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Abstract

Electromagnetic scattering by a perfectly conducting body of finite extent

‘g considered from an integral equation point of view. It is shown that the

“Gperator inverse to the integral operator of the magnetic field formulation is
an analytic, operator-valued function in the complex frequency plane except at
certain points (the natural frequencies) where it has poles. Furthermore, a

' representation of the inverse operator in terms of the natural frequencies and
the nontrivial solutions of the homogeneous integral equation is given. ‘Explicit
expressions for the scattered field in terms of exponentially damped sinusoidal

- oscillations are given for the special case where the incident wave is a delta-

function plane wave and the inverse operator has only simple poles.
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I. Introduction

Itrhés been observgd, when solving many EMP scatterihg and interaction
problems, that the time dependence of various quantities, such as the current
induced on an object in an EMP simulator, see@é to be described by one or more
exponentially damped sinusoidal oscillations. Resonance phenomena are especially
pronounced when the test object consistsroffohe or more long slender conductors;
missiles and aircraft are examples of such objects. In the case of a missile,

The current induced on an aircraft

.

main body resonances have been observed.
when it is subjected to an electromagnetic pulse (EMP) has resonances that can
be associated with both the length of the fuselage and the length of the wings.E 6]

In this note we are going to consider electromagnetic scattering by a
perfeétly conducting body of arbitrary shape but of finite extent. It has been
conjectured by Dr. C. E. Baum (private communication and [1]) that for such a
body the scattered field due to an incident delta-function (in time) plane wave
can be described by damped sinusoidal oscillations-alone. Based upon previous
works it can be shown that this is true for z sphere and possibly other bodies[lO].
In fact, many of the properties of the scattered field of a sphere have served
as a'guideline for us in establishing and conjecturing many of the properties
of the scattered field of an arbitrarily shaped body.

The resonant frequency, damping constant and current distribution of
some of the natural modes have been calculated for a prolate spheroid and thin
wire (see [ 2] through [9]). However, for an arbitrary incident wave, no
general method of caiculatiné'tﬁé coupling coefficient of each mode seems
to exist. A brief review of some previous work on the natural frequencies of
bodies is given in‘sectioniII;' It should be noted that for a body of infinite
infinitely long, perfectly conducting, circular cylinder,

extent, such as an

‘one cannot express the scattered field in terms of damped sinusoidal oscillations

aloneEll]’[lzj.

The analysis in this note is based on the integral equation derived from

the magnetic field formulation, In section III we derive some elementary
properties of the operator defined by the kernel of this integral equation.
In section IV we first transform this integral equation into a Fredholm integral

equation of the second kind where the kernel in the integral equation is of
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Hilbert-Schmidt type. This integral equation is then solved by using the Fredholm

§§§ determinant theory. From this solution we can show that the‘operator inverse
% to the integral operator of the magnetic field formulation is an analytic function
4 in the complex frequency plane except at certain points whererit has poles. Then,

making use of the resolvent of the integral equation, in.section V we derive some
general properties of the scattered field duetoa.delta—funétion incident wave,

From the complex natural frequencies, the nontrivial solutions of the
integral equation at the natural frequencies,iand the nont?ivial solutions of
the adjoint integral equation at the natural frequencies, we construct, in section
VI, the inverse operator of the integral operator of_the magnetic field formulation.
Knowing this operator, it is eas§ to calculate the scattered field due to an
arbitrary incident wave. _ B

Explicit expressions for the adjoint_opéfé;or in the mégqetic field
formulation are deduced in appendix C. By comparing the integral operators - -
and their adjoints for both the exterior and interior electromagnetic scattering
problems, we can see that the homogeneous integral equation'of the exterior
electromagnetic scattering problem has nontrivial solutions at the resonant

frequencies of the interior (cavity).problem.




II. Some Previous Work on Natural Oscillations of Bodies

It is well known (see for example [14]) that the problem of finding the
electromagnetic fields inside a cavity resonator can be reduced to the following [

eigenvalue problem. Find the values of vy and the functions E # O that satisfy )

the differential eqﬁations

Vx9xE + Y2 E= 0, V-E=0 @D
in @ with the boundary condition pxE = 0 on S. Here Q is a simply connected
region of finite extent, and n is the outward normal of S, the bounding surface
of Q. This eigenvalue problem can Ee transformed into the problem of finding
the eigenvalues and eigenfunctions of a positive, Hermitian, compact operator A.
Since A is a compact operator its spectrum is denumeréble, and furthermore,
since A is a positive Hermitian operator, all its eigenvalues are real and
nonnegative. From this it can be shown that the eigenvalues, Yo of (2.1) are
purely imaginary. It can also be shown that the set of eigenfunctionsrign}

of (2.1) forms a complete set in Q. We can then make a Fourier series expansion,

with respect to {_h:,ﬂ}, of an arbitrary field due to some sources in £. It is .

then easy to show that the total electrcmagnetic field in the cavity has two

types of singularities in the complex frequency plane. The first type of
singularity is due to the singularities of the source. The second type of
singularity is a simple pole at the resonant frequencies of the cavity.

The problem of finding‘the values of v for which (2.1) has nontrivial
solutions when the domain & is not bounded is much more complicated. Rellich[lsj
has considered the eigenvalue problem of finding those A # 0 and £ # 0 such that

9% £ 4 af =0 (2.2)

in @ and £ = 0 on 8§, when Q', the complement of @, is of finite extent and S

is of finite extent. It can be shown that for any nontrivial solution of (2.2)

with A # 0 there exists an R > © such that

)( jf}de>MR (2.3)

e

£a - . -
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where M is a pcsitive constant and QR is the intersection of © and a sphere
with its center in Q' and radius R. The problem of finding the spectrum of

Vz when both Q and S are of infinite extent has been treated in [15] through
[17]. Equation (2.3) indicates that it is difficult to consider the eigenvalue
problem (2.1) for infinite domains. In order to avoid this difficulty, we will
here investigate in detail the properties of the solution of an integral equation

satisfied by the induced currents on the surface of the scattering body. From

this solution it is easy*coxcalculate the scattered field outside the body.

Before we discuss the general case, we will briefly look at the problem
of scattering by a perfectly conducting sphere. Making use of the method of
separation of variables, this problem can be solved analytically (see for example
[103). The solution of this problem is of great help in understanding scattering
from bodies of arbitrary shape. Therefore, scattering of an incident plane wave
by a perfectly conducting sphere has been treated in great detail in Interaction

Note 88 ([1]) The scattered fleld due to an incident delta-function plane

wave is an analytlc functlon in the complex frequency plane except at certain

points where it has simple poles. The location of these poles, Ynm and Ynm’
are given by
- _
hn(laynm) 0
(2.4)

. T 0 11 . " —
hn(laynm) + 1aynmhn(1aynm) 0

o L , R dh
| ) =g

and the h (x) = h(l)(x) are spherical Hankel functions.
The problem of determining’the natural oscillations of a few nonspherical
bodies has been treated by many authors. PocklingtonEz] calculated the natural

oscillations of a thin wire bent into a circular ring by using a differential-

*
The natural oscillations are also called frée oscillations in the literature.



integral equation (the Pocklington equation). This equation was used by Oseen[ ] q
to calculate the natural oscillations of a straight, thin wire. Halléntsj also k

calculated the fundamental natural oscillation of a straight, thin wire by
reducing the differential-integral equation derived by Pocklington to an integral

equation (the Hallén 1ntegral equation). The natural oscillations of a prolate

spheroid were first treated by Abrahams[ j, who succeeded in finding the wavelength

and logarithmic decrement of the fundamental oscillation in the limiting case

of a very thin spheroid. By solving the Helmholtz equation in spheroidal coordinates,

Page and Adams[7] calculated the wavelength and logarithmic decrement cf the

fundamental natural oscillation of a prolate spheroid with arbitrary eccentricity.

Later, PageEg] calculated the first three axially symmetric natural oscillations

of a prolate spheroid. .
-The analysis in this note 1s based on the integral equation derived from

the magnetic field formulation,

%1@*— J_n_(g)X[‘?G(g,z_')_Xi(g')]dS_' = 377w, O (2.5)
S N
where j(r) is the surface current den51ty on the perfectly conducting surface N
N ®
S, n(r) is the outward normal of S, j ine = nXH C,.ﬁlnc is the magnetic field

of the incident wave and G is the free space Green's function,

G(r,c') = Grle - ' 7? Ylzr'|

Although all our results are based on this formulation, the results are indepen-
dent of the formulation used when solving the electromagnetic scattering problem.

This follows from the uniqueness theorem for real frequencies and the principle

of analytic continuation.

For example, the natural frequencies of the axisymmetric modes of a perfectly

conducting disk with radius a are given by those y for which the follow1ng integral

[25]

equation has nontrivial solutions
: H
ra

f(u) + 1 K(u,v)E(v)dv = O, ’ (2.6)
lo

where




S | e

% K(u,v) = w_l{‘(u - v)_l‘ sinly(u - v)]r; 7(u + v)-'1 sinEy(u + v)J}.

As a second example, in the case of a thin wire it may be easier to use
an integral equation based on the electric field formulation of the electro-

magnetic scattering problem.

@



ITZI. Some Elementary Properties of the Integral Equation
Derived From the Magnetic Field Formulation
In this section we will deduce some elementary properties of the integral
equation derived from the magnetic field formulation. Especially, we will show
that the operator defined by the kernel of this integral equation is a bounded
operator. . 7
Let Q be a simply connected region bounded by a surface S, and

let Q be of finite extent, i.e., the diameter of Q, D(Q), is finite,
D(R) = suplr - '} < w (3.1)

where r and r' belong to Q. Next, we assume that we can introduce an orthogonal
coordinate system (gl,gz) on S such that there exists a mapping, S +»S€, between
S and some region Sg in the Euclidean (El,iz)-plane. We also assume that this
mapping is one-to-one except at a finite number of points, Pj’ ocn S. Moreover,
let the body be such that the Gaussian curvatures exist everywhere on §. All
our results remain valid with the somewhat weaker condition that the Gaussian
curvatures of S exist except on a finite number of arcs, Cj’ each arec being of
finite length. However, we find that this weaker condition introduces an
uninteresting compliéation in the proof of zur results.

Denote the unit vectors of the coordinate system on S by él and 32, these
two vectors being defined everywhere on S except possibly at Pj' We then have

the orthogonality relations

E.08, =8, ) (3.2)

1, i= 3
Si. :
. 0, i# .
Suppose now that we have an incident electromagnetic wave with all its
sources located in the complement of Q. When S is a perfect zonductor it then

follows that the electromagnetic fields are zero in Q. Making use of the magnetic

field formulation, and the assumption that S is a perfect conductor, we arrive




at the following integral equation for the induced surface current density, j,

% on the exterior side of S
1 .
(gi-_k)‘i=imc~ , (3.3)

Here I is the idgntity operator, L is an integral operator defined by

L= f X (76x1)dS, - (3.4
S

ine anlnc, E_lnc is the magnetic field of the incident wave, n is the out-

ward unit normal to S, G is the free-space Green's function

K G(_l_‘_,_f_') .=7E4ﬂ}£7-7_r_' ])-l <=._7Y1-r-_£'I - (3.5)

b

vy = - ik is the propagation constant of the incident wave, and V operates on the

first argument o‘f‘G(_r_,“r_'). 7
Let us now define a Hilbert space X, the elements, j in JC, being given by

3= 318 F 3,58, i; € 1708 (3.6)

where L?(S) is the Hilbert space of all square integrable functions with support

S. Moreover, we have
L2 .. , L* Lk
“l_” = <.l’,l> = JS(J lJl + szz)ds < o,

Next, we will show that L is a bounded operator in J. We have

Lej=L"-3+L"] S (3.7)
where
L' = jEX(VG'xi)ds
s
- L' = | mx(etpas



and

The functions G"(r,r') and 96"(x,r') are bounded when r and r' belong to § and

y is finite. Thus, the operator L" is a bounded operator in J(. The triangle

inequality gives
ILedll = iz -alb + sl = dietll + febial | (3.8)
where [ILj| = sup{lIL:3}l/llll} and {[L]| is finite. Moreover, we :have
ARSI CARE S A VI Lxsxs{z@_wiw ARl

{ne) 06" (r,r)xi (£) T}dsds ' as” (3.9)

In appendix A we have shown that
. ...lw R T _ .
[n()Lv6! (e, x )= ()] = [epjr - 2" [T + ¢, (5,2 1N (3.10)

where C; is a positive constant and C,(x,r') is positive and bounded when r and

r' belong to S. Thus, we have

(ARSI J Ceylz - 27, )]
SxXS%8

[lez.".z"f—l + G,y (x,r 1) 1" |asdas ' as”
= j dSEf C,(x) 1G" a5t
s Jg 2

+ 2 j ds [ ¢,z - x| i ]as fCQ(_E,_r_")li(z”)!dS"
S S S

2 J’ . t 1 + 1 1C t -l V” '-1 ) V
+ ¢y | i) ]as [ l3(z™|ds f |t - x*| "l - "7 ds. (3.11)
Lg S S O

10
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187
g%a It is easy to show that[ 8*"
.

[le-e e -2 as < o male - x|+
S

4 (3.12)
where C3

and C4 are constants.

Because S is of finite extent it follows from
the Schwartz inequality and (3.11) and (3.12) that there exists a finite constant,
M, such that

I 3% = Mgl

(3.13)
Combining (3.5), (3.8 and (3.13) ‘we see that L is a bounded, analytic operator-
valued function of Y. ' '

of S around an arbitrary point r € S.

We now go on to investigate L as Re{y} » + =, Def'inewa subsurface, 86(5-)’
We then have

© Li=LgitlLpod (3.14)
% where K ) ‘ :
;6_1_= J' nx(VGxj)ds
S
§
Lei= | s,
S-S
)
From (3.11) and (3.12) it follows that for any given § > ’O'there exists 86
such that
.n2 2.2
lzg-all® < %4l %72, (3.15)
It follows from (3.5), by choosing Re{y} greater than some number N(%), that
.2 20 .12
L -3l < 7llall"/2. (3.16)
1 1
- Thus, the operator 5 I -L~ 5L
Q belonging to X.

I as Re{y} + + = when operating on elements

11



Finally in this section, we will investigate the inverse operator

G%:; - ;)_1 as Re{y} -+ 4+ «, We start with the Neumann series —

@-ow e+ J2FL0 (3.17)
. k=1
which converges for Rely} > NC%). Here L} = L and é}, k = 2, is defined by

ék'i =L (;k—l-i)- (3.18)

The triangle inequality gives

(-2 szl + T 2865 =z + 2600 - 2870~ 7] as Rely} » + = (3.19)
k=1

From this it follows that

+ 21 as Re{y} » + = ' (3.20)

Ny

fir—
i

=

In the next section we will go on to determine the analytical properties

in the complex frequéncy plane of the solution of (3.3).

12
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IV, Solution of the Integral Equation From the Fredholm
Theory of Hilbert-Schmidt Operators

In this section we will construct a solution of the integral equation (3.3),

inc

.
(—Z_L—é)'i-—-j_ s
by solving the integral equation
1 2 . 1 '- _ . :
GL-LD3=GL+D1 =80 (4.1)

Obviously, any solution of (3 3) also satisfies (4.1). Moreover, in appendix C
we have shown that if v is: such that the inverse operator (— L - L) exists,
then the inverse operator C— I+ _) also exists, and vice versa. Thus, the
solution of . (4 1) coincides with the solution of (3. 3) for all those values of
vy for which (5 I - ;Q_l exists.

Making use of the unit vectors El and‘g2 of the coordinate system 51 and

Ez, we can represent the kernel, K(x,r';y), of the integral expression

1l

L+ (x) JE___(}'_,E_';Y)’i(E')dS' - | (4.2)
S N , o

by a 2x2 matrix having elements K (r T Y5v), i, = 1,2. Using matrix multipli-

cation, the kernel of the 1ntegral expression
» 2 0 —_ ' 1 . 1 1
L3 (@® = f_lﬁ_z(_r_,; 37)+3(x")ds (4.3)
S .

is given by

K,(r,r';y) = (K__(r,_r_";y)'g( ",r'iy)ds'. (4.4)
‘ ‘S .
The kernel §Q(£x£'3Y> is finite except at r = r' where we have asymptotically

R,(x,x'sy) ~ C Infr - &' : (4.5)

(c.f. (3.12)). Thus, the Hilbert-Schmidt norm of L HL I, defined by

13



817 = | iyt asast, .6)
X : -

is finite for any finite y since D(Q) is finite. Moreover, since each element

in K(r,r';y) is an analytic function of y it follows that,ﬁz(gtg';y) is an

, . . 2, . .
analytic matrix-valued function of y. Thus, L~ is an analytic Hilbert-Schmidt

operator-valued function of y. Notice that the Hilbert-Schmidt norm of L does

not exist since

(c.f. (A.1) in appendix A).
In order to make use of the Fredholm determinant theory for the solution

of (4.1) we proceed as follows. Making use of the unit vectors él and 22 the

integral equation (4.1) can be written as

2
Lty - e etgst o
7 3@ ggl LBM(E,E V)3, (Edst = £, 1=1,2 (4.7
where
2
By Erhiv) = ) fKik(z,_r_”;y)xm(g”,g‘;y)ds”.
k=1 ‘s

Let us also define a surface S1 by

+r', " Sand r = £ max EE'E& +,d]}

s, ={z:r=1zx, ,
] -0 s

where € is an arbitrary unit vector and d > 0. Obviously, S and S, are two

nonintersecting surfaces. Moreover, define

i; @, r €5
n(r) = - (4.8)

14
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4Bll(r,r 1Y), res and r C S
: 48, . ( - ) r €8 andr S
P(x,r';y) = . Fort B e ! (4.9)
4B,y (= £ HZ'3Y)s r€s and ' €8
4322(1' - I 9_12_' - _EOQY), r € Sl and _T;'_' €S
o) =94 I (4.10)
4f,(x - ry)s _1;&'_81

Equation (4.1) can then be transformed to the- following ecalar integral equation

@ '-f’ P sn(Eds! = 6@, res, o (.1
. 82
where §, = 8 Us,.

From (4.6) it follows immediately that

[I’(g,_l:';v)|z dsds' < = (4.12)

SZXS2

which means that we can apply the Fredholm determinaot theory when solving the

integral equation (4.11). It should be noted here that B, (r r ,Y) does not

exist for r = r'. This implies that I (zr,xr' ,Y) does not ex1st on the subset S,
of $,%8, where r = r', i e i f””,?fe ?;1 o

5, = {(zr) +x=x' and (5r') €5,%8,].

However, we canrarbitrarttx set T§£%£'§Y>_f:QWQ?:53”With6Ut affeoting the value of

f F(_£ son(ehes' (4.13)
52 I R, S ST ) )

when n belongs to the Hilbert space of all square 1ntegrable functions w1th

support S2
_ The integral equation (4. ll)roahihow be solved by means of the Fredholm
determinant theory[ ] We have

15



n(x) = ¢(x) +f Ar,r';v)¢(x')as’ (4.14)

S»
where
A(,x'sy) = Az,r'sy)/d(y) (4.15)
AMr,e'sy) = ) -1)" Am(g,_z;';y)/m! (4.16)
m=0 )
d(y) = [ D% (y)/m! (4.17)
m=0

Here, dm(y) and Am(EaE';Y) can be determined from the recursion formulas

d (v) =1 (4.18)
8,Cextsy) = T(zx'sy) (4.19)
d_ () = L b (r,z;y)ds , ~ (4.20)
"2
b Gr'sy) = d (PT(Eey) - m fs P,z @t sy)ds” (4.21)

2

Since Bi.(zjzf;y) are énalytic functions of vy it follows trivially that
Am(gtg’;y) and dm(Y) also are analytic funcitions of v. ﬁoreover, since the
series expressions (4.16) and (4.17) converge for all values of y (c.f. [18]
and [19]) it follows that A(x,r';y) and d(y) are analytic functions of y. From
4.15) it then folloﬁs'thét'A(Etg';Y) is an analytic function of y except at
Y S v where d(yn) = 0, Since d(y) is an analytic function of y there can
only be a finite number of zeros of d(y) in any finite region of the complex
y-plane. It also follows that A(zr,r';y) has a pole at Y- The order of the
pole is given by the order of the zero of d(y), provided that A(ELE';YH) £ 0.
If A(gtz';yn) E‘O, the order of the pole is given by the difference of the
order of the zero of d(y) and the order of the zero of A(r,r';y). It can also

be shown that the homogeneocus integral equation

16



;.E.O(El_'_‘_f I'(x,x';y)n(x')ds = 0 , (4.22)
2

has nontrivial solutions for % LT y (see Ti9nyY”
Thus, we have the following solution of the integral equation (4.1)

i = 4i:i.nc + 4d—l inlnc (4.23)
where Q=1s an 1ntegral operator}definéd by'f' SR mEE T RS : ,
@ £)(x) = f_A_(_r_,z';Y)‘i(g')dS'- (4.24)
S - . :

The kernel of the integral expre551on (4 24), A(r r';y), is a 2X2 matrix with

TV Eer B S R T

R Nk 3 3

elements

', =“1‘ v{E'
All(;,z 3Y) Mz,x';5v)

b (e tsy) = AMEt )
: . (4.25)
By (zr'sy) = Az + 2 ,x'sY)
AZZ(;,L';Y) = A<5+,50,’$' +r;Y) 7

' To sum up, we have shown tha* C— I- LJ, is'en‘analytic ‘operator-valued -

function of vy except at certain values, Yy where it has poles. The singularities

in the induced current on the surface of the body,.l, and thus also the scattered

electromagnetlc fleld, are due partly to these poles and partly to the 81ngular1t1es

= e = A
me i

of the incident fleld The flrst type 6f 51ngular1ty mlght be called a body pole s

since it is completely determlned by the scatterlng body, and the second type, a

o T i STt -1
waveform 51ngular1ty A 51mple method of representlng (— -D in terms of
-«pe, L & 5o }w{; Cmram b f {fj"jg‘f’»': i .

the body poles w1ll be glven in sectlon VI

* :
By analogy to network theory one could also call this type of singularity a

natural pole.

17



V., Solution of the Integral Equation for a Delta-Function Incident Wave q
In this section we will solve (3.3) with the assumption that the incident 7
wave is a delta-function plane wave, i.e., ‘
inc '
H Eoé(x - ct) (5.1)

where Eo is the strength of the incident pulse, x = égz and & is the direction of

propagation of the incident wave. In the frequency domain we then have

in

5100 = gt e ~ (5.2)

where_io= EKJ%' The solution of the integral equation

<é_;:_ - = .inc
is then given by
.inc .inc C(5.3)

i1=2] " +4Q3

where Q is-an Integral operator,

Q£)(x) = fl‘_—(z:z‘;v)é(_{’)d& (5.4)
g o

and the resolvent, R(r,r';y), satisfies the integral equation

(Tr'sy) - 2 f R(,x";y) R(x",x"5v)ds" = K(z,x"35v). o (5.5)
: S o

=

It follows from the analysis in section IV that R(r,r';y) is an analy;ig function

of y except at certain values where it has pcles. From (3.20) we have

i~ Zilnc as Re{vy} + + . (5.6)

In the time domain we have

18
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it

It = ()7 e f;'_(m)e“* dy

C

f .
2Jinc(£,t) = 2icn 1 J; (Q_’imc) (L,Y)eCtY dy (5.7)
c , ,

whereilnc = Bﬁﬁ_nc and the path of iIntegration, C, is parallel to the imaginary

axis and to the right of all singularities of j(r,Y). From (5.4) and (5.5) it

follows that

J(r,t) =0 for x > ct.

Moreover, for any given t let S+ be the part of S for which x - ct > 0 and S_

 the part of S for which x - ct < 0. We then have

(g-i)(g) =[ R(z,r';y)£(xr")ds’ (5.8)
— s+ —
@ D@ = | BErin-LEHas (5.9)
= = , g )
and
+ -—
g = g -+ g . (5.10)
Notice that S+ =S and S_ = 0 for t < tO and that §_ = S and S+ = 0 for t > t1
where
_l . ‘
t, = ¢  min {x} : o : (5.11)
] res T . e .
-1 .
t; = ¢ max {x}. (5.12)
rée S

The pulse first hits the scattering object at t ='to and has just passed it at

t = tl' We have, for arbitrary t

f i(z,t> = 2377z, 1) - _f(z,t), - T (,t) (5.13)

19



where
+ .o -1 + .inc cty o
J'(x,t) = 2ien Q <17 (x,yde dy (5.14)
’ C .
and
- . =1 - ,inc
J7(z,t) = 2icr f Q@1 @ ey, (5.15)
C
Interchanging the order of integration in (5.14) we get
— R |
5@, = 2ien™ f fg(_,g';y)-jﬁ(_r_')ex T ST dyas. (5.16)
S.°C :
Since x — ¢t > 0 on S+ if £t < ty and S+ =0 if t > £y it follows that
J (x,t) = 0. (5.17)
Moreover, from the convolution theorem of the double-sided Laplace transform

it follows that

- - . -
J (z.t) = 2icn ' f {__\_(g,g'w)'jo(j:_‘)e =" ayas
s ic

= - 4 fSJEIQE’Ef;t - x'/c)-io(g‘)ds (5.18)

where R (r r';t) is the inverse Laplace transform of R(xr,r';vy). 7
In the next section we will construct the inverse operator C— I-D -1
from the body poles. The 1ntegral (5.15) can then be evaluated by means of

residue calculus.
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VI. Calculation of the Natural Frequencies and
Modes from the Integral Equation

In this section we will show how to construct a solution of the inhomogeneous

integral equation

LDC (6.1)

Q% I-L)j=0. (6.2)

The analysis developed here leads to a representation of (% I -1 " in terms

of nontrivial solutions of (6.2) and nontrivial solutions of the adjoint

integral equation

GL-1hh=0 (6.3)

where ;f is the adjoint operator of L.

, e -1
In section IV we have shown that the inverse operator, A ~(y), of
Ay) = -%- L - L is an analytic operator-valued function on the complex y-plane
except at a countable number of points, Yoo where é_l (y) has poles of some finite

order P = P(n). Another way of expressing this is: for vy =ﬂ.yn there exists a

function J_n # 0, such that

Ay )3 = 0. (6.4)
Let %(y) be the spectral set of A(y) so that-
Z(y) = o(&) = {} : A(y) - AT has no iﬁverse} (6.5)
From (6.4) it follows that - -
P _ ,
OHZ(Yn). (6.6)
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In Appendix C we have shown that
: %
o) =1 () (6.7)
where
* *
Ty =Ay:y €1y} (6.8)

Comparing (6.6) and (6.8) it follows that

0€ z*wn). (6.9)

From equations (674) through (6.9) it now follows that there exists hn such that

- &
[ ——
Ay )h =0 (6.10)
. and
£ G )b = 0. (6.11)

T T*
where A (y) = A (v).
Comparing equations (6.4}, (6.11), and (C.I1Z)} we notice that v, can either

correspond to an exterior resonance or an interior resonance (cavity mode). In

the latter case, Y, is a purely imaginary number (see for example p. 211 in [14]).-

Thus, by finding all T such that
Aly )3, =0, i, #0

we will find both the interior and exterior resonances despite the fact that the
integral equation (6.1) originally has been derived for the exterior scattering
problem. The fact that the homogeneous integral equation of the exterior scatter-
ing problem has nontrivial solutions at the interior resonant frequencies makes

the solution of (6.1) difficult at those frequenciesE 13].

]
In Appendix F we give a method of differing the exterior resonances
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C

from the interior resonances. However, we want to point out here that if Y,
is not purely imaginary, then Y, is the natural frequency of an exterior mode.
We also notice that Re{y } =0 which follows from the phy51cal fact that the
currents induced on.the surface of the body due to a delta function plane wave

can not be exponentially increasing in time (see (6.36)). Let us also normalize

in and Qﬂ in the fdllowing way

i =110 =1
and (6.12)

( > = L.

]

b JI® = ¢a_n_

Of course this means that both.j_n and bn belong to ¥, the Hilbert space defined

in section III. ’
Having the current distribution, iﬂ, on S of one mode it is now easy to

calculate other field quantities. We have the following‘expression for the vector

otential, A and the scalar potential, ¢_, of this mode. We have
p s B = n

- t, ’ 1
A @ = w LG(E,E 37,03 (£')ds
(6.13)
N -1 . )
o () =2 v, JSG(—E’}:';Yn)V'ln(E')dS
where
oy Y lzert
Gz,x'sv,) = Garlz - =D be @ -
For the electric field, E_, and magnetic field, H , we have
- -1
E_=cy A -Vo
©=n rn n , ,
and SR - : (6.14)
H = VxA .
2y

For exterior'natural modes such that Re{Yn} < 0 it follows from (6.13) and (6.14)
that all field quantities are exponentially growing in space far away from the

body. This will not be of any importance in solving transient electromagnetic
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problems, because of the causality condition imposed when solving these problems.

Next, we will go on to solve the imhomogeneous integral equation (6.1)

when the incident wave is a delta-function (in time) plane wave. We have

(c.f. (5.1))

A(v) j = ue™'® S (6.15)

where u = c“l 10. By finding the solution of (6.15) we can construct the

inverse operator é:l(y). It is then easy to obtain the solution of (6.1) for

an arbitrary incident field. We have

(A 1,0 ) = (47n ) (6.16)
and
R P
Ay )+3,h ) = (A& )R ) =0 (6.17)
so that
(Catn = A4 T30 ) = (17,0 ). (6.18)

Suppose that y_ 1is a pole of order P(n). We can then represent j in the following

form in a neighborhood of Y,°
P M -
PR o . . 1
N (AR A I 1 (6.19)
p=1 m=1
Here C are constants, C # 0, and j' is a bounded function. Furthermore,
n nPm n
M is some finite degeneracy number, M = M(n,p), such that for fixed n and p,
M is the smallest number of independent solutions, inpm; We will later discuss
how to choose these M linearly independent solutions. We then expand A(y) and

cinc | .
i in a Taylor series around Yo?

[s~]

A - A6 = T G-V E (6.20)
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MR NN (OO T (6.21)
g=0 4 .
where B is an integral operator such that
g
- o1 v lzezt
(B, D) @ = (DD ' fsygx{vmz-z'lq te ® IxE(x')}ds'  (6.22)
and
; _ -XY
12 s @ henle M | (6.23)

“nq

Making use of (6.19) through (6.21) we can expand (6.18) in a Laurent series

around y = Y, By identifying coefficients in this series expansion we can

determine cnpm'
Although we have no proof, it is our contention that é?l(y) has only simple

poles when the scattering body is perfectly conducting. In the following we will

concentrate on the special but important case where P = 1. The case P = 2 is

treated in Appendix E.

For P = 1 we can drop one index so that

Cnlm = Cnm’ dnim T lﬂm’ é’nl - éhf'

Because Y, is a simple pole,we have M linearly independent solutions,j _, such

that
B0 gy = O
and
B+i_ #0, l<m<M. (6.24)

The adjoint homogeneous integral equation has also M independent solutions h

such that
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and

B .Enm # 0. (6.25)

Because J and h__ are linearly 1gdependent and gn-lnm # 0 it follows from the

Gram-Schmidt procedure that we can choose j and h _ such that
. Lnm —nm
=0 for m # m,

(B_+j._ »h_ ) (6.26)
=’“lﬂml TRy 14 0 for

S )

Thus, we have

,inc .

¢ =iy bR KB ek (6.27)

where

,inc Ya

N
For the special case where é_l(y) has a simple pole at Yo this leads us to the .

following dyadic representation of é:l(Y) in a neighborhood of Yy

sl = T -y e e T B B (6.28)
m

where gﬁ(y) is an analytic oéerator in a neighborhood of Y The zxpression
(6.28) is, of course, independent of the way we normalize Iom and Eﬂm.

From (6.28) it follows that, anywhere in the y-plane,

sty = T G- v e )T A B+ E (D) (6.29)

n,m
where E;(y) is an entire, operator-valued function of y. If it can be shown
that é:l(y) is bounded except for its poles and that é:l(O),exists then the

, 1
following more explicit representation of A "(y) may be written

Loy, (6.30)

flo=

Sl = T CG - v e I b )T g B
n,m
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Now if h is the tangential magnetic field on S of an interior mode,

and if j}nc has its sources outside £, it follows from Appendix F that

,inc , " _
(i, b =0 | (6.31)
It then follows from (6.29) and (6.31) that, if the incident field has
its sources outside @, the solution of (6.15) may be written

.inc

J@m = T Gr= ) TKE A e YT 0y E,(05 ™ (6.32)

ext

where gq(y) is another entire, operator-valued function of y and Z denotes
ext

summation over external modes only. If gg(y) is zero the following simple time-

domain representation of the current due to a delta function incident wave may
be written

: Yn(x—xo) ’ -1 -y (Xo—Ct)
I(,t) = Ulet - %) I (mxIe b B -3 oh DT e (6.33)

where U(x) is a unit step function and X is the x-coordinate of the first point
on the body hit by the incident wave. It was shown in section V that J(r,t) =0
for x > ct so the argument of the unit step function could be taken as ct - x.
Different representations of J(r,t) have been discussed in [1].

From (6.33) it follows that Re{yn} < 0 for the exterior modes since
.Q(E’t) has to be finite when t - ®, For the interior resonances Re{yn} = 0,

From these two facts it is clear that é:l(y) is analytic in the right half plane.



VII. ' Concluding Remarks

The operator decermining the field scattered by a perfectly conducting
body of finite extent is an analytic function in the complex frequency plane
except at certain points where the operator has poles of some finite order.
Each pole corresponds to a natural frequency of the structure. The location
of these poles can be found by finding all those complex frequencies for which
the homogeneous integral equation for the surface current has nontrivial

solutions. We have also seen that the integral equation has nontrivial solutions

at the resonances of the interior (cavity) problem although it was derived for

the exterior scattering problem. A method of differing exterior resonances from

interior ones was given. For the special case where there are only simple

poles, a dyadic series representation of the operator determining the induced

current was constructed from the natural frequencies and the nontrivial solutions

of the integral equation at those frequencies.
In this note we have conjectured that the inverse operator of the magnetic

field formulation only has simple poles. Hopefully, we will, in a future note,

be able to shed some light on this question as well as the question of the
behavior of the inverse operator for large values of y in the left semi-plane.
Furthermore, in this note we have only discusted electromagnetic scattering by

a perfectly conducting body. It is our intention to investigate scattering by

imperfectly conducting bodies in a future note. When the permittivity,

permeability and conductivity (e,u,0) of the scattering body are entire functions
in the complex fregquency plane, we expect that the only singularities of the

operator determining the induced current are poles. However, the poles might

Scattering of a delta~function plane wave by an imperfectly
‘'The analysis there

not be simple.
conducting body has been discussed in Interaction Note 88.

is based on a zoning technique where the scattering body is divided into a

finite number of small sized volume elements. A set of algebraic equations for
the induced current in each volume element of the body is derived. The analytical
properties in the complex frequency plane of the solution of this set of equations

are also discussed. We intend to approach the problem of scattering by an
imperfectly conducting body of finite size by formulating a volume integral

equation for the induced current density in the scattering body.
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The results reported in this note were attained by using the integral
equation derived from the magnetic field formulation of the electromagnetic

scattering problem., However, it may be easier to solve certain problems by

using other formulations, such as the electric field formuiation for thin
wires. The practical importance of these results is that they point to a fast
method of solving.transient electromagnetic scattering problems involving those
scatterers for which a few terms in the dyadic series representation of the

inverse operator are dominant. Based on the theory presented in this note we

are currently undertaking a numerical study of the naturai modes of some
structures. In this study we will determine the complex resonant frequency
and the current distribution of each natural mode for various body shapes. We
will also calculate the coupling coefficient of each natural mode to a given

incident field. The result of these calculations will be reported in a future

note,
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Appendix A

The Singularity of the Kernel in the Integral Equation
Derived From the Magnetic Field Formulation

In this appendix we will investigate the singularity in the kernel of the

integral equation (3.3), i.e., the behavior of g(r,r'),
g(x,x') = a@x(7lr - z'|7'xe@"], (a.1)

around r' = r under the assumption that £(r') is continuous at r (c.f. (3.10)).

Let P and P' be two points on S having the position vectors r and r', respectively

(see figure 1). The outward normal to the surface S at P is n(r). Let I

denote the plane spanned by the vectors n(r) and s(x,x'), s(z,x) = (r - ")/ - '],

The intersection between I and S is a curve C. We assume that C is a smooth curve
around P so that for example the curvature, «, of C exists at P.

We have

gr) = [a@ £EHWe - 2|7 - a@-vlz - 27 EED. a2

Since C is a smooth curve between P and P' we have

2

a( £ = «lz - 2 [E G + o - 2" (4.3)
where
£,r") = [[a()xs(e,rDI£xD] = o' [£"| (A.4)
;md 0 < 8' < 1. Moreover,
vr -z = - s/l - 1) (4.5)
so that
n(x)-vlr - r' - (@ sVl -z'[P=-«z -z + C'(z,x") (A6)
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where C'(r,r').is bounded around r = r'. It now follows that

wv)x - ' [TE@Il= oyl - 27 ey @ lEE) | (A.7)

where

c,=x(1+9), -lss8=xl (4.8)

and C,(z,r') is bounded.

31



Figure 1. The local geometry of the surface.
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Appendix B

Selected Topics From the Theory of Linear Operators in Hilbert Space

In this appendix we will first introduce the notation of Hilbert space
and give some examples of different Hilbert spaces. We will then introduce the
concept of linear operators and give some examples. Of course, we only intend
to give a brief review of some of the concepts from the theory of linear operators
in Hilbert space that we have used in various parts of this note. For a detailed

study of this subject we refer the interested reader to C207 through [23].

A, Definition of an Abstract Hilbert Space

We start with the postulates defining a Hilbert space; A set of elements
f,g,h,... which possesses the properties (I), (II) and (I11) 1isted below will
be called an (abstract) Hilbert space and will be denoted by I

I. X is a linear space, that is, the operations of addition of elements

belonging to 3 and multiplication by complex numbers, A,H,..., of an
element in X follows the.rules
1, £f+g=g+ £,
2. £+ (g+h)=(+¢g +h,
3, there exists an element O in X having the property £ + 0 = £
for all £ in X,
4. for every f in ¥ there exists an element -f in J such that
f+ (-£) =20,
5. (A + uwf = rf + uf
6. ()t = r(uf)

7. 1l.f = £,
IT. 3 is a metric space whose metric is derived from the scalar product.

The scalar product of two elements, f and g in ¥, is a complex number

denoted by (f,g) and has the following properties

1. {(x,g) = Xf,g),
2“ <g,f) = <-f,g>*,
3. (£ +g,h) = (f,h) + (g,h),



4. (£,£) > 0 if f # 0,
5, {f,f) = 0 if and only if £ = 0,
6. the norm of £, denoted by ||f]], is defined by [|f|| = (f,f)%,
7. the distance between the elements £ and g is [|f - gf|.
III. 3 is a complete space in the sence that if a sequence of elements

{fi}, fi belongs to ¥, satisfies the Cauchy condition
£, - £/l >0 as 1,k
then there exists an element f of ¥ such that

£ - fiH +0 as i > =,

B. Examples of Hilbert Spaces

We will now give some examples of spaces that satisfy the properties I-III
listed above. One such space is H%, the space consisting of all sequences of
complex numbers <a1’32"") such that

[s2]

ES
k=1 £

2

exists. It follows trivially that H% is a linear space. Moreover, let f denote
the sequency <X1’X2"") andlg the sequence(yl,yz,...). The scalar product,

{(f,g), is then defined by

(f,8) = ] x; y: (B.1)
i=1

and

oo

HERSNEAL:

i=1

Ry

From the Schwartz inequality and (B.l) it follows that (f,g) 'is a finite number

when f and g belongs to (.
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%’ Another Hilbert space is LZ(I) where I is some finite interval (a,b),
: and the elements, f, in LZ(I) are all complex-valued functions, f(x), defined

on I and such that

b2

J|f(X)[ p(x)dx < =

a

where p(x) is a positive density function. The scalar product is defined by

b 3
(f,g) = J f(x)g (x)p(x)dx
a

so that

b
J ff(x) 12 o (x)dx.

a

HE

We leave it to the reader to show that LZ(I) satisfies all the postulates of a

Hilbert space.
In section III we have used the Hilbert space X consisting of all elements

g £ = (fl’fz) such that fl and f2 belongs to L2(S), where S = 3Q,and § is some
region of finite extent in the three-dimensional Euclidean space, and the
elements g in LZ(S) are all complex-valued functions g(r) such that

[ le@1? as <.
S

The scalar product in ¥ is defined by

(£,h) = Js[fl(g)g?(g) + fz(z)g;(;_)]ds.

C. Two Types of Convergence on X

Different types of convergence are used in the theory of Hilbert space.

We will here define two types of convergence

1. the sequence of elements {fi} of ¥ converges strongly to an element

£of JCAf ||[f - £ ][~ 0asi~+e, or £, ~ £,
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2. the sequence of elements {fi} of X converges weakly to an element £ . .\,
of X if for any g of 3 we have (fj,g) + (f,g) as 1 + =, or fi ~ f,

D. Fundamental Sets on X

A set of elements {fk} of ¥ such that kaH = 1 and (fk,fj) = 0 for k # j

is said to form an orthonomal system in ¥. The set'{fk} is called a fundamental

set if any element g of ¥ can be expanded in terms of fi as

g = ){(g,f )f
1{ K/ Tk

and the coefficients (g,fk) are called the Fourier coefficients of g with

respect to {fk}. The set {fk},

1
-4

fk(x) =7 exp (ikx),

forms a fundamental set on L2(—ﬂ,ﬂ). We have

g = k___z_m<g,fk>fk

where

T - L (7 ‘
(g,fk) = f g(x)f;(x)dx = ﬂ-% j g (x)exp (-ikx)dx,
-7

il

.E. Isomorphism Between Two Hilbert Spaces

We will now go on to consider the concept of isomorphism between two
Hilbert spaces. . Two Hilbert spaces, ¥ and X', are said to be isomorphic if
there is a one-to-one correspondence between their elements
t

I A g > g

implies that
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b, f+g NS +Kg'
2. Af < Af' 4
3. (£,8) < (f',8")- i
Here f and g belong to X and f'and g' to X'. Let g belong to LZ(I) and let

{fi} be a fundamental set on LZ(I). It then follows that

E]aklz < @ ak. = <g’fk>

so that the sequence’(al,az,...) is an element in H%. Moreover, from the Riesz-

Fischer theorem it follows that for each sequence (al,az,...) of H% there is an
f belonging to LZ(I) with Fourier coefficients SR TR This correspondence

between LZ(I) and }{ is one-to-one. It also follows from the Parseval's equality

that
*
<g’h> = Z ak bk.
g where h belongs to LZ(I) and bk = (h,fk).A From this it now follows immediately
: that .'}Co is isomoiphic to LZ(I). ‘

F. Different Types of Operatorsin ¥

We will now go omn to discuss operators in the Hilbert space. A mapping T
which associates with each element f belonging to a subset & of a Hilbert space
3 an element g belonging to a Hilbert space X' is said to be an operator with
doméin of definition €.

I. The operator T is called linear if
1, @& is a linear manifold, i.e., if fl and f2 belong to &, so does

Alfl + AZ 9

2. T(A f + A f ) = A Tfl + Aszz
II. The operator T is called bounded if the domain of T is all of ¥ and

for any complex numbers Al and XZ’

if there exists a finite constant C such that

izl =< cli€]] 4 (B.2)
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for all f belonging to X. The smallest value such that (B.2) is
valid is called the norm of T, and is denoted by ||T/|. We have’

T} = “EﬁleTf(

An operator T is called closed if it has the property that for every

sequence {fn} of elements in & such that
f - f and TE_ -+ g
n )9}

the limit element also belongs to € and Tf = g.

An operator T is called compact if it transforms any weakly convergent
sequence {fn} in X into a strongly convergent sequence {gn} in X' and

if the domain of definition of T is ¥. Thus, if T is compact we have
fn -~ £ and g, * 8

where

Tfn =8, and Tf = g.

Let {fi} be a fundamental set in ¥X. It can then be shown that the

reduced transformations Tn, defined by

n
Tg= [ (&EfXTE £
i,k=1 .

tend uniformly to the transformation T when n -+ e,
Let {fi} be a fundamental set in J. A bounded linear operator T in X

is said to be a Hilbert-Schmidt operator if

Il = Jiee 2

is finite. The number HTHhis sometimes called the Hilbert~Schmidt

norm of T. It can be shown that any Hilbert-Schmidt operator also is

a compact operator.
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G. Examples of Operators in ¥

We will now give some examples of linear’operators in different Hilbert

spaces. First consider an operator that maps the Hilbert space H% into itself.

Symbolically we write
Tf = g

where f = (al,az;...) and g = (bl,bz,...) both belong to H%. The operator T

can be represented by an infinite dimensional matrix with elements tij so that
Z tijaj = bi'
3 o

Next consider an operator T in LZ(I) defined by
b
(Tg) (x) = J K(x,y)g(y)dy.
a
Assume that T is a Hilbert-Schmidt operator so that

Tg = ] (£ X(TE;,E)E
i,]
where {fi} is a fundamental set in LZ(I). Since T is a Hilbert-Schmidt operator

it follows from the Schwartz inequality that

el = Hi%j<g,fi><Tfi,fj>fjH < |lelt 17il,
where
Il = 1 Kxege 1

From the isomorphism between L2(I) and H% it follows that

faly = | Iten) ] ane.
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Thus, the integral operator T on L™ (I) is a Hilbert-Schmidt operator if the

kernel defining the operator is square integrable over IxI.

H., Spectral Theory of Linear Operators in X

Finially in this section we will quote some theorems from the spectral
theory of linear operators in a Hilbert space, ¥. We first give the definitions:
1. The resolvent set p(T) of T is the set of complex numbers i, for
which (T - )\I)_1 exists as é bounded operator with domain X.
2. The spectrum set o(T) is the complement of p(T).
Without proof we quote three theorems from the spectral theory of linear operators

in ¥ that we have made use of in this note.

n . - .
Theorem 1. If T is a compact operator for some positive integer n then the
spectrum of T is at most denumerable and has no point of accumulation in the

complex plane except possibly A = 0. Every nonzero number in o(T) is a pole of

some finite order.of (T - AI)—l.

Theorem 2. Let T be a compact operator in X, {Ai} a sequence of distinct scalars,
and {fi} a. sequence of nonzero elements of 3} such that (T - AiI)fi = (0 for

i=1,2,... Then Ki approaches zero as i approaches infinity.

Theorem 3. Let TO be a closed operator in ¥, and let Ao be an isolated point of
the spectrum of TO such that Ao is an eigenvalue of multiplicity one. Moreover,

let T(é) be an analytic operator-valued function of ¢ in a neighborhood of ¢ = 0

‘such that T(0) = T . Then there exists a neighborhood of ¢ = 0 such that T(e)

also has an eigenvalue, A{(e), of multiplicity one in a neighborhood of AO and

2 (0) = A, Furthermore, we have

{t

T(e)f () rA(eyt(e)
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where £ and f(e) belong to 3 and £(0) = f. Ina neighborhood of

can expand A(e) and £(e) in an entire series of .
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Appendix C

The Adjoint Operator in the Magnetic Field Formulation

In this éppéndix we will investigate the adjoint operator, ;__T, of the
operator L defined by equation (3.4) in section III.

Let f and g both belong to the Hilbert space J{ defined in section III.
The adjoint operator ;’L of L is then defined by

<é'£9_8_> = (_f_9£+'_8_>- (c.1)

We have

i
e
Irn
e
i

| ta@rtroa e s @ases
SxS C

J Cn()-£CE"IVe(x,c") -; (x)Jldsds’
Sx§ :

%
- J [n(x)-v6(e,x"YLE(x") g (x)Jdsds' . (C.2)
SxS
where the star denotes the complex conjugate value. Introduce the operator él
él-g_ = JSVGX(EXg‘)dS (€.3)

and

(£,L;'g) = J E(E)‘{VG*(L}‘_')XEE(E')Xg_*(g')]}deS'
‘ Sx§
* *
= - J oG £@IV'G (z,r'") g (£')]dsds’
Sx8

* *
+ [ (o) v'G (r,r" ) £(x)+g (x')]dsds'. (C.4)
SxS .
Comparing equations (C.l1) through (C.4) we get

+ *
L f=- | VG x(nxf)dS. (C.5)
g :
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Let h be the'tangential component of the magnetic field on S and let
j = nxh, where n is the outward normal to S. The integral equations of the

exterior electromagnetic scattering problem can then be written as

inc .6
(—1—=I__ -1 ).-llext _ E1n<: ©.7)
2 1
and from (C.5) it follows that (C.7) can be written as

&1+ é:T)‘hext =_,llzu:m (c.8)

N~

‘where

%
L? _ . T | 7 . (c.9)

GL+L1"" = 1% ™™ | (c.10)
(% I+ L].).Eint - Einc c.11)

and (C.11) takes also the form
(% 1 - 1Tyttt iinc. ©.12)

We will now go on and discuss some of the implications of the similarity

between (C.6) and (C;12). In section IV we have shown that the operator L~ is
of Hilbert-Schmidt type and thus compact. It then follows that the spectrum of
L, oD, is denumerableEZl]. For fixed y let t(y) be the spectral set of L so

that

(y) = o). (C.13)
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We then have

1
5 ET(Yn). (C.14)
(c.f. (6.4)). Moreover, we have
+ *
o) =1 () (C.15)
where
* ’ *
T y) = {2 €t} (C.16)
which follows from the fact that if the operator gﬂ = L - AL has a unique inverse.
oI 1 * = -
then the operator éi = Q- - X 1 also has a unique inverseDlj. From (C.9) it
then follows that
T
o(L™) = w(y). (C.17)

Comparing (C.11), (C.12), (C.13) and (C.17) we see that if v is such that

the operator -é—; - L has an inverse then the operator —;— I+l also has an

inverse, and vice versa. Since (C.10) and (C.11) describe the same physical

situation we have

il = Exﬁl

where il is the solution of (C.10) with right hand side equals to _r_xxgo and —kll
is the solution of (C.11) with right hand side equals to ho Thug, the operators
—}2“—;_ + L and —;—;4- él have inverse for the same values of y. It now follows that
the inverse operator (-% L- Q)_l exists for all those vaj_ues of y for which the

. -1 . .
inverse operator (-f I+ 1D * exists, and vice versa.
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' Appendix D '
Solution of the Integral Equation (3.3) From Spectral Theory

In this appendix we will derive a solution of the integral equation
. .inc
A(v)«i =3 | (D.1)

from the spectral decomposition of the operator L.

First, we are going to consider the eigenvalue problem
L'f = Af. (D.2)

From the spectral theorems listed in appendix B it follows that L has a
denumerable spectrum, o(L), with eigenvalues Ak approaching zero as k is
approaching infinity. Let us denote the adjoint operator of L by gﬁ so that

<..L..'_f_9_8_> = <_f_9£~i‘°_g_> ) (D.3)

where f and g belong to the Hilbert space ) defined in section ITI. Explicit

expressions for ;f are given in appendix C. If Ai andgli are eigenvalues and

eigenfunctions of L,

E‘—:'gi = )\i ii’ e (D-4>

: *
then ;f has eigenvalues Ki and eigenfunctions Ei’

-
){' .

|
(=]
H

Ly, =) v, - (0.5)

where the asterisk denotes the complex conjugate value. This follows from the
. . ‘ L *
fact that if By = L - AL has a unique inverse then 2; = él - A 1 also has a

unique inversel21], Furthermore,

<£ﬁb.l’_dij> = Aj_(ii,_‘kj) (D.6)
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(Lo, 0.0 = ($sL +b,) = <fg.,xj 0. = Ao (0.7)

from which it follows that

(Qi,gj) =0 if Ai # kj. (D.8)

We now assume that L has simple eigenvalues. By proper normalization of the

sets {gi} and fgi} we form a biorthonormal system

($.,8.) = 6&... (D.9)

-1 1]

We also assume that the sets {¢,} and {gi} are complete so that the following

expansions are valid for any arbitrary f belonging to X,
[= (o]
£= 06008 = L AE,008,.. (p.10)
" Let us order these sets so that
P SRR

and A, - 0 as k = «, - We have

k
. k .
L= E- JAEu08, (D.11)
i=1
and it follows that
Lo ]l = A T lgll -0 as koo (D.12)
so that
‘ k
Lf = Lf- iglxi@,ﬁb_i&i >0 as koo (D.13)
Thqs,
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d O

Lef = ) A(E,U00, (D.14)

and, of course, this series contains only a finite number of terms when Ai is

zero after some 1ndex.
Having the representation (D.14) of L we go on to consider the equation

(

S

L
il

o

. 1nc (D.].S)

o=

I-

where i}nc belongs to ¥ and we are looking for solutions, j, such that j belongs

to . Formal manipulations give

. .inc bt -1 ,.inc
1= e L= 2207 (08, 1 -2y £ 0, (D.16)

i=1
Conversely, when the series (D.16) converges it is a solution of (D.15), Since

X is complete the convergence of (D.16) follows from the fact that the partial

sums, v of (D.16), satisfy the Cauchy condition

v - v |l = 4 ) A (= )70 00 < 6l ) <f“°,_le>galn >0 (D.17)

i=m+1 i=m+1

as n,m > *, since fgi} and {gi} are complete in ¥ and B,

8= 4 supla (1 - 2xi)’1|, (D.18)
1 A
exists since 1 - 23, # 0 and Ay 7 0as di» e,

We now go on to consider the analytical properties of the solution (D.16)
of (D 15) in the complex frequency plane. The series (D.16) is a solution of
(D.15) for all finite y under the assumption that the eigeﬁvalues are simple
for all finite y. Suppose that we have this solution for one special value of
Y,say y'. Since L is an analytic operator-valued function of y and since the
eigenvalues of L at y' are of multiplicity one it follows from the perturbation

theory of closed operators that Ai and Qi are analytic functions of vy at vy' [243
o & .
From (C.5) of appendix C it also follows that ;? = éj is an analytic operator-

valued function of y. From the relationship
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it follows that &;'is an analytic function at y'. Since Y; can be any point

in the finite complex y-plane it follows that Ai’-ii andib_i are analytic
functions of y for y finite. Thus, the solution j of (D.15) is an analytic
function of y except at the singularities of i}nc and at those points, Yok for
which 2ki(yik) = 1. Because ki is an analytic function the solution j has a
pole of some finite order at Yik' Moreover, since Ai +~ 0 as 1 + = there exists

for any finite y, |y| < R, a finite number, N = N(R), such that
2fal <1 for iz W, (D.20)

The locations of the poles in ly| < R are then given by the solutions of the

finite number of éQuations

zxi + 1 =0, 1 £4 <N, : (D.21)

Each equation in (D.21) has a finite number of roots in [y| < R since A, is

analytic in |y| < R. Thus, we can only have a finite number of poles in

Iyl < R.
The locationsof these poles are complefely determined by the shape of

the scattering body, and we call them the body poles. The singularities of
j due to the singularities in i}nc we call the waveform singularities.

Suppose the incident field is a delta-~function (in time) plane wave so

that

‘iinc(g) = u(x)e™ , (D.22)

(c.f. (5.1) and (6.15)). The induced current denmsity, j(r,y), on S is then
1) = 2@e ™ + 4 T A 0L = 2, (DT Kl De™ Ty, @ ye, ). (0.23)

i=1

Performing an inverse Laplace transform on (D.23) and assuming that Ai only
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has simple poles‘and that gi and gi are bounded for all y we get the following

expression for the current in the time-domain J(r,t),

Y

ctYik

I(x,t) = (@)= 1 §x - ct) - J IR OL RO (D.24)
i,k

where

a0 = 2y Oy /A Gryg)
- . 1y ~x'y
Cij(t) (U(et = x")u(x"e ,g%)
ERY
coo 9y

and U(x) is Heavisides unit step function. Notice that qg(t) = 0 for t < tO

and qﬁ(t) = constant for t > ty The quantities t, and £ty are defined in

(5.11) and (5.12), respectively.
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Appendix E
The Case Where é?l(y) Has a Double Pole at Y,

In this appendix we are going to treat the case where é:l(y) has a double
pole at vy = Y, Assuming that i}nc is an analytic function of y in a neighborhood

of Y, it follows from (6.19) of section VI that the solution, j, of the integral

equation

Aly).j = 337¢ (E.1)

has the following representation in a neighborhood of Y,

"

i= ! Y - Yn)_z +b (v - Yn)"ljjﬂm
m= '

-1, . (E.2)

O =g Ao * iy

fa(
1
!
+ Z Cnm
=1

m
Here a__, b and ¢ are unknown constants, iﬂ is an analytic function of v,
nm’ nm nm

M. is the number of linearly independent solutions, ian’ such that

2
é=(Yn)'=-i--r12m = énltian =0 (E.3)
but _
§n2.in2m 70 (E.4)
and Ml'is the number of independent solutions, inlm’ such that
Ay )i 1, =0 (E.5)
but
(E.6)

=Bnl"j-nlm # 0.
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The operators B ; and gnz'gre defined in (6.22) of section VI,

It is also easy to show that there exist M2 linearly independent functions,

h , , such that
—nZm .

+ o _ |
Ay )h, =B,h, =0 (E.7)
but
BT'h #0 | . | (E.8)
=2 —n2m b

and that there exist M1 linearly independent solutions, bnlm’ such that

AT )b =0 | (E.9)
and
.f‘ .
By B # 0 @10

From the Gram-Schmidt orthogonalization procedure it follows that we can choose
the sets of functions

RSN

m=1 =

such that

=0 for m# k
(E.11)

(B.n'd o sh o2
2n2 dnom’2n2k L0 for m = k.

It also follows from the Gram-Schmidt proéedure that we can choose the sets of

functions
M

My
j and {h
{ lm}m=l lm’,m=1

such that
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=0 for m# k

? (E.12)
1 *lnlm —nlk #0 for m= k.
Next, we expand the equations
.inc
(CAGy) - ALy DT Loh ) =R ) (E.13)

in a Laurent series around y = Y, In (E.13) we have p = 1,2 and 1 < mn < M1
for p=1land 1 s m< M, for p = 2. Equations (E.11) and (E.12), together with

the fact that

T

(Bo1'dnime o’ = ninedar > =0 (E.14)

.b‘an

and the Laurent series expansion of (E.13), enable us to get the following

expressions for a__ and c
nm nm

_ ,.1inc -1
anm =< —n2m>E<B 2 lﬂlm —an)] ? l<ms M2 (E.15)
inc -1
= <ln ’—nlm)[<B 1 J—nlm ——nlm)]
ine
- Z <ln TIPIRAN: W 1n2k S:IPRIRS: WS BUSIN- SPSDLC- U NOT —-nlm>j
l<m< Ml (E.16)
where i;nc i _ ¢ evaluated at Yne Moreover, bnm satisfies the set of algebraic
-equations
M, - ) ,
k§l< 2 ank’—*an> nk <J~nl —-n2m> - k’=_Z_1<§n3'J--nZk’hnZk)ank
M1
- k£1<§n2'lnlk’hn2m>cnk’ 1:s m = MZ. (E.17)

inc _ 3 .inc
where lnl = 3y 3 evaluated at Yq

52




@
3

For the special case where M, = M, = 1 (no degeneracy) we can drop the

2

index m and have the following expression which is valid in a neighborhood of

Yn:

inc

b By d, —n2>]

(lnl oh 2>[< 2 i BT

inc

- <ln —nl
B <l;nc’~n2

HBg dn1 Ryt Bg dnpo B2 (B iy o By e

>{<B =% n2

shoo? = (B by By iy

KERERID- o e B2t dnooByo T

inec

- Rl;nc —n1> SEIaR WS- IS IS SOpNC- WL BeR - SO A ) g

ey dng by

]—l
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Appendix F
A Method of Separating Exterilor Modes From Interior Ones
In this appendix we will show one feature of the scalar product (iinc,h )
which enables us to differ exterior natural modes from interior omes. Let

i;nc be the incident field evluated at y = Y, and let h be a nontrivial solution

of the integral equation (6.10). We then have

3 ' . *
<.1nc,h >= f_jﬂlnc'h ds
S
inc. . % *
- @, 08 = | e ol as. (F.1)
S )

From (6.10), (6.11) of section Viand (C.12) of appendix C it follows that we can

%
choose h  so that it represents the tangential magnetic field on S of an interior

*
mode. From h__ we can then construct the magnetic field H and electric field
—nm —nm

E at any point in Q. Let B¢ and B¢ be the magnetic field and electric
—nm -n -n

field of the incident wave, evaluated at vy = Y We have

(1°%h )

J ne (H"%xH  )ds
—Timn —nm

S———n

= j g .i30C gy 4 z7h f @ ETC - ity gy
gmR © o W nooTom
_ .inc -2 ] inc _ _inc,
= fﬁg i AV o+ Z [Q(E VxE E VXE__)dv
= f B i1 gy + 77 j ve (E-"CxE_)ds
—nmn Q - 31113
Q Q
.inc -2 inc
= | H i dv + Z ne (E xE )dS. (F.2)
g e ° s o
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Since S is a perfectly conducting surface we have

inc |
fsg~(§n xE_)ds = 0. (F.3)
Thus, we have
.inc _ . inc
<1n ’Enm> - jggnm i, v , ‘ (F.4)

where i}nc represents the sources of the incident wave. If the incident wave

has its sources outside Q, as is the case for a plane wave, we have

(i"n ) = 0. F.5)
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