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Induced Electric Currents on Some Configurations of Wires

Part II

- Non-perpendicular Intersecting Wires

ABSTRACT
The general equations previously developed for a system of thin
conducting wires in an arbitrary geometry are applied to a planar set

of three non-orthogonal wires.

FOREWORD
Figures presenting numerical results are grouped at the end of the
report. Appendix I outlines one approach by which thin-wire theory might
be modified to deal with thick structures. We wish to thank Dr. Carl Baum

and Capt P. R. Barnes for their interest and suggestions during the course

of this work.



1. Introduction

High speed digital computers have made possible the theoretical study
of certain classes of electromagnetic problems for arbitrary configurations
of conducting wire structures. Coupled integral equations predicting
electric currents induced on these wires by arbitrary incident fields have
been developed [1,2,3,4,5]. For an N-wire system the number of coupled
integral equations to be solved will be N. 1If the wires intersect, additional

unknowns are introduced and these necessitate additional boundary conditions

- the Kirchhoff current law and the continuity of the scalar potential [2].
2. Discussion

The particular case of interest in this paper is a three wire system

having the configuration shown in Figure 1. This system is a second stage -
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Figure 1. Three Wire Configuration

the first being a treatment of perpendicular crossed wires [3] - in the

development of a realistic model of an aircraft and its behavior as a scattering



‘ antenna. The treatment of the configuration shown in Figure 1 is general
in that the various length parameters and the sweep angle, b, can be varied.
Wires 2 and 3 are assumed to be the same length (12 = 13) and the similarity
to an aircraft wing-fuselage structure becomes obvious. Thus the structure
contains an electromagnetic symmetry plane [6].

The system of coupled integral equations applied to this three wire

system becomes
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The unit vectors associated with the wires numbered (:) - (:) in Figure 1

are, respectively
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The Green's functions are of the form
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where a, is the radius of wire 1 and a, is the radius of wires 2 and 3.

The remaining undefined terms in (1) are the integrals involving the

field expressions. For a single incoming plane wave directed toward the .



.— origin from the z > 0 space and in the 8, ¢ direction - these are the usual
polar angles - two polarizations are considered: ¥ in the X,y plane
- . .
(E-polarization) and H in the x,y plane (H-polarization). To illustrate

a specific example the incident field along wire 2 for E-polarization is

Ei (S!) = E [cos 0. cos b - sin o sin b] x
2 o

)

exp [ijé(sinGcos¢cos b - sinesin¢sin'bﬂ (4)

o is the polarization angle for Ei and is arbitrarily assigned such that
o= ¢ + m/2, while EO is the magnitude of the incident plane wave. For H-

polarization the exciting field along wire 2 is

o (Sé) = EO[sin B cos Y cos b - sin B siny sin bl x
S

o :

exp [ijé(sinGcosd)cos b - sinfsindsin b)} (5)

and the polarization angles are arbitrarily defined to be B=8+m, y=¢. Similar

expressions can be found for the other wires in the system.
3. Numerical Results

In the actual analysis of the behavior of structures, the incoming
plane wave of interest is considered to be composed of a symmetric portion
and an antisymmetric portion whose sum reproduces the single incoming wave,
The analysis is thus presented in terms of four cases: E-polarizationm,

symmetric and antisymmetric; H-polarization, symmetric and antisymmetric

. (see Figures 2 and 3).



- .
- E symmetric v

=y

R

180) ®

- ‘ X
E antisymmetric

Figure 2, E-Polarization Modes
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Figure 3. H-Polarization Modes

The treatment of a single incoming plane wave, amplitude E, at arbitrary
angles of incidence (8,¢) and arbitrary polarization proceeds in the following
way. First, the E vector of the incoming wave is resolved into a component

in the x,y plane (E-pol.) and a component perpendicular to % and the just
defined E-polarization part. This now defines an E-polarization incoming
wave, amplitude EE’ and an H-polarization incoming wave, amplitude Ey. Each

of these waves 1s now resolved into symmetric and antisymmetric parts, each




having magnitude EE/2 for E-polarization and EH/2 for H-polarization.
Numerical results are presented in the form of currentsrand linear charge
densities normalized by 21, and E, where Eq is the amplitude of a single
incoming wave and would be equal to Ep/2 or'EH/Z as the case may be., Thus
for E—polarization the exciting field along wire 2 due to two incident waves

(one at 8,¢; the other at ©,7-¢) and each having amplitude Ey becomes
gt (8!) = [Eq. 41 + E, [cos A cos b - sin A sin b] x
So 2 0

exp j k Sé [sin & cos(m-¢) cos b - sin © éin(w—¢) sin b] (6)

and the symmetric and antisymmetric fields will be given by setting A = m/2-¢
and A = 37/2-¢ in that order. The remaining five field expressions (E-pol.
on wires 1 and 3 and H-pol. on all wires) can be derived in a similar manner.
The numerical analysis is based on assuming the currents to be piecewise
constant within a given zone of the structure [7]. There results from this

assumption a series of linear equations. The matrix form of the equations is
TF = T

where F is a column vector whose elements are the current magnitudes in the
various zones and the C,'s and Dn‘s. Most elements of the (square) T matrix
are derived from the integral expressions on the left side of (1) and I' is a
column vector determined from the integrals in (1) containing the incident
field expressions.

Thus, thé solutions of (1) provide a set of induced currents on the

wire structure for a given incident, harmonic plane wave excitation. From



the currents the charge densities at various locations can be determined by
use of the equétion of continuity. The problem of interest -is a determination
of induced currents and charge densities when the structure is excited by

some type of time-dependent pulse. To obtain such reéults a series of
frequency values are run and the desired results are obtained by performing

the necessary Fourier inversion for the given incoming pulse.
4, Graphical Presentation
All data presented on the following figures are for the case

= Y = =
1'/1, = 0.5 212/(11+11) = 1.0 le/a = 20,0

al=az=a

This physical structure has been studied for b = 0° in a previous note [3].
In this report, numerical results are presented for selected values of ki,,
normal incidence, and at b = 5° and b = 30°. 1In any problem with normal
incidence, E-polarization refers to an incoming plane wave whose E vector is
parallel to wire 1 while H-polarization refers to an incoming plane wave
whose E vector is in the plane of the 3-wire structure and perpendicular to
wire 1,

In order to interpret Figures 4-19 without reference to the previous
work [3], the following arguments are repeated. All curves are for incoming
plane waves oi amplitude EO v/m. For normal incidence there are two waves

as in every angle case, and the rules of section 3 must be followed to

determine the effects of a single plane wave noting that E antisymmetric and

H symmetric currents are always zero for normal incidence. Figures 4-13 re-~

present the currents at various locations on the structure as functions of klz.
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In these figures the solid and dotted curves represent the magnitudes and

phases of the currents for b = 0°, while the individual points represent

the magnitudes of the currents for the two angles, b = 5° and b = 30°. To
exhibit explicitly the manner in which these data might be applied to specific
problems, consider the determination of the junction current on wire 2 for kl2 =
1.15, a siﬁgle incoming plane wave of amplitude 1 v/m, E-polarization, and

b = 0°. This incoming wave will be synthesized from an E symmetric component,
amplitude 0.5 v/m, and an E antisymmetric component, amplitude 0.5 v/m.

From Figure 4, the magnitude of I/(21,E,) is 0.0117 amperes/volt, the phase

is 09, and the (dimensionless) electrical length is 1.15. Thus, for a structure
of unit length (21, = 1m) and EO = 0.5 v/m, the complex junction current on
wire 2 is (remembering the antisymmetric contribution ié zero) I = (5.85 + 3 0)
ma. Figure 5 répresents the complex currents on wire 2 at a position one-third
of the way from the junction to the end of wire 2., Other locations are

similarly defined. Figures 14~19 represent the linear charge densities, A

(coulombs/meter), on various parts of the structure as functions of kl, and

b for the system depicted in Figure 1.



APPENDIX I

Modifications for Thick Structures

The kernels appearing in the system of coupled integral equations
(1) are given by (2) and (3). However these kernels are strictly valid
only for thin wires. When thick structures are treated additional con-
siderations must be made. Furthermore the boundary condition used for
the current distribution is valid only for infinitesimally thin cylindrical
shells. Therefore in an effort to maintain this boundary condition for
thick structures the intersecting wires are considered to be open-ended
cylindrical shélls‘that may be thick.

‘For an open-ended cylindrical shell in free space the exact integral

equation for the current distribution is [8]

J/.dS' I(S') m (8,8') = C cos kS + D sin kS

h

. f*% as' EL (8") sin k (S-§') (al)
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T (s,8") = - i/ 1 8a) 8P (3a) 345781 4 (A4)
2 o fe}

Petoe]

B = [k° - 062]1/2 (A5)

with the foregoing integral taken in the complex plane of o along the real
axis from —® to +w with a downward indentation at o = -k and an upward in-
dentation at o = +k. Further information on the evaluation of A4 may be
found in Appendix C of [9].

Since the coupling contribution to the wire currents is a second order
effect then the approximate formulation for thin intersecting wires may be
modified to treat thick cylindrical shells by using (A2) in the self-coupling
terms and (2) - (3) in the cross-coupling terms. That is, forn #m T (Sn,Sé)

is given by (2) but for n = m use

m
1 -3kR($,S_~S")
i (Sn;sn) = '2‘;/ S oo do (A6)
=T R((bysn_sn)
where
R(¢$,5-8") = [4a? sin’ ®/2 + (sn-sr'l)z]l/2 (A7)
or
e (2) ja(s -s")
(5,81 = - %/ Jo (B B (Ba) 1% a (48)
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