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ABSTRACT

The electric-field integral equation in the time-domain has been
derived for the electromagnetic pulse scattering from bodies of rotation.
The equation has been solved for the semi-infinite hollow cylinder with
near-axis incidence and for the half-plane as a limiting case. Numerical
results have been obtained for the large hollow cylinder and half-plane
problems. The results for the latter are verified by the exact results
obtained by an analytical method. L
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I. INTRODUCTION

With the advent of the large computers, many workers have studied
electromagnetic scattering from various scattering bodies. The problem
is to calculate the scattered fields from given scatterers with given
incident waves. The problem can be categorized into two broad areas,
i.e., time-dependent and time-harmonic cases.

In the time~harmonic cases, the problem can most often be formulated
via the integral equations followed by their transformation into matrix
equations. The coefficient matrices of these matrix equations are
independent of the incident waves, and hence they represent the inherent
characteristics of the scatterers. There are many good references
available to this approach, and, in fact, the literature is too extemsive to

include all of them. However, the work by Poggio and Millerl is worth

mentioning, which also includes a comprehensive bibliography. In addition
to the standard integral equation approach, there are some variants to this
method as well as some approximate techniques which are often useful for
high frequencies or complex bodies.

In the case of time-dependent problems, one is interested in the
scattered field due to the electromagnetic pulse (EMP) incident waves. There
are basically two ways of investigating this problem. The first way is to
take the Fourier transform of the data obtained from the time-harmonic solution.
In this method, time-harmonic solutions are first computed for many discrete
frequencies. These solutions are next weighted according to the frequency
spectrum of the desired incident pulse wave, and then the time-dependent
response is obtained by transforming the frequency domain response using

a fast Fourier transform routine.

The second method is to attack directly the time-dependent integral .
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equations and to obtain numerical solutions. As opposed to the first
method, it is not necessary to perform a repeated calculation to obtain a
discrete set of data. In the second method, the solution of the integral
equation is dependent upon the incident wave. However, once the response
to an impulse incident wave is obtained, the response to any other incident
wave may Be obtained by time-convolution,

There are also many useful references available to the EMP problems.

In addition, it may be noted that recently a radically new approach to EMP
problems was introduced by C. E. Baum.2 His method is called the singularity
expansion technique, and is essentially the analysis of the scattering be-
havior by investigating poles in the complex s-plane associated with the
Laplace transform of time.

In this paper, the time-domain electric-field integral equations are
used to solve the EMP problem for the large semi-infinite hollow cylinder.
The magnetic field integral equation cannot be used because of the geometry
of the scattefers to be considered, although this equation is believed to
be numerically more stable for thick bodies as compared to the electric-field
integral equation.

In Chapter II, Ehe time-domain electric and magnetic integral equations
are derived for general three-dimensional problems. In the next chapter, the
electric~field integral equation is specialized to apply to the perfectly
conducting scatterers possessing rotational symmetry. First, the integral
equations are derived for near-axis incidence, Then, the E-field equation
for the hollow cylinder is derived. If the analytical limit is properly
taken, the equations can be used to handle the half plane problem. In
Chapter IV, computational algorithms and some numerical results are presented
for several structures, The last chapter is the conclusion of the present

»

work and some comments pertaining to the future of the problem.



II. DERIVATION OF THE ELECTRIC AND MAGNETIC FIELD TIME-DOMAIN INTEGRAL
EQUATIONS

Maxwell's equations méy be used to derive two of the more familiar
integral equations, the magnetic field (HFIE) and electric field (EFIE)
integral equations. The derivation 1is based on the results of Poggio
and Miller;l their work was based on that previously done by Stl;atton‘3
The results permit one to use the integral equations on surfaces that are

not smooth, i.e., surfaces whose tangents are not analytic functions of

position.

2.1 Maxwell's Equations and a Green's Identity

To derive the integral equations, we start with Maxwell's equations

which may be written as

— 5H —
VXE= -u it T K
_ 3E —_
VXH=c¢ 5t + J
(2.1a)
7+ E=ople
vV« H=m/y
with corresponding continuity relations
T o22
vV eeJ= Y
(2.2b)
= dm
VeK=-~ T

The quantities are defined as follows: E and H are the electric and magnetic

field intensities, J and K are the electric and magnetic vector current .

densities, and p and m are the electric and magnetic charge densities. 1In



linear, isotropic, and homogeneous media, ¢ and u are scalar constants and

the first two Equations of (2.la) may be written as

-

vxvxf=—ue?—4§--vxi-u§-{
9t
3t
- _ (2.2)
VXVXH-s= -u € §—§L+ VX J-c¢ %% .
ot

To develop the integral equations, we will use the Equations of (2.2)
along with that of a scalar Green's function in a Green's identity. To

obtain the Green's identity, we use the vector Green's theorem given by

r — —  _ —
{ (Q+VXVXP-P+«VXVXQ dv=
o
v

| ®xvxQ-QXvVX?P) - da (2.3)

!

where 3V represents the boundary of V. For the Green's theorem to be valid,

it is sufficient for P and 6-to have continuous second partial derivatives

throughout V and for the surface integral to exist. Let 6' aq, then a

scalar-vector Green's identity is written as

it

f (VX VXP+P 7 q+ (9q) (V- P)] dv
Y
r
/ [-(Vq) X (A XP) + (A*P)Vq+ Ag X(V X P)]ds

3V
(2.4)

where the surface increment dA directed along the outward normal to 3V

is replaced by n ds, n being the outward normal to the surface.



The scalar Green's function, ¢,

Now let P = E and q = ¢.

corresponds to the vector potential, &¢, due to a point source with
This function ¢ satisfies the scalar equation

arbitrary direction &.

2
(Vz ~ ue i_f (x, t; x', th = ~47m 8(x - x") &§(t - t") (2.5)
Jt
and is defined as
— — — t —-—
$(x, t; x', t') = 8(e £ R/c)
R
in which R = [; —'§'[ and x and x' are the position vectors of observation
Substituting.E and ¢ into Equation (2.4},

and source points, respectively.

we have
e 22 = - 3J
{[‘HE‘E——Q- o - —5 E —d)V'XK-u'a—t—,d}
“{r Lol ot 3t

~4r 8(x - x') 6(t - t') E 4 V'g (V' - E)J dv' =

[ [-7'¢ X (' XE) + (A'* E) V'¢ +4'¢ X (V' X E)] ds'
}
v _
(2.6)
where the integration and differentiation are on the primed coordinates. We
denote E = E(x', t') and ¢ = o(x, t;';', t') Substituting for V' - E and
&
7' X E and using a vector relation one obtains

o7 2 2 -
P = 3 3 = -
| ’usE—-—z—qS-Qb—‘—zE-KXV'(b—u?—ir(b
- E 3t 5t! It
v
-4n §(x - x') §(t - £")E +(p/e) w} dv'
*f/ YXTF dv = [ dA X F.



-

= J[ -7'¢ X (A'XE) + (' + E) V'¢ -4 X

EAY

uo éji)}ds'.
ot

(2.7)

We now integrate Equation (2.7) with respect to t' over (-«, =) and
change the order of space and time integration. Since ¢ has a finite
time support, the terms containing the second time-derivatives cancel

after integrating by parts. Calculating V'¢ in the distribution sense, we

have
- ! - ' - 1 ~
7' ={ S(t - t R/c) + & (t - t R/c) R (2.8)
. R2 Rc
~ Y
where R ='§7§"§' , and §'(x) is defined in the sense that
f
! 3 £(x)
' = - —_—
J 8" (x) f(x) dx = j 8(x) =52 dx.

Substituting for ¢ and V'¢ in Equation (2.7) and integrating as indicated,

we obtain

(Tj - 418(x - x') E(1)

b |1
Q
-3

S
—
bl
7~
)
Nt
+
!_.\
Q
=
Van
3
p—
| U |
<
= >
[o3)
[

+[o(;) + 1 Bg(r) R av' =
eR eRc t
t=t-R/c
~ e o E(D) 1 3E(1) Py (E( .1 3E()
<—R X{n X R2 * Re 23t J-*-Rlé (RZ + c 3t ):i
RY
Loy 3H@ ) ds’ 2.9
-3t e > s'. (2.9)
€=t—R/c



2.2 The Integral Equation Form

When X is not on the surface, 3V, Equation (2.9) may be evaluated in
a straight-forward manner. If x is on the bounding surface 9V, then the
surface integral must be interpreted in an appropriate ménner. The surface
integral is broken into three parts,as shown in Figure 1, where 82 is a
spherical shell about X.

We define I to be the limit of the integral over 82 as the radius of
the shell becomes zero.Thus,as R ~ 0, we only need to consider the 1/R2 terms
which have the greatest singularities. It is noted that all the lower order
singularities are integrable ones. Thus,

— A1, oAt
I = ~-1im E (x', T) 2——2—9—

B+ O S R

ds' = —E(_};, £) 0

(2.10)

where @ is the solid angle subtended by 82 at x as R approaches zero.
If all the sources are located outside of So’ then,because of the
radiation condition, the integral over SO may be replaced by 4ﬁginc(;’ t),

where E&nc is due to the sources outside of §_. Combining these results, and

incorporating the integral notation for the Cauchy principal value, Equation

(2.9) becomes
~ -
E(Xa t) =T E. (—};, t) - 7}? f {% a_aJ—’g—L")‘ +['l—2‘+—1— S—T—:z E(T)

~




Figure 1. Integration surfaces for derivation of integral equations.



E(f)y\( ' ds' (2.11a)

/
T=t-R/c

where S is the combined scattering surface (Sl + 82)’ Ai' is redefined as
1- %%-]—l. This is the electric field
L

integral representation which will be used in the rest of this paper. It

the inward normal to V, and T =

should be noted that the magnetic integral representation can be obtained

simply by taking the dual,

H(x, t) = Tﬁinc(}—c, &) +

i

f{ e 9K(1) 1 13 = | -
e k- P &1
i R 57T {RZ RCBTJ

=t-R/c
y 2B R"X{ﬁ' Xlz + g—— E(T)]%-Rﬁ'
et R Re
e = ﬁ'(r)p, ds' .  (2.11b)
R~ Rc ' )
t=t-R/c

2.3 Perfectly Conducting Scatterers

Let us now restrict ourselves to a volume containing no sources and
only perfectly conducting scatterers. In such a case, the volume integral
drops out and A'X E = fi'* H = O on the surface of the scatterer. Rewriting

Equations (2.11), we have

E(x, t) = TE, (%, t)-z-w- f{-{i—ﬁ'xa;{h)—%{ﬁ' . %+1—
S R Rc
. 2T)E(~c)1 \ ds' (2.1.2a)
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.

[ —_— ‘____ [ ] A
H(x, t) = TH, (x, t) + I i { [ A'xX l§-+ ;;‘gz‘H(T)XX R ) ds'.
me 4w é L R Re =~ | 4 f
T=t-R/c
(2.12b)

Thus, the fields at a point'g and time t may be written as a sum of
the incident term plus an integral of the equivalent sources on the surface
of the scatterer. The Equations (2.12) can be written in terms of the

equivalent sources defined by

K =-4"XE=0
S

(2.13)
J = A'XH
S

on the surface of the scatterer. To express fi' E in terms of the equivalent

sources, Maxwell's equations are used to obtain

g q o vxE
5t
=-V +« (8 XH
=-vJ. (2.14)

Let us now derive the convenient forms of the integrél equations for
the scatterer. To this end, first let x go to the surface of the scatterer
and then take a cress product of the Equations (2.12) with ﬁ, the surface

normal at X. The resultant equations read

T
3 3T _(x', R e
CxE m oy onx Lo MG e 1 V1]
ine™™? 47 i I R 3T 2 3 e
v L R Rc
S —c0
3 1—2’ H
Vo JS dt § ds (2.15a)
T;t—R/C

11



ki N L N
(x, t) TAX H'nc(x’ t) + 7 B X ;f
S

=3 1

[
P I ', ) XR } ds'. (2.15b)
T=t-R/c
Equations (2.15) are of the proper form to solve for the equivalent
currents on the scattering surface. These results may then be used in

Equation (2.12) to calculate the electric and magnetic field intensities

anywhere in space.
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III. THEORETICAL DEVELOPMENT FOR BODIES OF ROTATION WITH NEAR-AXIS INCIDENCE

Several different types of scattering bodies have been %nvestigated
in the past. Of these, the half-plane, cylinder, thin wire, énd sphere can
all be classified as bodies of rotation, the half-plane being?a special
case, |

In this chapter we will develop the theory for bodies of rotation
restricted to the case of near—axis incidence, in other words, incident
fields that appear almost uniform in the surface cross-section. The
development will be done using the electric field integral equation (EFIE)
since the magnetic field integral equation is not appropriate;for such
surfaces as hollow cylinders with thin walls,In addition, we will analytically

extend the theory for the bodies of rotation to obtain the integral equation

for the half-plane,

3.1 Formulation of the Problem : o E

In this section we decompose the electric field integral equationm,
(2.15a), into its components which are more tractable for actual
calculation. To this end, first define time in light meters (i.e. ct = t)

for ease of computation. We may then write Equation (2.15a) és

z r 87 (x', 1) .
A X T (= =0 + |1 s T A
A X Einc(x, t) = b X J {R . + R 5 + BT)
. R R
S
T

e _

] Voo J (x", T')dTﬁ ds' . (3.1

J s

Since Einc is a causal function, it is incident upon the scatterer only after

some specific time tO before which the surface currents must be zero on the

13



scatterer. The problem thus turns out to be an initial value problem
and, due to the retarded potential effect of the fields,jit is a Volterra
integral equation of the first kind.

The geometry under consideration is shown in Figure 2. We define
the direction of the incident field to be (¢i, ei) with the electric field
contained entirely in the x-z plane without loss of generality. The surface

coordinates are defined by

-sin ¢& + cos ¢

o>
i

¢
én = cos 6(cos ¢X + sin ¢f) + sin 62 = fi
ép = -sin 8(cos ¢% + sin ¢§) + cos 62 . (3.2)

The incident electric field may be written

cos 6, X - cos ¢.sin O, 2
B, G o6 = — i1
inec 7’

\/2 2. .2
cos ei+ cos ¢i sin Gi

. Einc(t - X cos ¢i sin 6i - y sin ¢i sin ei ~ z cos ei).

To specify near-axis incidence, we require  that 2rmaxsin ei be such that

the incident field spatial variation be small over this distance where ¥oox

is the maximum radius of the scatterer. In such cases, E&nc can be approxi~
mated by

cos 6, ¥ - cos ¢, sin 6, 2
1 1 1

Einc(x’ t) = Einc(t - z cos ei)

o
“J cosze. + cos2 ¢.sin26.
i i i
(3.3a)

14
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Figure 2.

Geometry of the body of rotation and the related coordinate systems.



and

A X Einc(x, t) = [(cos ei sin 6 cos ¢ + cos ¢i sin ei cos 8) &

b

E. (t - z cos 8,)
inc i
-cos ei sin ¢ ap] . (3.3b)

\/;;528, + cosz¢. sinze.
i i i

The surface current is now decomposed into two components

s o é¢! + Jpv ép' (3.4)

and

i X-E;, =[J$, sin 6 sin(¢ - ¢') - Jp, (cos 6 cos 8' + sin 9

- sin 8' cos (¢ - ¢'>>]a¢ +[J , cos(s - ¢")

r’fb'

+ J ' gin 8' sin(¢ - ¢')]&
. (¢ =~ ¢")] 5

Other terms which appear in Equation (3.1) can be written as

g J 3 J
1,7 _._sin 8" 1 ¢! p'
v Js' o(z') “p' + o(z') 3¢ + dp (3.52)
4% (x-%x") = [o(z) sin 6 - 0(z") sin & cos(§ = ¢') = cos 8(z - z'}]
. é¢ + o(z") sin{(é - ¢") ép (3.5b)
and
R [m-xl= (=202 +0@2 4p@n? - 2002 o(z") cos(o - 4117

(3.5¢)

At this stage, let us substitute (3.4) and (3.5) into Equation (3.1)

and separate the resultant equation into components. We now get, for

16



a, and ép components, respectively,

b

4 E, (t - z cos 8.)
inc 1

(cos Bi sin 6 cos ¢ + cos ¢i sin eicos B) =

H

Z j//cosze, + cosz¢.sin26.
o i i i

r

"%" <<p(z) sin 6 = p(2') sin 8 cos (b - ¢') - cos 6 (z - z'))
5 .

) T
1,1 8] f [(sing' .1 ot 2
M ey 5 N | A RN ' 1 *
> g BT} o o(z") P p(z") 9 ¢ op
lr OJV
+-§ { sin 8 sin(¢ - ¢") ¢ . (cos 9 cos 8' + sin & sin 8'
L 3T
cos (¢ - ¢")) —55}~ | ds (3.6a)
7=t~R

4nm E, (t - z cos 8,)
inc i

cos 6, sin ¢ = -]E (o(z') sin (¢ - ¢")

/
/ 2 ' 2 . 2
Zo \Jcos ei + cos ¢151n ei

T .

N N [ Lslnel ;L ot +8Jp' dr'

|23 g2 8T J { o(z") Tp'  p(z") 3¢ ap |

| o

57, 57,
+ L. 6 cos (¢ - ¢") + =2~ sin 8' sin (¢ - ¢'53 1 ds'.
8T 3T j ;

R
=t-R
(3.5b)

It is easily seen from Equation (3.3) that the projection of the incident
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fields onto the surface varies in ¢ as a constant and first-order trigonometric ‘

functions. Each component of the surface currents must also vary in the same
manner since both the currents and fields rotate identically as the incident

field is rotated. Writing the currents in terms of a constant, cos ¢, and

sin ¢, we have

Tgr = J;, + Jg, cos '+ J;, sin o'
(3.7)
I = Jg, + J;, cos '+ J;, sin ¢' .

The next step is to substitute Equation (3.7) for J¢, and Jp,, make
the change of variables o = ¢' - ¢, and separate the terms cos ¢, sin ¢,

and constant in ¢. Three of the resulting six equations are independent
c o
¢’ ¢

zero. The remaining three non-trivial equations are independent of the first .

of the incident field and are satisfied by J JE’ and J, being identically

three and may be written

47 E. (t = z cos ei) (
S cos ei sin 6 = jz \(p(z) sin 8

‘ \
A 'V/;osz 8, + c032 ¢.sin2 8, S
0 i i i

-0(z') sin 8 cos o - (z - z') cos 8) cos o
T s
i }-Jv . 1
el ol Chvaralt g_\wf} g
R R /J_Q, o(z") o(z') Pj P
1 0 3J¢? !
- = ]sin 9 sin” o + icos 8 cos 6' + sin 6 sin 8' cos a
RL T { :
53 c 4 )
t
* cos o _Sf?_} }ds' (3.8a)
T=t-R

18



bn E, (t - z cos 8,) 7
inc i ! ,
cos 6, = « - 0 sin o
* L

Z .\/ cos2 g, + cos2 ¢.Sin2 g,
o] 1 1 1

(1 L L3 zf {r%ﬁ +( sin 6' L3 Jc} L2
L R , : : P
R3 RZ ST) B Lp(z') o(z") P P RL
cyn
57 % 33 S
. ° 4 sin 8' sin2 o 7;5— L ds' (3.8b)
T=t-R
b Einc(t—z cos ei) [/
cos 8 sin Si cos ¢, = _7_%(p(2) sin 8
- " g
Z \/2082 6, + cos2 ¢, sin2 o, 5
O 1 1 1
T

! N

~5(z'") sin 86 cos o - (2 - z') cos 9) '{ 15- + 23- g—ﬁ Jf
PR R® %
[

y _ (cos 8 cos 8' + sin 6 sin ' cos a)

; sin 9' ] o

e T T ¥ R
5J° \

B _—-La \ ds'! (3-8C)
o

From the solutions of these three equations, (3.8), the total surface
current is determined by

s . o ¢ N
= (J° sin a4, + (J 4+ J cos ¢) &
( ¢) 5 5 5 °) &,

JS 6
It should be noted that Equation (3.8c) for J; is uncoupled from (3.8a) and

(3.8b) for J; and J°. As a result, Jg can be solved for independently; this

19



is useful for the thin-wire problem.

3.2 Semi-Infinite Cylinder and Analytical Extension to the Half-Plane Problem

In this section, the EFIE for the general bodies of rotation derived
in the previous section is first specialized to the case in which the
scatterer is a perfectly conducting semi~-infinite hollow cylinder. Next,
the integral equation for the half-plane problem will be derived by taking
the limit of the semi~infinite hollow cylinder case in an appropriate manner.
The geometry for the hollow cylinder is shown in Figure 3. To obtain the
equations for the semi-infinite hollow cylinder, we let 6 and &' be equal
to zero and p(z) = p = constant in Equations (3.8). Rewriting Equations (3.8)

with these conditions, we have

: L N 53 S
f ‘ 1] 1
0 = '4: { (z - 2z') cos o 5;;-+-;;- 8 _ {—EL- + z ) dr'!
J N |3 g? ° P 9z
S A ' -
cos o ajz? \
22 2 g (3.9a)
T;t—R

4 E, (t - z cos 9.)
nec i

i ' . 2
cos O, =~ - p sin @
it el e e, ot Brars e as + et &L e i :

Z W/Losz 6, + cos2 ¢. sin2 9. S
o i i i

T s c s
1 1 3 e J@' an' S ' cosza 8J¢, X
i+ = + Par! + =222 2
{Rs IR j o dz R st f
- T=t-R
« ds' (3.9b)

20




Figure 3. Semi-infinite hollow cylinder geometry.
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47 E, (t - z cos 9,)
inc i . _ :f: ' 1
- sin 6. cos ¢, = ~(z - z")| ==
i i 3
R
S
2 2 , 2
A \JCOS 6, + cos ¢.sin 6O,
o i i i
1l 3 rT 8Jz? 1 ‘an?
- v 4L 2 '
+ 55 5T f = dr = - ds'. (3.9¢)
R </ ‘
—c0 }
T=t-R

The solution to these equations gives the induced surface current on
the semi~infinite hqllow cylinder.

Now let us go to the half-plane problem. To this end, we must first
take a limit of Equations (3.9) as the radius, p, of the cylinder goes
to infinity. As the limit is taken, the surface of integration becomes
a half-plane which is mathematically closed at infinity. This closure
provides no contribution to the integral for times less than infinity due
to the retarded potential form of the problem. The half-plane geometry

is shown in Figure 4,

To obtain the limit, we first expand sin o and cos o« in Taylor series

%
about o = 0. Using one term of each series and defining x = pa, we

rewrite Equations (3.9)

Tyys 57 ©
= 14 RN o L 9 (___: ._;E'} v 1
0= lim jc {(z z )(R3 + R2 5T jf . + =, [ dt + 2
o> S \ ~c0
31
. 1 1
P dx'dz (3.10a)
T=t-R
bt Einc(t —.z cos ei) XZ 1 1
cos 6, = ~ lim = 4
— . _ i o 3 2
5 . R R
P

[ 2 2
Zow¢cos 6, + cos” ¢ sin” 8,

&
We use two teyrms for cos o in R.

22




Figure 4. The half-plane geometry with the direction of incidence, k,
defined by (B, «)
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T g8 ¢ s
L [ o' z , _I_L__ql Vo
3 ) ' ( 5 + Y dr' + Y l ‘ dx’ dz
Y- /
T=t-R
(3.10b)
4 E, (t - z cos 6,) (
S = sin 8, cos ¢, = = lim oz - zY)
i i . \
” ‘"' 0o g
Z .\/cos2 8 + cos2 ¢.sin2 8.
o . i i
i
T 0 0
57 S 57 ¢
Ges5 [ i) we
R R o
=t-R
(3.10¢)
1/2

where R = [(x - X')2 + (z - Z')2]

In the limit as p goes to infinity Equations (3.10a) and (3.10b)
become uncoupled, the former requiring sz to be identically zero. At

the same time, Equations (3.10b) and (3.10c) may be written

s
4y Einc(t - z cos Si) 1 8J¢, ‘ '
cos 6, = - - dx' dz
i R 9T
Z "\/cos2 g, + C082 ¢.sin2 8, S T=t-R
o i i i
(3.11a)
4t E, (t - z cos 8,) (
ine i . '
sin @i cos ¢i = = \(Z -z')
Z -\/cos2 g, + cos2 ¢.sin2 8. S
o i i i
T o o]
gl 1 3 aJZ' v 1 aJZ' ' 1
e o+ S — dt' *+ = dx' dz'.
3 2 37 5z R &1 ¢
R R o /
T=t-R
(3.11b)

It should be noted that Equations (3.11) are not valid for incident

24




angles B not equal to O or m (see Figure 4). Furthermore, it is sufficient
to restrict ourselves to edge-on incidence in order to compare our half-
plane solution to the exact solutions available.

By restricting the half-plane problem to edge-on incidence, ei= 0,
Equation (3.11b) becomes trivial and requires Jz? to be zero. Equation

(3.11a) may be written

575
4 _ [; Sy Vo
7 Einc(t - 2z) = ]ﬁ' 2 5x } dx' dz (3.12)
o ‘ gt
‘ T=t-R
and
FS = J¢? sin ¢ &, . (3.13)

In choosing ¢, we note that there are two basic types of half-plane
problems referred to as the transverse electric (TE) and transverse
magnetic (IM) cases. In the TE case the E-field is parallel to the edge.
On the other hand, it is perpendicular to the edge in the TM case. From
the geometry for the bodies of rotation as shown in Figure 2, it can be
seen that the TE case corresponds to ¢ = 90° and the TM case corresponds
to ¢ = 0°.

From Equation (3.13) we see that the currents on the half-plane are

zero for the TM case, as would be expected. For the TE case we may rewrite

Equation (3.12) as

4 ll 2J
=0 - = = Y 1 '
E'nc(t z) / [ R e J dy' dz (3.14)
S

T=t-R

where Jy replaces -J ? sin(n/2) and the incident E-field is directed in the

¢

y-direction,
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IV. NUMERICAL SOLUTION OF THE ELECTRIC~FIELD INTEGRAL EQUATION

In this chapter we present the numerical results for a half-plane
and a large semi-infinite hollow cylinder. Before going into the specific
problems, it is necessary to first investigate the general numerical procedure
for solving timg—domain integral equations. Then, the numerical procedure for
the half-plane will be investigated and the numerical solution will be
compared to the known exact solution. Finally, we will investigate the
large semi-infinite hollow cylinder problem and compare its solution for

early time to the exact solution for the half-plane.

4.1 General Numerical Solution

In this section we proceed with the general, electric-field integral

equation (EFIE) given by

W=

) Eran
\ ot Js(X s 1)

A X Einc(x’ t) =4, 4 X J[ N
S

T

+<§-xv)(i-3— +—l—2- g—T—U (7« T, G's10) de’ \ ds'.
R R s j
=t-R
(4.1)

The solution of Equation (4.1) depends on the retardation in time
of the fields at a point % due to currents at x'. This retardation requires
that the surface currents at (g; t) on the scatterer depend only on the
incident field at (x, t)and the induced currents at %' prior to the time
T=1t - fg —'§'|.* This effect may be understood more fully by considering
the two-dimensional space-time cone in Figure 5 where only the currents

in the shaded region contribute to the current at (E; t). As a result,

%
The units of t are in light meters.
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A Time

Space

Figure 5. Time-space cone for the currents on a scatterer.
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the currents'js on the scatterer may be determined by stepping in time

instead of inverting a matrix as is required for the frequency-domain
solution.

In choosing the step size in time and space, there are two basic
criteria to follow. The first criterion is that the step size in time

must be less than or equal to that in space, i.e.,

At S Ax (4.2)

such that the current at a specific time and location on the scatterer
surface does not contribute to the current at another location at the
same time. The second criterion is that both step sizes be sufficiently
small to adequately represent the incident field in a discretized form.
The first step in the solution of Equation (4.1) is the application

*
of the method of moments. To this end, we choose the Dirac delta

weighting funection

wij = §(x - EZi) §(t - tj) (4.3)

and obtain from Equation (4.1)

- —t 9T S
ENRE
S i
% - 5-F L) F o
+ + 'y f (Vv « J ', ')
T s
% - %3 % -7 Lo
i l i I
dr' > ds' (4.4)
=t ~|x,-x"]
i 'l
* 1
A good discussion of the method of moments is found in Poggic and Miller.” .
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where

Equation (4.4) is well-suited to the application of the method of
subsectional collocation. In this method the currents are approximated
on each subsection of the space-time coordinates by using a given set
of basis functions. Hence, letting Axm and Atn represent the sub-sections

about §ﬁ and tn, respectively, we may write

N N
- - S £ _
I G 1) = >: I Gyt s T (4.5)
m=1 n=1
where (l, % in Ax 1, t in At
S = : T =
m n }
' LO, elsewhere {0, elsewhere

The coefficients jﬁn (E, t) can be expressed in terms of the appropriate
basis functions with unknown coefficients at the (m, n) subsections. For
bodies of rotation it is convenient t& use basis functions that are composed
of trigonometric functions in ¢ and polynomials in time and the longitudinal
direction z.

Having expanded the currents in a set of basis functions, we may solve
for the unknown coefficients in Eﬁn by substitution of Equation (4.5) into
(4.4). In many cases, one may assume that 3; and V - 3; gre constants in
space over each subsection with a value detérmined by the central point of
the subsection., To complete the solution ¢f Equation (4.4) in such cases,

one only needs to evaluate the currents up to the corresponding time of the
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central point, integrate the kernels over each subsection, and apply the

time-stepping procedure. If we consider the general electric-field integral '
equation, we see that a solution may theoretically be obtained for any causal
incident field. The solution to an incident field with impulse (or Dirac
delta) variation is of considerable interest. Such a scolution is referred
to as an impulse response. Since our problem is linear, it can be shown
that the solution due to any other incident field is simply the convolution
of the impulse response with the given incident field variation. Therefore,
it is desirable to obtain the impulse respomnse.
To this end, one defines an approximate impulse function as the

Gaussian impulse which is given by

_ 2t2
§ (t) = & 78
& s
N » :
where g is referred to as the pulse half-width. Hence, the incident E-field ’

propagating in the z-direction may be expressed as

T (= -1 2 2
E, C(X, t) = % = exp [-g (¢t - z/c)"] . (4.6)

in
: ki)

Since the amplitude of the Gaussian pulse decreases rapidly to zero away
from its center, one may truncate it to solve the EFIE without a noticeable
loss of accuracy. The resultant solution is called the approximate impulse

response.

4,2 The Half-Plane

Let us consider the half-plane TE problem with edge-on incidence.

This problem is described by Equation (3.14) which we rewrite for

convenience )

*
Time is defined in seconds here,
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5 J
dn E (t -2z) = j[' - ]

. , inc R ot | dy' dx' . 4.7)

° 8 T=t~-R

At any specific time, the current Jy is independent of y. Hence, we may
rewrite the subsectional representation of 3; given in Equation (4.5) as

N

jo

Jy(z, t) = Jmn(z, ) Zm Tn (4.8)

71

i

where Zm is unity over a surface strip Azm about z and zero elsewhere.
Applying the method of moments to Equation (4.7) and substituting
Equation (4.8) for the currents, one obtains

N

b L

N
1 2 o=
oE (b, -z,) = —
e L R TR ) (
S k| =1 n=1

Y . ' 1
. Zm Tn] dy' dz' . (4.9)

=t~ %, ~x']|
L J

OJIQ)

- Jmn(z, T))

It should be noted that T is a function of both y and z, complicating the
space integration. Therefore, to simplify the space integration, one
divides the surface into squares Smp with centers at (yp, zm) and defines
the current to be constant throughout each square with a value corresponding

to that at the center of the square. Hence, Equation (4.9) may be rewritten

N N N
b 2 -, TL ]
E;- Einc<ti - zj) - E: >~ ) 51 Jmm(z’Tmp)Tn (4.10)
1 m=1 pé-—Nt n=1
1 ' 1

Jf [ R dy' dz'.

S e

mp

One should note that it is sufficient in most numerical work to evaluate the

surface integral by rectangular rule except in the region of the singularity
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where the integration must be performed analytically.

Let us present some of the numerical results. The approximate
impulse response for the half-plane was obtained numerically using
Equations (4.10) and (4.6). The step sizes, At, Az, and Ay, were chosen
to be equal and such that the incident field of Gaussian impulse was
sampled three times in the pulse width. The numerical results are shown
in Figure 6 along with the exact results for a Dirac délﬁa incident wave as
can be derived from the frequency-domain results of Born and Wolf.Q’* For
comparison of the exact solution to the numerical results, two unknown
constants z and to had to be determined, where zo is the location cf the
surface edge and to is the additional time delay resulting from the Gaussian
impulse approximation. The determination has been done by matching the
current variation derived from (A.4) in the Appendix A to the numerical

data in two different points in time at the first space sample on the

structure.

4.3 Large Semi-Infinite Hollow Cylinder

The primary purpose of this section is to verify the EFIE for bodies
of rotation in the specific case of a large semi-infinite hollow cylinder.
We have shown in Chapter 3 that in the limit, as the radius goes to ianfinity,
this problem becomes that of a half-plane for which the solution was
obtained in the previous section. In this section we present the results
for the large cylinder case.

The semi-infinite hollow cylinder problem is specified by Equations (3.9).
One follows the procedure of Section (4.1) to cast Equations (3.9) into a
discretized form for numerical solution as was done for the half-plane.

Several approaches have been used to satisfy the edge conditions at the end

* :
See Appendix A for derivation.
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Figure 6.

The currents on a half-plane due to an impulse incident field.
(a) The current at the first space sample point (2 - z )/Az =
.284, t /At = 3.64; (b) the currents at the tenth Spacg sample
point (g - zo)/Az 9.284, to/At 3.64,

33



of the cylinder.* We obtained satisfactory results by allowing z-~
directed currents to be zero in the edge surface segment and by specifying .
the corresponding derivative in z to be taken in the forward trapezoidal
sense .
The numerical results for the coefficient J¢ of the ¢-directed
current are shown in Figure 7 along with the exact half-plane results.

The ratio of the radius to the step size used here was 100. The incident

field had a Gaussian variation with three samples in the pulse width.

*
Appropriate edge conditions are similar to those for a half-plane for which
3J
Jz varies as Vz and J¢ and g;z vary as 1/ Yz .
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cylinder due to an impulse incident field. (a) The current
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tO/At = 7.35; (b) the current coefficient at the tenth sample
point (z - zo)/Az = 9,312, tO/At = 7,35,
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V. CONCLUSIONS

In this report we have investigated the integral equation formulation
for time-domain scattering by bodies of rotation. Particular attention
has been given to the laxrge, semi-infinite, hollow cylinder and half-plane
problems.

The integral equation for bodies of rotation was developed using
the electric~-field integral equation (EFIE) by restricting the incident
field to near-axis incidence. Under such a restriction, one may expand
the currents in a Fourier series with respect to ¢ having coefficients
identically zero for order greater than one.

The time-domain integral equation may be put into digitized form
for numerical solution using the method of moments and subsectional
collocation. This numerical problem is then solved by stepping in time,
thus eliminating the need for a matrix inversion as is required in the
corresponding frequency-domain problem.

This development was checked numerically by extending the problem
to that of a half-plane by taking an appropriate limit of the semi-infinite,
hollow cylinder problem. The results were consistent with the exact
solution of the half-plane problem. Early time calculations were also made
for a large semi-infinite hollow cylinder and were also consistent with
the half-plane solution, as was expected. |

Areas of further study include the thin-wire problem and the semi-
infinite cylinder with various end caps. There are several other scattering
structures that one could investigate using the equations developed in this

report. Such structures include the sphere and oblate spheroid.
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APPENDIX A: DERIVATION OF EXACT HALF-PLANE CURRENTS

Born and Wolf4 have obtained the exact description of the fields
in the frequency domain for scattering by a half—plane* (see Figure 4).
The induced current on the half-plane may be obtained from these results
by subtracting the tangential magnetic fields on each side of the plane.
For TE polarization with edge-on incidence, the time-harmonic,

incident field may be given by

Wz

-] —

— _ C ~
Einc(w) = e ¥ . (A.1)

Thus, the current is given by

— +
Jy(z, w) = HZ(O, Z, w) - HZ(O y Z, W)
2 i iE+
Jy(z, w) = e Viez © 4 ¢ . (A.2)

By Fourier transforming the given incident field and the corresponding
induced currents, one obtains an incident impulse plane wave and the
corresponding induced currents. Using the transform tables such as those

5
of Bateman,  one obtains

1 -1w(t~z/c)
~ Jy(z, ty = s Jf dw
- —2 6(t-z/c) lim e—u(t-z/c) R
TH z{ct-z) oo
a >0

#

Although Gaussian units are used in Born and Wolf, we use rationalized mks

units in this Appendix to be consistent with the body of the report. .
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I Gz, €)= fr—u \/—z—(—ci—_;‘)— 6(t-z/c) (A.3)

where 6(t) is the Heaviside function.
If time is expressed in light meters, the impulse response given in

Equation (A.3) becomes

3 Gz, €)= fr—u j/—z(—i_—z—)— o(t-z) . (4. 4)

This description of the induced currents on a half-plane is used for

comparison with the numerical results in Chapter IV.
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APPENDIX B: HALF-PLANE COMPUTER PROGRAM
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NN NeNeNe)

(@]

[P RS NP RPN P]

[#N]

91

®

Program B Plane (Input, Output)
Dimension AJ(100,100), SE(101)
This program was written to determine the currents on a half plane due to an

incident field in the plane surface with H perpendicular to the surface. The
solution is in the time-domain using a form of the E-field integral equation.

This function defines a polynomial approximation to a function derivative with
function samples A, B, and C taken at D intervals.

B2 (A,B,C,D) = (C-A)/2. + (A + C - 2.%¥B)*D

Set the final time sample number.

NF = 50

Set other constants.

C = 3,0ES8

PI 3.141592653589

Z0 120.0*P1

ALO = ALOG(1.0 + SQRT(2.0))

ALO defines the integral of 1/R over the singular region.
Set the currents to zero.

DO11I =1, NF

DO1J =1, NF
AJ(I,J) = 0.0
DO 50 N = 3,NF
DO 50 M = 3,N

Calculate E(N - M). E(N - M) is Gaussian E-field times DT, the time sample spacing.
Thus, to obtain the impulse response, one must divide the current values given by
DT. It is assumed that DT = DZ.

is the Gaussian width (in 1/sec) *DT/C.

is the half truncated width.

1.0

3.0

A*(N - M)-B

IF (ABS(X)-B) 2,2,3

E = A/SQRT(PI)*EXP(-X**2)*C

Go to 4

E = 0.0

Continue

Calculate current

AJ(M,N) = AJ(M,N-1) - PI*E/(ZO*ALO)

DO 9 M1l = 3,N

Define the range of integration in the direction parallel to the edge, +X and -X.
NPF = N - M1

IF (M - M1) 5,6,5

N1 = N ~ IABS(M - M1)

Add term at (0,Z)

AJ(M,N) = AD(M,N) - (AJ(ML,N1) - AJ(M1, NI - 1))/(4.0*ALO*IABS(M - Ml1))

IF (NPF) 9,9,7

DO 85 NP = 1,NPF

Add terms at (+X,Z) and (-X,Z) which are equal. Use the appropriate polynomial
approximation.

A = SQRT(({M - M1)*%*2 + NP**2)*1.0)

N1 = N-A+1.0

IF (N1 - 3) 9,91,91

IF (N - N1) 9,95,93

N1 = N-1

W w

n i u
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93 DTAU = N-A-N1
AJN1 = (AJ(M1,N1)-AJ(ML,N1-1)*(1.0+DTAU) - (AJ(MI,N1-1)-AJ(MI,N1-2))
1*DTAU

8 AJ(M,N) = AJ(M,N) - AJN1/(2.0*ALO*A)
85 Continue
9 Continue
50 Continue
C Print Current
Print 10
10 Format (1HI1)
DO 12 M = 3,NF
12 Print 11, (AJ(M,N), N = 3,NF)
11 Format (10X,12(9E12.4/))
Stop
End

42



