering the package. The depen-
dence of this relation on source location, cable
length, number of wires, excitation frequency
and the load impedances are also to be evaluated.

L st s e s L e e L T
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C. The high frequency loss in current (ratio of
bulk current at the end of the cable to bulk
current at the source) is to be evaluated.

Another problem involves a shielded and unshilelded
internal coupling inveolving balanced and unbalanced

sources. For both the shielded and the unshilelded
circuits, the following information is requilred:

A. Can the voltages across the wvarlous loads on
the recelving end still be related to the
bulk current entering the receiving package?

B. Assuming that the relation is true for some
values of the termination and the cable
length, indicate the dependence of the
relation on cable length, number of wires,
excitation frequency and the various load
impedances.
Both balanced and unbalanced sources are to be
considered as indicated above. Here again, typilcal
values of cable parameters are to be used to focus
attention on the part of the problem of interest."
Briefly stated, the assignment can be divided into two

main activities:

(1) Establish appropriate mathematical models des-
cribing the dynamic response of the cables to the

specified forces.

(2) 1Interrogate the models for the information

requested in the contract statement.

Subject to certaln restrictions, to be discussed in the
next section, the first activity was accomplished to the extent
that, in the end, a single general model, satisfying all
contract-stipulated situaﬁions as special cases, was developed.
The model ylelds explicit expressions for voltages and currents

at all accessible terminals of all conductors of a cable in
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terms of the pertinent line - and terminal parameters. By
implication it also yields an explicit expression for the bulk
current at any point, since this is simply the sum of the currents

%
on the individual conductors.

However, these expressions are generally too complicated
‘for interrogation by hand analysis. Except for the simplest
cases,2 the process must be computerized. Thus, the second of
the activities listed above has, for the most part, been handled
by Sandia, using the CDC-6600 computer.** The results of this

activity are reported by Sandia elsewhere.6

A further qualification on the extent of the results obtained
must be made. The formulations are functions of a set of internal
line parameters - the line admittance coefficients.*** Useful
analytical solutions for these coefficients are available when
the conductor diameters are small compared to their spacings
and their distances from the shield,1 or when the conductor
diameters are so large that -they almost touch each other and
and the shield.u Intermediate situations require solution of

two-dimensional field problems by machine computation or by

*Excluding the current in the shield or, more generally, the
ground return.

**Sandia personnel participated as follows: Mr. George )
Steigerwald programmed the general solution while Dr. David
Merewether and Mr. James Spence planned and analyzed the
data runs.

X¥¥

Or, alternatively, thelr inverses, the impedance ooefficients.7

17
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analog experiments. Schedule limltations permitted only a .
preliminary statement of this problem. .

2. TECHNICAL DISCUSSION - GENERAL REMARKS

In the interim reports previously submitted, the assignments

specified in the contract work statement were given designations

as follows:3
Type I: Broken Shield Problem1
Type ITI: Exposed Line Externally Excited3

Type III: End-Excited Shielded Cable®

Type IV: End-Excited Exposed Line2

Except possibly for the internal immittance parameters

there is no essential difference between types III and IV, and

they will usually be discussed together.
Some general remarks are in order at thils point:

1. Although all of the tasks call for single-frequency
analysis, signals in general, and EMP signals in particular are
polychromatic. Consequently, the results obtained in.this study
must be applied to Fourier-analyzed forcing sighals and synthe-

sized over the spectrum for a total response.

2. Similarly, Problem Type II, in which the forcing function
is a space impulse, or Green's function, at an arbitrary point
along the line, 1s, by itself, an artificial problem, in that

it is difficult to see how such a situatlon would arise. Actually,




it 1s to be considered as an elementary forcing function which,
when specified at every point of the line, can be integrated
to yield an arbitrary, physically real, distributed forcing

function.

3. In spite of the fact that the conductors of a cable
may be twisted (without, however, greatly modifying their
immittance coefficients vis-a-vis straight conductors), and in
spite of the fact that the cable cross-section may consist of
more than one dielectric of somewhat different permittivities,
it was felt that taking these factors into account would intro-
duce serious complexities in the analysis not justified by the
phenomenological (rather than precise design) nature of the
study. Assuming that the cable dielectric is uniform and the
line Immittances are constant, and adding the additional
assumption that the conductor losses are small, permits us to
study the phenomena in the cable as transverse electromagnetic
(TEM).* In fact, by agreement, the analysis was confined to loss-
less lines, although from a mathematical standpoint, extension
to the case where dielectric losses predominate is elementary.

(See Section 2.7.1.)

Of course, we are also assuming that we are dealing only
with the fransmission mode. All conductors are assumed
spaced from one another much less than a wavelength and
the total current at any cross-section (shield - or ground
current included) is zero. '

19
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L, The work statement requires, in the case of Problem
Types IIT and IV, that conslderation be given to situations
involving balanced and unbalanced sources. These cases were
not given special treatment since they really represent
conditions on the line terminations, easily inserted in the
general solution. Hence, the effects of these terminations

must be ascertained by appeal to the computer.

2.1 Physical Model of a Multiconductor TEM Line: Canonical

Equations

Physically, a multiconductor TEM 1ine generally consists
of a number of lossless conductors of equal length and of
arbitrary cross-sectlon, embedded in a homogeneous isotropilc
dielectric. The geometry of the system is invariliant in the

direction of propagation.

For a specified set of terminal conditions at a single
frequency the electromagnetic field structure surrounding the
conductors consists, generally, of two waves traveling at
equal speeds in opposite directions along the line. The
relative fileld distributions of these waves differ, géenerally,
from each other (except in the case of the conventional two-
conductor line), depending on the terminal conditions. Given
a system of (N + 1) conductors, one conductor (e.g., a cable
shield or a ground plane) is taken as a reference conductor,
and the potentials of the remaining N conductors are referred

to it. Conventionally, we refer to these latter conductors




as the "N conductors above ground." The total current in (N + 1)
conductors at any cross-section of the line is zero, while the
total current in the N conductors above ground may be, but

generally is not, equal to zero.

A line so described will be called an N—line. Thus, the
seven conductor cable* discussed later in this report is a 7-line.
The conventional two-wire line is a 1-line. A balanced line
above ground 1s a 2-line, etc. The canonlcal eguations of such
a line may be written in various forms, the cholice depending on
the nature of the problem. Two of these forms, one the inverse

of the other, may be written

- o= - - .=
vt a, o| |z1f
= (1)
|v° -b, -a z 1°
or
- i - -
i a, b y vt
= (2)
1° -b, -a Yy v°
L_ - " . - T

The superscript, i, (for "input" represents quantities
at one end of the line, while the superscript, o, (for "output")
represents quantities at the other end. If we number the N

conductors above ground from 1 to N, the quantities Vi

o]
> Vs

e ——
Seven conductors within a conducting shield, i.e., eight
conductors in all.

21
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Ii

s goare N-vectors representing the voltages and currents at .

the line terminals, as follows:

p— - - - T
i o]
V1 vy
A ;0 v0 o= .
1 0
|V | &g |
. (3)
— i-‘ - O
sl 107
;l = . H .1:0 = R
i .o
I I
| "N LN
where V;, VE, Ii, I; represent guantities associated with the
o0 conductor (k =1, ..., N). a and b are functions of the

electrical length of the line:

a = -] cot 6
(4)
b =7 csc 8
where, as usual,
e:% 7
\
w = 27f g (5)
-1
v = (ue) = J




2 is the line length, f is the operating frequency, v the velocilty

of propagation, u and € the permeabllity and permittivity of the

propagation medium, respectively.

The matrix, Z, 1s the matrix of the line impedance

coefficients:
Li9s Zyps o o v s Iy
Z ] Z b b Z
z = 01° %20 oN ()
L_ZNl’ Lo > Zyy
while
Ti195 Typ, ¢ 0+ 5 Ty
) Yoy Yory o o o, Y
T A oN (7)
Yips Yypps + o o os Yy

Y 1s readily determined when the Maxwell electrostatic

¥ ¥
capacitance coefficients of the line are known. . We have

Y = vC (8)

¥ .
MKS units used throughout, unless specifiled otherwilse.

% %
See Ref. 8, Section 6.24 f£f; Ref. 9, Chapter IV; Ref. 10
Section 2.14 ff,

23



and . ‘Il’

C110 C1o» > C1y
Cavs Cans + « « 5, C
¢ = | 21 722 2N (9)
%n1s Ow2s - - 0 0 Oy
where the Cij (i, 3 =1, ..., N) are the Maxwell capacitaﬁce

coefficients.

The sign conventlon for the currents is into the line at

the "i" end and out of the line at the "o" end.

The two matrix equations obtained by expanding Equations (1)

are

(10)

Naturally, these equations hold for the special case of the
1-line, for which all quantities become scalars. In partlcular,
Z becomes le and is identified as the characteristic impedance

of the line.

These 1deas suggest a simple way of representing an N-line
schematically, namely, as a generalization of a 1-line. Thus,
we get the dlagram of Fig. 2, which 1s the same as the usual .

representation of a l-line, except that {(a) the upper line

24
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segment (N) represents the N conductors above ground while the
lower segment (G) represents the reference conductor, and (b) .
all dynamic quantitles are N-vectors in place of the scalar

voltages and currents of the l-line.

2.2 Terminal Condltions

The terminations of an N-line in general contain both sources
and sinks of energy. The terminal structures themselves may
consist of networks of lumped and/or distributed elements. 1In
the present study the only situations requiring special attention

involve lumped (passive or active) elements.

2.2.1 Canonical Passive Termination;- Thévenin Load

Consider, first, the case of a passive terminating network
or load. Some of the nodes of such a network are connected to
the line terminals while others are not. For example, in

Fig. 3, node "a" 1s not connected to any line terminal.

Whatever the internal network configuration, i1t is clear
that if one were to disconnect the termination from the line and
measure all the possible admittances among the (N + 1) terminals
in pairs, they would number %N(N + 1), that is, the number of
combinations of (N + 1) things taken two at a time. An
equivalent network (as seeﬁ from the line) could then be con-
structed by Joining the terminals in palrs with admlttances

derived from the measurements (Fig. 4). Again, there would be




™
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Zebie Eguivelent terminstion es se=n froan linee
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%
%—N(N + 1) such admittances, with thelr values uniquely determined .

*%
by the measurements.

From the standpoint of analysis of the dynamic response of
the line,the equivalent network represented by the example of
Fig. U is sufficient. An adequate representation of the termina-

tion admlttance matrix could, for instance, be

1 i 1
Ti1s Y305« o+ 5 Ty
i_ i 1 1
¥ = Y2l’ Y22, N Y2N (11)
j.‘ .i ® L] . i
ENl’ Tyos =+ 5 Yyy
where Yi (1,3 = 1, ...,N) is the admittance defined as the ratio
1J

of the current flowing out of the ith

1
J

potentials except V} are zero.

terminal into the "output"

load to the potential V, at the jth terminal, when all output

On the other hand, if the conditioﬂs of the problem requilre,
for instance, that the potentlal at "a" in Fig. 3 be determined,
then one 1s faced with a somewhat generalized terminal-value
problem. An example of such a problem, occurring in an earlier

Sandia study, 1s discussed in Ref. 11.

¥
This 1s ftrue in general. However, some values may tend to zero

in the 1limit, others to infinity. Such cases are handled, where .
necessary 1in computation, by replacing zero or infinity by a very

small, different from zero, number or a very large, finite one. .

* ¥
See Ref. 1, Section 2.




. A form like Equation (11) is taken as the canonical form
for termination matrices. in this study. For a reason which will

be apparent presently, it 1s also referred to as a Thévenin load.

2.2.2 Thévenin Source

In the second interim report2 we presented a simple
%
generalization of the standard Thévenin's theorem. Consider
¥ %
an N-source. Let the open-circuit terminal potentials of the

source be V% (k =1, ..., N). Set equal to zero all the emfs

g
k

the %N(N + 1) admittances between all terminal pairs of the

internal to the source (so that the VS are all zero) and measure
source. Let Zl (Equation (11)) be the unique termination matrix

‘ determined from these measurements. Then the equivalent
Thévenin source is, as shown in Fig. 5., simply a vector of

impedanceless generators
V1
vé = |- (12)

V8
N

b 7 el

in series with the above-ground terminals of Xl.

¥
See Ref. 12, Chapter 2, Section 11.

¥ %
A source, with N terminals at N (generally) different, open-

circult potentials, plus a ground, or reference terminal.

~
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Evidently the Thévenin load of Section 2.2.1 1s the special

case of a Thévenin source with V& = 0.

Schematically, Whén a Thévenin N-source and a Thévenin N-load
are connected to an N-line, the result is shown in Fig. 6, again
a simple generalization of the conventional 1l-line diagram. In
this case we are using the symbol X? to designate the terminating

load matrix.

This completes the preliminary disucssion of basic model
concepts. The next step consists of relating the problems of

the contract work statement to the basic model.

2.3 Mathematical Models of Problem Type I - IV

Problem Type I, cable with a cifcumferential bresgk in the
shield, is exemplified in Filg. 7, which shows a shielded 4-1line
between two shielded terminations, and with a break in the shield
at some intermediate point. A voltage 1s assumed 1lmpressed

across the bresk.

This problem 1s treated as two lines in series, one on each
side of the break, with the combination connected to a source
representing the impressed voltage. Consult Fig. 8. The 1line
to the left of the break has parameters with the "minus" sub-
script, - ; the parameters of the line to the right have the

o

"plus" subscript, +. The termination matrices, Y. and v©

¥, , are

31



P

vt e A e ran

z€

Fige 7. Orble With a Broken Shield

VN




S

|
1]
=
’v-

[T

- g
1l ele S0 s ] .1
g mrmale dimeoTss, o0 fiz witn bral
e 1arraly © s owinn braisn s

isli.

P

" T e



34

Thévenin loads. The lines have the common line impedance .

matrix, Z

Problem Type II, excitation of an unshielded cable by a
local source at some location along the cable, 1s shown
schematically in Fig. 9. The components of the impressed
voltage vector YO, are, in general, unequal. The dlagram is
similar to that of the preceding case except for the locatlon

of the source and the relative magnitudes of its elements.

Problem Types III and IV, cable excited from one end, is
merely the conventional transmission line problem extended to

an N-line. In fact, Fig. 6 1s an appropriate representation.

2.4 The General Model

Consider the schematic of Fig. 10, which shows an N-line
excited by a local source which includes both an N-vector in
the N conductors above ground and a scalar in the reference

conductor.

The whole source can be written as the single vector

-V o, (13)

A small difference in notation from Ref. 1 should be noted.
Since that report was prepared it has appeared desirable to
change Vg of the cited reference to —VG of Ref. 3 and the

present report.
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where 9_% 1s the unit-element N-vector ‘

1]
1
£ = (1)
1
— =N

Before presenting the solutlon for this model we indicate

the parameter values yielding the special cases, Problems Types

%
I - IV:

Type I: Yo = Q.

Type II: VG = 0,

Types IIT and IV: V, = 0; 6 =0
3

The gsolution to the general case 1is

¥
At the time of preparation of this final report Sandia had

written a program only for problem Type I. It 1s now apparent
that, in order to cover all cases, th%t program needs only to
be modified by replacing Vg ﬁ% with V7 as given by Equation 13.

However, see footnote,page 34. See also, Ref. 3 for solution
of Type IV problem as a line responding to a continuous
dlstribution of voltage and current sources along the line.




ve = b (A N-)TL VS (a)
2 =1p ¥2 (A N)T Ve (o)
'\li = —I_\’I_— (A E—)—l Y_e (c¢)
= ptyt (@)
=3
i -1 e (e)
Te=u, An)THY
m=---anty ()
vO = —p, (A N, )T VE (g)
4 + ‘= =+ -
o _ o] -1 .,e
I,=-b, Y, (AN)"V (h) |
The meanings of the quantities
vi, vi, v, v
o, 2, 18,12
and
z, 13, Y=,

are clear from Fig. 10, and from the foregoing discussion.

addition, with

(15)

In

37



t
b, = J csc o, - (16)
5= /T
o
we define
P, = 2 Y;
Mt = ay ‘!'{' 24_- i (17)
N, =/ +a, B, )

g£= unit N x N matrix
B -
1
= 0 (18)
0 -
= 1--
Finally we define
= -1 =1
A =M NI+ M- N- (19)

2.5 Discussion of Results

Certain degenerate forms taken by Equations (15) for special

values of 8+ and 8_ are discussed in Appendix A. In the sections .
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immediately following we discuss cases in which the matrices of
the line and termination parameters have values that simplify
interpolation of the results and yield some insight into the

meaning of the more general solution.

2.5.1 Termination Matrices Proportional to Line Admittance

.Matrix

Write

Y (20)

where k+ are scalar constants. Then

|o
-+
n
~
+
AN

M, = (a2, + k) o (21)
N, = (1 + a, ki) gjﬂ J
Write -
a, + k,
Ly = T3 a %
- T # 9
(22)
L =L, +L_ |

Thus ' : -
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My Nt =, of

Len

(23)
AzZ=Lg
AN =L(l._+a+k+)i{”J
Equations (15) become
L -~
i + e
vy o=t v
~t L, L -
i _ 1 e
Ei-if}i‘l
! (24)
-b, .
Yg =* i 1 +a ik Y?
- e
k -b
o_, X : e
Tt rye, R LY

One fact that is immediately apparent is that the elements
of corresponding input and output vectors are in the same
proportion, regardless of the nature of the generator vector.
For instance, the elements of yﬁ have the same respective ratios

as the corresponding elements of V95 the two vectors have the

Vs
same "direction" but differ in amplitude and phase. Similar

b o

statements hold for I, and £+, etec.

=+

The next concepts are derived by reducing the N-line to
a 1-line. This is done by applying a common value of emf to all
conductors, retalning the condition of proportional terminations. .




2.5.1.1 Common EMF on All Conductors, Proportional Terminations.

Common Mode Characteristic Admittance. Load Tmpedance

Mapping Function

Let

in Equations (24). Then these become

L h
i _ i g
Y'i‘-iL_*_'FL_v Jc (a)
1 vé
et td (0)
- (25)
-b
o _ ve +
e R a, kK, “% (e)
k, V -b
_ r g *
L == TvE R L% (@

If we wrilte

Y® = common mode characteristic admittance of

the mth conductor with respect to ground

N
= kE=l Yo (26)

then the quantity XLJQ appearing in Equations (25, b, d) may

be written

b3



(27)

|
o5
]
I
=
Q

X? may be termed the common-mode admittance vector. A line
with proportional terminations, excited by an equi-element emf

source vector, operates in the common mode.

If k, = 1, the line becomes match-terminated at both ends.

For this condition we get

b, -J csc 8,

- = o—db
1+ a, k, 1 - J cot 8,

I+

e

Then with the help of Equation 27, Equations (25) become

vi=svE g (2) |
I, =t 2vEy ()
i (28)
o _ 1,8 _-j6s%
V, =t 5 Vo e ié. (¢)
12 =+ S8 I8y (@)
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’ Implications of the results in Equations (28 a - d) are:

1. When both ends of the cable are match-terminated, the
input voltages to all conductors have the same magnitude,

|% v but voltages on the opposite sides of the source have

gl’
opposite signs.

2. The input currents to the lines on either side of the
source satisfy the equations for waves traveling in oﬁe direction

only, - away from the source.

3. The voltages at the terminations are all equal in
magnitude, and have the values of the corresponding input voltages

with phase delays equal to the electrical distance from the

. source to the termination.

These results accord with our usual notions for matched
terminations which, in essence, require that no wave be reflected

at the termination. Thus the condition

Yy = % (29)

are consistent with the usual requirement for matched terminations

on a l-line.

’ For match conditions, the terminating admittance from

each terminal to ground is the common-mode characteristic
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admittance for the conductor.l The terminating admlittance .

required between any pailr of terminals 1s apparently the negative

of the mutual admittance coefflclent for that pair of conductors.
However, since by Equation (28 c¢), all terminal voltages at one
end of the cable are equal, no current flows in the terminating
admittances Joining these terminals. Consequently these

admittances may have any values, including zero. In fact, it is

. clear from Equations (25) that the last statement is true'for a

line operating in any common-mode condition.

Operation in the common mode implies that all conductors
(except the shield) operate in parallel, so that the system is,

in effect, a l-line with characteristic admittance

Yc=§YC=§ ZNZY (30) .
° =1k = k]

=1

by Equation (26). Then k, are the VSWR's (or their reciprocals)
corresponding to the total load admittances at either end of the

cable.

From the first of Equations (22)

L, = S u— (31)




where YST are the total output admittances in parallel at either

end. Equation (31) 1is recognized as the usual normalized mapping
*

of the load impedance of a l-line to 1ts input. The quantity, L,

(Equations 22)) is therefore the sum of these normalized impedances

in seriles. The admittance seen by the voltage source is then
™1 multiplied by Yc (éf.kEQuation (25 b)). Equation (25 a)
then states that the driving voltages on opposite sides of the
source divide in proportion to these input- impedances

1

2.5.2 Interpretation of M, N~ and A

The interpretations above suggest that 1n the general case,

1 are to be

(Equation (20) not satisfied), the quantities M, EE
interpreted as normalized mappings of the load impedance matrices
to the input (voltage source) terminals, A 1s ﬁhen the sum of
these normalized impedances, while A Z is the total actual

input impedance matrix, since the line impedance matrix, Z, is

just the factor required to cancel the normalization. The

quantities

R, =M, (A N&)_l

-+

which appear in Equations (15c,e) are easlly transformed to

¥
See Ref. 13, page 22-A4.
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which express the input voltage division factors in proportion

to the input matrix limpedances, and so on.

2.5.3 Matched Line, Arbitrary Local Voltage Vector

With k, = 1, Equétions (24) become

V=3V (2)
L=t 3yv° (b)
- (32)
Y_(; = i' %_e-je‘i ze (C)
o _ 1l -Jjés g
I,=t5e Yv (a) ]

The important added information imparted by these equations
1s that the match condition results in reflectionless trans-
mission independent of the relative values of the impressed

voltage vector elements.

2.5.4 8_ = 0 (Problem Types III and IV). Proportional

Terminations, Matched, Constant-Voltage, and Constant-

Current Source Admittances

With 6_-~0, we get, from Equations (22)

L+, k_#0 (33a)

PR N o i T ~ - ——=s aad

e
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which express the input voltage division factors in proportion

to the input matrix limpedances, and so on.

2.5.3 Matched Line, Arbitrary Local Voltage Vector

With k, = 1, Equétions (24) become

V=3V (2)
L=t 3yv° (b)
- (32)
Y_(; = i' %_e-je‘i ze (C)
o _ 1l -Jjés g
I,=t5e Yv (a) ]

The important added information imparted by these equations
1s that the match condition results in reflectionless trans-
mission independent of the relative values of the impressed

voltage vector elements.

2.5.4 8_ = 0 (Problem Types III and IV). Proportional

Terminations, Matched, Constant-Voltage, and Constant-

Current Source Admittances

With 6_-~0, we get, from Equations (22)

L+, k_#0 (33a)

PR N o i T ~ - ——=s aad

e




and

where

Vi L : k, ve (2) A
;i ) 1+ j+ k+ ¢ _? 03
09 - -y (@
I=- k+yb+ Y ve (@

provided k_ # 0.

Consider the following speclal cases:

1. k = «: Constant-Voltage Source

From Equation (34),

(e, k3 a,) »a, + k,

(33b)

(34)

(35)
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and Equations (35) become .

i _ ;e
Vo= (a) ]
1+ a, k
i + T+ e
I, = YV (b)
=+ T Ta +k, ==
< (36)
b
o] + e
V] = - v (c)
—t a, t k-
k.b
AN i e
° = - YV (d)
-t a.++k+“"_‘ .
2. k = 1: Matched Source
For k_ = 1 we have from Equation (34),
Y(1, ks a+) = (1 + a+)(1 + k+)
Equations (35) become
R a, + k
i _ + + e
Leagvyepare L @)
1 + a,k
It - bl Yy v¢  (b)
=+ (1 + a+)(1 + k+) ES
- (37)
-3e4
o _ e e
v, = (1 + k+5 v (c)
o k, eIy .
L=7Twvg ¥ (@ -
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3. k = 0: Constant-Current Source

For k_ + 0 we have, from Equation (34),

Y(k_ > 0, k.3 a,) =

1

Equations (35) become

a, + k

i T T

+54
ex vy

b
Yi T TF ; T

+5 4

IO_> b+k+ K
=t 1+ a+k+ -

1+ a+k+

ky

(a)

(b)
Ve (c)
Yy v° (@)

v-

(38)

Now as k_ » 0, assume that V¢ +» » (1.e., at least one

element of V° » «) in such a way that k_ v® remains, in the

limit, finite and different from 0.

this finite wvalue is given by

Then by Egquation (38 b),

Substituting this value in the remaining Equations (38)

we get
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L S|
~+ T +ak, ==+
b

o _ + 1 L

Le-tvar L (39)
+54
1° = kg Ii
=+ 1 +ak, = )

where Ii

Iy is the strength of the constant-current source.

2.5.4.1 Source Matrix Alone Proportional to Line Matrix

In this section, although we permit the load matrix to be
completely general, we write its value in such a way that it
becomes relatively easy to use it for simple deviations from the

cases discussed in the previous section. Thus, as before, take

but write, without loss of generality

o _ 0
Y. =k, ¥+ AY (4o)
and
= o _ 0
P,=Z2 Y =2 (k, Y+ AY")
o}
=k, '+ 2 0Y

D s S U IS S —




. Then, with 8_ = 0, substitution in the appropriate

Equations (15) yields2

-1
a, +k .
. . a, + k -1 o} + - 0 e
yi - % +[:€+ (2, + k) ZAXH-*—‘YTZ-X} Y
—+ Y -
s 1 t+ak, a, + k_ O}_l a, o
e Ty (e 2t g 0] S i 2 aY
-1 r(41)
b a, + k
° - .2 . o e
v, - {i” V¥ -Z--Al} A
bk a, + k -1
o _ +7+ -1 o] + - o) e
L =-= X[¥+k+éﬂ_][¥+——yk_&ﬂ] v )
. We are particularly interested in further manipulation of
the third and fourth of Eguations (41).
Let
. =a_{_+k_ a, +k_ (429
Y k T+a,(k, +k_)+k, k_
and
B =ef+g 7Y
g (43)
-1 o]
B=of+ k. Za¥ |
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Substlituting in the third and fourth of Equations (41) .

b -
o _ + -1 e
V,=-74A"T
! (44)
b k
o _ +7+ -1 ..e
L=-—S—YB&a v |
2.5.5 Effect of Varying a Single Load Admittance, Starting
With Proportional Terminations -
The simplest deviation from proportional terminations
involves making a single element of QXP different from zero.
Let
B 1
0
.l 0
o _ L
A__ - Ykk (QB) .
0 .
_ °

where Yik is an increment in the load admittance element

th

#
connected between the k line terminal and ground. To simplify

the problem still further assume all applied emfs are equal:

v = v8F, (46)

L o} o]
Note, however, that in general, Ykk # Y+(kk)’ where Y+(kk)

is thé términating admittancé seen by the line between the

kth términal and ground, whille Yik.is the actual load

admittancé elémént connected between the kth terminal and

ground. See Ref. 1.

e e —— e - ST R TS 5 3 et © e e g . . - == . .. S a e
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et e e e b e e e e el

. Then the output current at the jth conductor i52

1° =_M {a ¢+ (-1 - B) Y AYL} (47)
)T Y 8, Ukk 7y + ke STkk
where
a . =1+ 87 . AYH ' (48)
kk kk kk
and
Si = Kronecker's delta
0, k # 3 - (48a)

o

Yg, the common-mode characteristic admittance of the jth
conductor, is defined by Equation (26).
The bulk output current is
o ﬁ% o)
iD= I
T =1 +J3
b k, V& N
++ c -1 L
= - a E Y + (k - 8) AY }
Y oy { kk = J + kk
b k, VE
- ++ c c 1 L
, = o {YO + [B Yo Zyy ¥ (kg 3)} AYkk} (49)
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where Yg, the common-mode characterlstic admittance of the line, ‘
is defined by Equation (30).

#
The cutput voltage on the ith conductor 1s
o . b+ vE
Ve Ty a [akk - aik] (50)
where
a,, = B Z., AYE 1#k (51)
ik ik kk °

A gquantity of particular interest in this study is the

ratio of output voltage on any conductor to the bulk output current.

From Equations (49) and (50) we get .
o i
L 1+ B2y = Zqy) My
1 o c c L ’
Ik, YO+ [s k, (Y0 7, - 1) + 1] AL,

t=1, ... , N (52)

¥%
Analysis shows that no set of parameters exists such that

I, ¥¥%

oy is independent of AYkk.

¥
See Ref. 2, Equation (55)

¥ %
See Ref. 2, Section 3.2.1.1.

®E¥
The discussion in Section 3.2.2 of Ref. 2 should be considered

with care; 1t 1s probably misleading, in that 1t ignores the

fact that as k_ » «, then must also ]AYikl +~ ®» to make any ‘

significant change in Yik’ which goes to infinity with k, .
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. 2.5.6 Special Discussion Involving a 7-line with Certain

Symmetries

This section is included because of its relation to certain
experiments conducted at Sandia in the course of the study.
Consult Fig. 11 showing the cross-section of a seven-conductor
cable, in which all conductors within the shield are circular,
of radius a, in which one conductor i1s concentric with the shield
and the remaining six are equi-angularly disposed with their
centers on the perimeter of a circle concentric with with the
shield. The conductors are numbered from 1 to 7 for

reference, and for identifying the immittance parameters Zij’

Yij’ (1, 3 =1, ... , 7).
. The coefficients of such a line have the following charac-
teristics: '

(a) There are %(8)(7) = 28 different coefficients.

(b) Because of the symmetries, there are only six different

coefficient values, grouped as follows:

Z

(1) 2,4
(2) 24,

5o 233 = un = 255 = Z66 Y T 6
223 = 23)_1 = ZMB = 256 = Z6 e e e e e 6
(3) 213 = 224 = 235 = Zus = 251 = Z62 « o s e s e

]
g
O

. The impedance matrix (for instance) contains (7 x 7)
. coefficients; but since Zij = zji for every i, J, we have

%(7)(6) = 21 dependent elements, leaving the number of
independent coefficients at 28.
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radii = a

Figells COross-section of sevem-conductor shielded osble. Fumbers sdjacent to
conducters correspond to subscripts of impedance ocoefficients, % e
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. (4) lewl = 225 = 236 P S S 3
. 6

(5) Z17 227-= 237 = ZU7 = 257 = Z67 « e e

(6) 2 e |
77 5T

with corresponding relations among the admittance

coefficients.

All conductors are assumed driven in parallel from a common

source. The six conductors on the circle of radius, R are

C’
each terminated in a grounded admittance element having a common
value. The central conductor is connected to a grounded

admittance element of arbitrary value. All termination admittance

elements between conductors (other than ground) are zero.

. Because of the symmetrical situation of the outer six
conductors, we can recognlze that they carry equal potentials
and currents at‘every line cross-section, and therefore operate,
in effect, in parallel as a single conductor. The central
conductor acts separately as a second conductor. Thus, the
situation reduces to the much simpler case of a 2=line.
Referring to quantitles associated with the parallel group by the
subscript, a, and those assoclated with the central conductor

by b, we have

- )
I, = 6I;
'Ib=17 ’
' Vo=V d=1, ..., 06
° |
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Canonical equations for the infinite effective 2-line

14
are
Va = Zaa Ia + Zab Ib
- (53)
Vo = Zap g * 2 I
where
6 -
1
Z.. =7 0 I
aa b £ Til
Zab = 217 - (54)
Zop = 277
>

The 2-line admittance coefficients are7
Toa = Zpp/2y
b
Tap = ~Zap”by (55)
Ybb = Zaa/Az J
where
' 2
A =7 . 7. -7 (56)

pA aa "bb ab




®

These results may be used to solve any of the problem types
when the terminations satisfy the special conditions of this

section.

2.6 Line Parameters

Complete solution of the multiconductor cable problem
includes evaluation of the cable impedance (or admittance)
matrix. As stated in Section 2.1, it is only necessary, for
this purpose, that the Maxwell coefficients of capacitance and
the wave velocity in the cable be known (Equation (8)). The
wave velocity i1s known from the permeability and the permittivity
of the medium (Equations (5)). The capacitances must be
determined as solutions of two-dimensional electrostatic field
problems. Such problems involve solving Laplace's equation in
two dimensions, subject to specification, for each conductor,
either of its relative potential or of its total charge.*
Explicit solutions by standard classical methods are avallable
for a relatively small number of cases. -Otherwise the necessary
quantities may be determined by (a) direct measurement of a
sample section of line, or of a sultably-scaled model of such a
section, (b) by analog methods, including the electrolytic
tank, resistance card or conductlve sheet, and impedance

network,l6 (¢) by numerical solution of Laplace's equation

16,21

wlth boundary conditions or a Green's theorem integral

¥
See Ref. 15, Part II, Section 4.
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equation formulation.ez’23 The problem to be solved 1s typified
by the seven-~conductor shielded cable shown 1n cross-section in .
Fig. 11. Three quantities suffice to specify thils circularly
symmetrical arrangement: a, the common radius of the cable

wires; Rc, the locus of the center of the outer six wires; and

RS, the inner radius of the shield. Actually, a small redundancy

appears here, since the line coefficients are completely

determined by dimensional ratios, rather than absolute dimensions

themselves. The ratios for the 7-line are taken as

>

1

I:U
Q |n

i (57)

o =3

®l
[

Explicit analytical solutions for the coefficients of this
configuration are available for the following asymptotic

conditions:

A, Xy, P +

(58)

B. p+2;x+1+%-+3/2

The first condition, A, corresponds to a cross-section
geometry for which the wire radius is much less than the
distance between wires, and much less than the distance from any
wire to the shield. For this, the lmpedance coefficlents

ar'e:l

e e e i - — - U - - . - cm o= owme o s = o -




11

12

13

Z1y

17

17

5 -
_ _ _ _ _ x7 -1
= Zop = P33 7 Zyy T Z55 = Bgg < F "n[p X }
1 i
_ _ _ _ - L X - + 1
= Zlp3 = Zgy = Zyg = Igg = Ly =350 QnL
-l 5 -
_ _ _ 5 _ 1 1x_+ x= + 1
T fay T P35 T Pug T Is1 T Eep T3 P MG
2
_ _ _ X~ + 1
= 225 = 236 = Mq[——gi——]
. (59)
= 227 = 237 = Z47 = 257 = Z67 =z 4n x
= 7 &n (px)
z = 60//5_1:
e, = relative dielectric constant

The second condition, B, corresponds to a cross-section
geometry for which the wires are so large and the shield
diameter so small that all conductors, including shield, nearly
touch thelr nearest neighbors. For this case it is easler to

write expressions for the admittance coefficients. If

_ 1
2 op(p - 2)*

- (60)
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where ¢ 1s defined in Equations (59), then

Yig = Yoo = Yy = ¥y = Vpp = Yo = 37, + ¥ ]

Yy = Yoy = Ygg = ¥y = Ygq = ¥g, =0 [ (6D
Tiq = Yoy = Y3q = Yyg = ¥5q = Ygg = =¥,
Y77 = 6Ya

When, as is generally true, none of the simpler asymptotic
solutions 1s suitable, one of the other methods previously
mentioned must be used. The most common method, adapted for
large computer use, 1s the solution of Laplace's equation

replaced by a set of linear finite difference equations.l6 -2l

For such an analysis the problem of the seven-conductor
cable can be reduced to three problems requiring less computer
%
capacity for a given accuracy. The problem is summarized in

Fig. 12.

% .
Or, rather, to a single simpler problem with three different
sets of boundary conditions. See Ref. 24,
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2.7 Miscellaneous Briefly Considered Topics .

Many questions arise in the course of a study of this
nature which, because of schedule limitations, cannot be given
the full consideration they deserve. Two topics arising from
such questions are cénsidered briefly in this section. They
deal with (1) the subjJect of losses and (2) the problem of
gaining additional intuitive insights into the physical phenomena
taking place on a multiconductor cable, insights useful for
making preliminary design decisions in order greatly to reduce
the number of alternate choilces requiring detailed considera-

tion.

2.7.1 Losses .

Losses occur as a result of finite conductivity in the

conductors or finite resistivity in the dielectric. They
affect the cable model in two ways: (1) The propagation
constant becomes a complex quantity, y%, instead of the

pure imaginary quantity

Je = jB2

where

Y = o + JB, 0,B real




L

and £ is the length of the cable. (2) The immittance coeffi-

cients become complex quantities rather than pure reals.

Following common practice in rf analysis of l-lines,
we can ignore the second of these effects. As for the first,
the problem becoﬁes very complicated i1f conductor losses
constitute a significant fraction of the total. However, in
view of the fact that the cables under study here normally
carry very low frequency signals, whereas the components of

EMP signals are much higher, it is safe to assume that the

cable design is such that dielectric losses control its behavior

at EMP frequencies. In that case, transmission is still in the

TEM mode at a single speed in each direction, and we can

replace a, and b, of Equations (16) by

o
1]

coth v2,

(62)

o
1}

- ¢sch v&,

All other equations describing the model (viz., Equations

(15), (17), (18)) remain the same as before.

2.7.2 Additional Inslights

The information ‘in thils subsection 1s taken from the last

interim report submitted in this study.25 The obJect of that

report was to attempt a simple "explanatlon" of the behavior of
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incompletely grounded shilelded-twin cables in terms of certain

well-accepted 1ldeas, namely:

1. The whole body of information relating to conventional

2-conductor (l-line) transmission-line theory.

2. Elementary concepts of the behavior of TEM waves

guided by multiple parallel conductor systems.26

3. The compensation theorem for investigating the be-

havior of networks.

Two configurations were considered: (1) A single twin
cable, shield grounded at one end, load unbalanced (Fig. 13);

(2) Two shielded twin cables, shields grounded at opposite

ends, load unbalanced (Fig. 14).

The load imbalance in each case was predicated on the
gssumption that the metallic mass of the load was unbalanced,
as is normal with loads having numerous conductors connected

to a common terminal.

The purpose of the study was to gain approximate insights
to the physical behavior of these configurations, rather than
to obtain exact results, for which the canonical Equations (15)

are availlable.

In each case the procedure consists in first finding the

common voltage of twin leads and aésociated shield when no

unbalance i1s present, and then finding the effect of a
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Figel3,8hielded twin pair with unbalanced loads

Fige 14, Schemmtic, two shielded twin cables grounded at opposite ends.
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compensating current source due to the unbalancing capaciltance .

in producing a voltage difference across the twin leads.

Omitting the details, which can be found in the cited
reference, the approximate analysis shows that the compensating
current source strength is proportional to the voltage at the
ferminal in the absence of the unbalancing capacitance, and
to the unbalancing capacitance. A fraction of this current
flows into the line, in proportion to the line admittance
compared to the unbalancing admittance. Finally, the voltage
unbalance across the twin leads is proportional to this line
current, and to the difference between the lead self-impedance

and the mutual impedance between the two leads:

Zoo = %11 ~ Z1p (63) .

ZOO is frequently referred to as the odd-mode, or balanced-

line characteristic impedance of each of the twin leads with

respect to ground.27

The two problems differ essentially only in the nature of
the terminal voltages in the absence of terminal unbalance. In
the single-pair case thls 1s simply the open-circuit voltage
of a 1-1line stub-excited at the short. In the two-pair case
the response 1s, as might be expected, entirely similar to that

#
of over-coupled, synchronously-tuned resonant circuits.

¥
Partly because losses were reflected. .




3. SUMMARY: DISCUSSION OF RESULTS

In this study we undertook to define, quantitatively,
the response of a multiconductor cable and its terminations to
an externally impressed electromagnetic field. We assumed the

cable has the following properties:
(1) It is lossless.

(2) It 1is, effectively, of invariant cross-section
and with uniform dielectric properties through-

out the cross-section.
(3) It operates in the TEM mode.

In addition, single-frequency, steady-state operation was
assumed. However, the last assumption 1s e€ssentlially non-
restrictlve, since Sandia has programmed the Fourier-transform
procedure for finding transient responses when the steady-state

transfer function is known.

Given, (1) parameters consisting of the self- and mutual-
impedance coefficients of the cable, (2) the most general
terminations as seen from the cable at each end, and (3) the

operating frequency, the following results were obtained:

1. For a shielded cable with a circumferential break at
any arbitrary point, explicit (but complicated) expressions for

the voltage and currents at all'terminals.1
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2. TFor an unshielded cable, the response at all terminals

to an arbitrary applied field along the cable (again, expliclt but

complioated).3

3. As a specilal case, the response at all terminals at one
end of a cable to an arbitrary set of voltages applied at the

other end.2

As part of the overall problem it is necessary to determine
the matrix of the impedance (or admittance) coefficients of
the cable. Under the assumptions in this study this reduces
to the problem of determining Maxwell's coefficients of capaci-
tance for the particular cable configuration, in addition to
the dielectric permittivity and magnetic permeability of the
medium. Except in certain limiting cases it is impossible to
determine these coefficients analytically in a practical general
form. TFor a cable with a shield of circular cross-section 1t
is possible to obtain solutions for the limiting cases where
(a) the conductors are very small in diameter compared to
their spacings and distances to the shield1 (b) the conductors
4

are so large they nearly touch each other and/or the shield.

These limiting cases were computed for a seven-conductor cable.

The results describing cable behavior, as reported in
references 1 - 3, are too complicated for hand manipulation

and computation, so that it was necessary to program the

e e ey e S A S e e S s e A -

R i




e

results for machine computation. This was done by Sandia for

: %
use with the CDC-6600 computer.

However, for preliminary general understanding of the
physical phenomena taking place, it is desirable, where possible,
to develop simplified, if less accurate, models which help to
explain cable behavior in terms of better-understood phenomena.
and, therefore, to make useful prelimlinary design declsions.

This was done in a couple of cases to show that twin shielded
leads, with the shield grounded at one end only, are subjJect to

EMP interference when the load on the twin leads is unbalanced.25

In our opinion, the results so summarized represent a firm
groundwork on which should be based a thorough study of the
response and improvement of models representative of actual
cable systems. Some of the factors to be considered may be list-

ed as follows:

1. Cables terminate not only in sources and loads, but also
in other cables. Computer programming should be generalized to

include this contingency.

2. Cable dielectrics are not always uniform and are rarely
lossless., Modifications required in the model to incorporate

these facts, when significant, should be investlgated.

*
See footnote, page 17,

71-72



APPENDIX

Line Equations for Special Values of g_ and 64

1. 6_ =mr, m integer. The case for m = 0 corresponds to

Problem Types III - and IV. We have

o
i}

-J cot 6_ » -Jw

o'
1

-J csc 6_ » Jo

Therefore,

=
i
=
III
]
+
')
[}
}_J
g
I
~
[
'_l
+
Lv)
1
S’

=
=
|
+
=
=

[
V]
1
S
+
1=
=
+
'y

In Equations (15),
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Substltutions in the remaining

stralghtforward.
2. 6+ = m7
ey
Dy
-1
m, &)
A
AN,

Substitutions in VI, V.,

P

8‘+ (‘EJ'!' D'_[[." E:l

-1

+

v

i

+ M- N=

1

Equations (15) are

2,) -

Equations (15), are similar to

substitutions in y?, Y} in the preceding case.




3. 6_=(2m+ L)5or 6, = (2m+ 1)z
n ]
For 6 = (2m + 1)5
a_ =20
b_ = (-1)" 3
M- = P- "
N- = of,
provided X? 7=
b=, M+ R |

Substitution in Equations (15) is straightforward.

Procedure 1s similar for 8 _ = (2m + 1)% .
T
a m odd: a_ = ~-J cot 6_ = -J tan e+ = - %_
+
m-1 m-1
2 5 [P+
b_ = (-1) sec 6, = (-1) =
= a
+
b m even: a_ = J cot ?+ = - a,
m m
= - (=132 _ >
b_ (-1)° J esc 8, = - (-1)° b,

o~

Subsequent substitutlons and modifications of Equatlons (15)

are stralghtforward.
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