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ABSTRACT

A rocket with removed access plate is simulated by a section of coaxial
transmission line with a transverse elliptical slot cut in its sheath. The
internal circuit consists of two arbitrary impedances in series with the in-
ner conductor at its ends. The object is to find the currents in these im- -
pedances when the cylinder is illuminated from the outside by an electromag-
netic field that enters the aperture and excites the internal circuit.

The problem is solved by application of the reciprocal theorem. The
current in a dipole antenna is determined when this is in the far field main~
tained'by the slotted coaxial line when driven by a generator in series with
one of the load impedances. The field in the aperture is replaced by equiva-
lent electric and magnetic dipoles. The reciprocal theorem gives the current
in the load impedance when the distant dipole is driven. A numerical example

is given.
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INTRODUCTION

In Fig. 1 is shown a simplified rocket in the form of an aluminum tube
with closed ends, radius b and negligible wall thickness which extends from
z =0 to z = s along the axis of the cylindrical coordinate system (p,¢,z).
The open access door is simulated by a transverse elliptical slot with minor
axis which extends from z = £ - W/2 to z = £ + W/2 in the axial direction and
major axis from ¢ = 7 - ¥/2 to ¢ = n + ¥/2 laterally. The center of the slot
is at p= b, ¢ =7, and z = £, The internal circuit consists simply of a
copper coaxial conductor terminated at z = O in the impedance ZO’ at z = g in
the impedance ZS. The tube is illuminated from the outside by the far field
(incident plane wave) of a distant antenna, which is conveniently taken to be
a dipole at a distance r from the point on the axis opposite the center of
the slot. The origin of the polar coordinates (r,0,%) is at the center of
the aperture. The problem is to determine the currents Iz(O) and Iz(s) in
the impedances Z0 and Zs'

The procedure to be followed is to remove the generator from the center
of the distant dipole and connect it in series with the impedance ZO (or Zs)

and then to calculate the current I, at the center of the dipole. According

d
to the reciprocal theorem, Iz(O) = Id (or Iz(s) = Id)'

In order to determine Id it is necessary to obtain the electromagnetic
field maintained at the dipole by the driven, slotted, coaxial cylinder.
This involves determination of the current in the coaxial line and the field

at the center of the slot when metallically closed as intermediate steps.



THE DISTRIBUTION OF CURRENT ALONG THE CENTER CONDUCTOR
OF THE COAXIAL SECTION OF TRANSMISSION LINE

When the coaxial line is terminated at z = s in the impedance Zs and

e
0

Fig. 1), the current in the center conductor is

driven by the emf V_ in series with the impedance ZO at z = 0 (as shown in

e e
1(z) = AL F(w)/D V(z)/zc =Y G(w)/D (1a)
with
F(w) = Zc cosh yw + Zs sinh yw (1b)
G(w) = Z_ sinh yw + Z cosh yw (1e)
2
D Zc(z0 + Zs) cosh ys + (Zc + ZOZS) sinh ys (1d4)

In (la-d), w = s - 2z 1s the distance from the load Zs to the point z where
the current is determined. It is assumed that the presence of the electri-
cally small aperture at z = £ has a negligible effect on the distribution pf
current. The complex propagation constant y and characteristic impedance Z;

of the line are defined by

y=a+ 18 =/ (21 + Jue) (g + jue) (2)

z, -v/(zi + Jue®) /(g + jwe) (3)

The internal impedance per loop unit length of the line is

1 1+3) fou [ 1 1 ]
L X+ Jou b 1 (4)
2n J/;- an; b/;;

where % and o, are the conductivities, respectively, of the inner and outer



conductors - in this case copper (oa = 5,8 x 107

7

nhos/m) and aluminum (o, =
3,72 x 10’ mhos/m). This formula assumes the frequency and the conductivity
to be high enough so that the skin depth dS = yY2/wuo is small compared with
the radius a and the wall thickness of the outer conductor. More general

formulas that apply when this is not the case are in the literature [1]. The

other line constants have the well-known forms:
2 = (u/2m)in(b/a) ; g = 2wcd/£n(b/a) ; o= 2ﬂed/£n(b/a) (5)

where % and €q ™ €%, 2TE the conductivity and permittivity of the dielectric

in the coaxial line. In this case with air as the dielectric, oy = 0, €, =1,

As usual, u = u . yu_ where u, = 47 x 10-7 henries/m and €, = 8,85 x 10“'12
0'r 0 0

If the dissipation in the line is neglected, ¥ -jBO- W lec, Zc -=J9.e/c =

(c0/2ﬂ)£n(b/a) where T = VuO/eO = 1207 ohms,

APPROXIMATION OF THE FIELD IN THE SLOT BY EQUIVALENT DIPOLES

It was shown by Bethe [2] and Bonwkamp [3] for a circular hole and by
Collin [4] for an elliptic aperture in a perfectly conducting, infinitelyrthin
screen that the radiation field on one side of the screen when this is illumi-
nated on the other side by a normally incident plane wave may be calculated
from suitably defined electric and magnetic dipoles located at the center of
the aperture. In the derivation it is assumed that the dimensions of the
aperture are electrically very small. If the screen is not plane, its radius
of curvature must be large compared with the size of the hole.

In order to apply the theory to the elliptic aperture centered at p = b,
¢ =, z = ¢, in the coaxial sheath, it is necessary to determine the electric
and magnetic fields at this point when the aperture is metallically closed.

In this case the fields are rotationally symmetrical and given by

N~ ey g e —nes L r e

farads/m.



uOIz(l)

Bo(b.ﬂ,l) T (6a)

v(L)g
Ep(b,ﬂ,l) - _SLQ_ - __.____._.9.

Zneob 2nbZ (6b)
c

where co = Vuoleo = 1207 ohms and Zc - (CO/Zw)in(b/a) is the characteristic
impedance of the line, If the semi-major axis of the elliptic aperture is a

and the semi-minor axis be’ the central axial length W and transverse width

bY¥ of the slot are

W= 2be ’ by = Zae n

as shown in Fig., 1. It is assumed that the following inequalities are satis~

fied:

2ae << b or V¥ <1 (8a)

Bob = 2nb/X << 1 (8b)

According to Collin's generalization [4] of Bethe's theory the electro-
magnetic field at electrically large distances from the aperture may be cal-

culated from an electric doublet with moment pp and magnetic doublet with

moment m, given by

./
nal(1 - k)
P, = ueeoEp(b,n,i) T © (9a)
nazk

The more general form for m given by Collin reduces to (9b) when the unper-
turbed magnetic field is directed parallel to the major axis of the elliptical

aperture as in the present case. The parameter k and the eccentricity e of the



elliptic aperture are defined by k = e2 = (1 - bi/ai) =1 - (w/bw)z; K(k) and

E(k) are the complete elliptic integrals of the first and second kinds, respec-“

tively. They are defined by

n/2 /2

Ra) = [ A -ksin? 0 M2a0 , E@ =] (1 -ksta? )7 ao
0 0
When k is small,
k < 1: E(k) 2 % (1 - k/6) , K(k) 2 12‘- (1 + k/4) (10a)
when k is near one,
kn 1l: E(k) 31 , K(k) = 2n(4ae/be) (10b)

THE RADIATION FIELD OF THE DIPOLES

The electric field in the radiation zone of an electrically short electric
or magnetic dipole is readily calculated from the appropriate Hertz potential.
The Hertz potentials due to an electric dipole with moment p = ipx and a magnetic
dipole with moment m = ymy are, respectively, Ee = xﬂex and Em = yIImy with

-jB,T
X e 0 _ UO?ZV e

p
ex 4ﬂeo r ’ Hny T 4m r an

—JBOr

where r is the distance from the center of the dipole to the point of calcula-

2 2 2,1/2

tion so that r = (x'" + y~ + 27) with x' = x + b £ x, since in the far zone

[x| >> b and B,b << 1.

0
The far-zone electric fields are readily obtained from the Hertz poten-
tials. They are given in the literature [5] for electric and magnetic dipoles
*
oriented along the z-axis. By simple permutation of the Cartesian coordinates

the following formulas are obtained:

*
(see next page for footnote).
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*The available formulas express the Cartesian components of the electric field
in terms of dipoles with moments P, and m, . In order to obtain fields due to
the moments P, and my the following permutations are made: To obtain § for Py
from g for P,s change x toy, y to z, z to x in all formulas and subscripts;

to obtain g for my from E for m s change x to z, ¥ to x, z to y in all formulas

and subscripts - this involves two permutations.



where ¢ = w/BO is the velocity of light and

Kl(r) =

2 ~jB.r
80 o 0
4"50 T

(12a)

(12b)

(12¢)

(13)

The far-zone field is most conveniently expressed in spherical coordinates

(r,0,¢) with x = r sin © cos ¢, y = r sin O sin ¢ and z = r cos ©.

cal components of the field are:

When (12a-c¢)

= E cos ¢ sin O+ E sin ¢ sin © 4+ E cos O
x y 2

= E cos ¢ cos O+ E sin & cos ®© - E sin ©
X y FA

-E s8in ¢ + E cos ¢
X y
are substituted in (l4a-c), the results are:
= 0
= Kl(r)[px cos O + my/c]cos )

= -Kl(r)[px + (my/c)cos ©}sin ¢

With (6a,b) and (9a,b) the dipole moments in (15a-c) are:

Py

3
wae(l - k) V(L)

=P, - -aeeoEp(b,ﬂ,z) = -

b h e e e t———— s R ST

3E(k) 21rchc

The spheri-

(14a)

(14b)

(l4e)

(15a)

(15b)

(15¢)

(16a)



3
m amB¢(b,w,2) waek Iz(l)

m
—z B - i = L
c c O 3[K(k) - E(k)] 27be (16b)
It follows from (la-d) that
e e
Iz(z) = Y, F(s - 2)/D , V(i)/zc = Y, G(s - 2)/D an
Hence, with Zy = llce0 = /uO/eo = 1207 ohms,
p.K, () = -VL(x) [(1 ~Rlle - £) (18a)
m K. (r) _
1. ~VgL(r) [i‘l%irﬁl){—)] (18b)
with
L) = —5mp 1 19)
The use of (18a,b) in (15a-c) gives:
E’r’ =0 (20a)
r_ _ye (1 - k)G(s - %) kF(s - %)
EO VOL(r) [ E(K) ] cos O + KO = B cos ¢ (20b)
r_ e (1 - kK)G(s - 2) kF(s - &)
EQ VOL(r) EC) + K@) = E 0K cos ©%sin ¢ (20c)

In the equatorial plane, © = 7/2; in the direction through the center of the

aperture, 0 = n/2, ¢ = 7. In this latter case,

r

0=n/2, ¢ = 7: E_= 0 ; E' =

. kF(s - £) Ef = 0

e
Vol (™) 6 — %G * e

(21)

10

It S




CURRENT IN THE DIPOLE: APPLICATION OF THE RECIPROCAL THEOREM

Let a dipole antenna be placed in the far-field of the slotted cylinder
with its axis parallel to E;(r,e,Q). The current at the center of the dipole

is [6]
I1,00) = -Zhee(ﬂ/Z)YAEg(r,G,Q) (22)

where YA is the admittance of the antenna and Zhee(ﬂ/Z) is the complex effec-

tive length of the dipole when it is parallel to the incident component

E;(r,o,¢) which is given by (20b). Tables of hee(e) are in the literature [7].
According to the Rayleigh-Carson reciprocal theorem [8], the impedance-

less generator Vg can be moved to the center of the dipole from its position

in series with the impedance 2, at z = 0 in the coaxial line, and the current

0
Iz(O) will then equal the current Id(O) given by (22). Thus, with (20b),

- e (1 - kK)G(s - 2) kF(s - %)
IZ(O) Zhea(w/Z)YAVOL(r) E(K) cos © +'Eziyf:j§a;y cos ¢ (23)

The electric field actually maintained by the dipole at the center of

the aperture in the cylinder is

e -jB.r
tne _ 3%% e O Foleo("/2)

27 r YA (24)

E

A

since, by the reciprocal theorem, the electrical effective half-length is the

same as the far-field factor.

e

0 from (23), the following general formula

If (24) is used to eliminate V

for the current in Z0 is obtained:

ine 3
JEa By | (1 - k)as - 2)
6bD E(k)

kF(s - &)

(k) < E(K) cos ¢ (25)

Iz(O) = - cos O +

This is a satisfactory approximation when 0 < © < 7 and 7/2 < ¢ < 31/2.
11




Specifically, © may not approach close to either 0 or m and ¢ may not be near

/2 or 3n/2. The best approximation is with normal incidence when 6 = =/2

and ¢ = v, In this case Einc - _E:nc and
inc 3
jEz aeBO kF(s - %)

1,(0)=- (26)

6bD K(k) - E(k)

These formulas give the desired solution for the current in the impedance
Z0 as a result of the excitation of the coaxial line by an incident plane wave.
This has its wave front perpendicular to a radial line outward from the center
of the aperture. The radial line is inclined at an angle © from the z-axis in
the range 0 < © < 7 and its projection on the equatorial plane is at an angle
¢ with the x—-axis in the range 7/2 < ¢ < 3nr/2. The electric field is polarized
in the plane containing the axis of the cylinder and the radial line. [The cur-

rent resulting from an incident field polarized perpendicular to this plane can

r
¢

the load impedance Zs is obtained by a simple interchange of ends.

. be obtained in a similar manner from E, given in (20Gc).] The current Iz(s) in

GENERALIZATION TO A CYLINDER OF FINITE LENGTH

In the determination of the current Iz(O) as given in (25) and (26) the
field radiated from the slotted cylinder has been approximated by the field
maintained by a pailr of fictitious dipoles located at the center of the slot.
This approximation is a good one when the aperture is electrically very small
and the adjacent metallic surfaces are large compared with the aperture and
substantially plane over distances from the aperture in which significant sur-
face currents and charges are found. In general, these are local and restricted
to the edges of and a small area surrounding the aperture. When this is true,

the actual extent and shape of the metal surface beyond this area is of no im-

12




portance since it carries no significant currents or charges. A possible ex-
ception to this general rule is when the surface is finite and of such size

and shape that resonance can occur. In the case at hand, the transverse dimen-~
sions of the cylinder are required to be electrically small (although large
compared to the aperture) so that resonant transverse currents are not possible.
On the other hand, the cylinder may be long enough to have axially resonant
currents which amplify the effective externally maintained field in the slot.
Note that these possible resonances are in the currents induced on the outside
surface of the cylinder. Internal resonances in the coaxial cavity are also
possible and potentially much more important in affecting the currents in the
loads Z0 and Zs. Complete and accurate account of all internal conditions
ranging from a matched line to a resonant line are included in the transmission-
line equations (la-d).

Up to this point in the analysis it has been assumed that the external
length of the cylinder and the internal length of the coaxial line are the
same and equal to s. Actually, the finite length of the external surface has
been ignored and, in effect, it has been assumed to be infinitely long. The
length s has occurred explicitly only as the internal length of the coaxial
line. Since with suitably located internal walls the length of the coaxial
line can be made arbitrarily shorter than the external length of the cylinder,
it is convenient to introduce the length 2h > s for the cylinder and retain
s for the length of the coaxial line. For simplicity it will be assumed that
the coaxial line is centered in the cylinder so that the coordinates zq = 0
and z = s/2 define the same cross section through the middle of both the cyl-
inder and the coaxial cavity it contains.

In order to introduce a correction factor for possible axial resonances

along the outside surface, it 1s convenient to regard the cylinder as a para-

13
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sitic antenna of length 2h in a normally incident field. The axial coordinate
zg =z - s/2 is referred to the center of the ecylinder. The effective external-
ly maintained field in the aperture is approximately proportional to the total
axial current induced on the cylinder. Hence, the ratio of the field in the
aperture of a cylinder of finite length 2h to that in the aperture of a cylin-
der of infinite length is approximately proportional to the ratio of the total
axial current Iu(zo) at zg = £ - s/2 or z = £ on the outside surface of the
finite cylinder to the corresponding current I  on the surface of an otherwise
similar infinitely long cylinder. This ratio is readily determined. Thus, the

current at a distance z, from the center of an unloaded receiving antenna of

0
length 2h that is parallel to the incident electric field E. ° is [9]

ine
j4ﬂEz { cos Bozo-cos Boh ]
BOCO WdU cos BOh - WU(h)

Iu(zo) = 27

where the parameters ¥ and WU(h) are defined in the Appendix. The current

du
at any point along an infinitely long antenna oriented parallel to the incident
field is readily obtained from a formula for the electrically very long receiv-

ing antenna given by Wu and Chen [10]. The result is

-jZﬂEinc
e = TE Tin(2/8.5) = 0.5772 = 3772] (28)
070 0
The desired ratio at zy = 2 - s/2 along a cylinder of length 2h is
@ - s/2) [2 zn(z/eob) -~ 1.1544 - jr]lcos B, (L - s/2) - cos Bgh]
t = = -
I de cos Boh - WU(h)

(29)

This ratio may be used to multiply (26) in order to correct this for a eylinder

of finite length. Note that when the length of the coaxial cavity is the same

14
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as the length of the cylinder, s = 2h. A more general ratio that includes the
angle © can be derived, but for present purposes (26) combined with (29) is
adequate to determine the magnitude of the maximum current Iz(O) to be expected
in Z. inside the coaxial line.

0
SPECIAL CASE AND ILLUSTRATIVE EXAMPLE

When the terminations at both ends are matched so that Z0 = Zs = Zc =
(;O/Zn)ln(b/a), the line is perfectly conducting with y = jBo, and the aperture
is at the center of the coaxial section where z = w = 2 = g/2, it follows that

jB L J2B8.%
F(s - L) = G(s - &) = Zce 0 3 D= Zzie 0

and

~38 %
F(s - 2)/D = (1/22)e

Let £ = 1 MHz so that A = 300 m and 80 = 21/X = 0,0209. Let the coaxial
shield have the radius b = 1 m and the inner conductor the'radius a= 10-3 m;
it follows that ZC = 414,48 ohms. The dimensions of the elliptical aperture
are chosen to be W = 2be = 0,25 m and bY = Zae = 0,5 m; the square of the ec-
centricity is e2 = 1 - 0.25 = 0.75. The complete elliptic functions {[1l1] are
K(k) = 2.1565 and E(k) = 1.2111 so that K(k) - E(k) = 0.9454.

If these several quantities are substituted in the formula (26) for a
normally incident plane wave with the electric vector parallel to the axis of
the coaxial line, the following result is obtained:

0.25)3 x 0.0209 x 0.75
6 x 1 x 2 x 414.48 % 0.9454

1,0 /5| = = 0,052 pAm/volt (30)

Thus, if E.°° = 10° volts/m, |I(0)| = 5.2 mA. In this example the dimensions
of the slot are W= 0.25 m (9.84 in) along the axial direction and b¥ = 0.5 m

(19.69 in) along the circumference. Note that BOW = 0,00525 << 1 and Bob? =

15



0.0105 << 1.

In an earlier report [12] this same problem was analyzed by an entirely
different method in whicﬁ the axial electric field in the aperture was first
determined and from this the far-field of an infinite cylinder. For the same
illustrative example but with a rectangular rather than elliptical aperture
with the same values of W and bY this alternative approach gives (when a numer-
ical error in kb is corrected) [Iz(O)/Eincl = 0.057 pAm/volt in remarkably good
agreement with (30).

The correction factor t in (29) for a cylinder of finite length is easily
evaluated for the special case considered above when the cylinder is near

resonance with ZBOh = Bos = 7, In this case

[2 2n(2/B,b) - 1.1544 - 3]
¥ (/8

tg

With @ = 2 &n(s/b) = 2 2n 150 = 10,02 and b/A = 0.00333, WU(X/Q) = Cb(Alé,A/4) =

0.688 - §1.218; 2 ln(Z/BOb) = 2 4n(2/0.0209) = 2 2n 95.69 = 9,122,

= 6.12 (31)

7.968 - 33.142 l - [73.36

lel = | s = 31.218

Thus, the magnitude of the current on the surface of the nearly resonant cyl-

inder is 6.12 times that on the infinite cylinder in the same field. It may

be expected that the ratio lIz(O)/Eincl for the current in the load Z0 is also
increased by about this factor to
e [1(0)/E:"®| £ 0.321 yAm/volt (32)

When the cylinder is near antiresonance with ZBOh = Bos = 27,

16



2[2 4n(2/8gb) - 1.1544 - 37
+ ?U(A/Z)

t‘
Yau

where
1l
Yo = 3-[cb(x/2,0) - cb(A/Z,AIZ) + E (A/2,0) - E, (A/2,)/2)]

= 7.60 - 32.23

?U(A/Z) = Cb(A/Z,A/Z) + Eb(A/Z,A/Z) £ -0.882 - j0.672

It follows that

7.968 - j3.142

€.72 —j2.00 | = 23 (33)

lt] = 2

Hence, the magnitude of the current on the surface of the nearly antiresonant
cylinder is 2.34 times that on an infinite cylinder in the same normally inci-
dent field; It may be expected that [IZ(O)/EinCI for the current in the load

ZO is also increased by this factor to

t |I2(0>/E§“°] 2 0.123 pAm/volt (34)
If the termination Zs is set equal to zero instead of Zc while all other
parameters are unchanged, the currents in the coaxial line and its terminations
are very different. The formula (26) for IZ(O) still applies multiplied by

the ratio t given in (29), but F(s - 2)/D = F(s/2)/D now becomes

F(s/2) . cos(Bos/Z)

D Z0 cos Bos + jZc sin Bos

instead of exp(—jBos/Z)IZZc. It follows that when Bos = T, Iz(O) = 0, This

17



result is readily understood if it is noted that the field maintained by the
aperture acts like a generator at a quarter wavelength from a short circuit,
Since it sees an infinite impedance, the induced current vanishes [13]}. 1If

the aperture is at a different distance from the short-circuited end, IZ(O)

will, of course, not be zero.

On the other hand, when BOS = 21, F(s8/2)/D = -1/20 so that with (34)
t |1_(0)/E™¢| = 0.123 x 22 /z. = 101.7/Z, pAm/volt
z b4 ¢ 0 0

Thus, when Z, = 1 ohm and E:nc = 105 volt/m, IZ(O) = 10,17 A. This large cur-

0
rent indicates clearly that internal (coaxial line) resonance is much more im-
portant in determining the magnitude of the current in the load than the ex-
termal (antenna) resonance.

If Zs is open-circuited (Zs = =) instead of zero or Zc, while all other

parameters of the coaxial line are unchanged,

F(s/2) 3 Sin(BOS/z)
D Zc cos Bos + jzo sin Bos

If it is now assumed that the internal length s of the coaxial cavity is one-
half the length 2h of the cylinder, it follows that when ZBOh = 1 and Bos = 7/2,

F(s/2)/D = 1/20/5 so that with (32) [which applies here since 285h = 71,
ine - -
t lrz<o)/Ez | = 0.321 x zzc/zo/f 188.1/z, uAm/volt

When Zo = 1 ohm and E:nc = 105 volt/m, Iz(O) = 18.81 A, This large current is

a consequence of simultaneous external and internal resonances.

On the other hand, when 2R.h > B = 27, IZ(O) = 0, In this case the ef-

0 0°
fective generator is at a half wavelength from an open circuit in the coaxial

18




line, so that it sees an infinite impedance and maintains a zero current.

CONCLUSION

A rocket with its access plate removed has been approximated by a large
coaxial cable with an arbitrarily located electrically small slot of elliptical
shape cut in the sheath. The interior circuit is represented by the inner con-
ductor with a load impedance in series at each end. Approximate formulas have
been derived for the currents in the load impedances in terms of the magnitude
of the electric field of an incident plane wave. A correction factor has been
given to take account of the axial resonance of the currents induced on the
outer surface of the cylinder. Internal resonances in the coaxial line are in-
cluded in the formulation. For simplicity it has been assumed that the center
of the internal coaxial line is the same as that of the outer surface of the
cylinder. If required, the analysis is easily generalized to include an inner
cavity that has its center displaced with respect to that of the outer surface

of the cylinder.

19



APPENDIX

The functions ¥, and YU(h) which appear in (27) are defined as follows:

du

h
¥ = (1= cos soh)‘l -{ (cos Byz' - cos Bh)[K(0,z') - K(h,z')] dz' (a-1)
h
Yu(h) = f (cos Bz' - cos Bh) K(h,z') dz' (A-2)
-h
with
-jBOR
K(z,z') = &

R=[(z - 2")2 + a2)}/2

They are readily expressed in terms of the tabulated generalized sine and

cosine integral functions or evaluated by computer.

20
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Fig. 1. Coordinates and Parameters for Internally Loaded Cylinder with

Aperture.
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