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Abstract

In this note, the possibility of analyzing scattering and
antenna problems from a singularity expansion point of view is
discussed. As an example of the method, a thin-wire scatterer is
considered by first determining the locations of the exterior nat-
ural resonant frequencies and then constructing the time response
of the current on the body, much in the same manner as in classi-
cal circuit theory. The numerical techniques used will be pre-
sented, and some advantages of the natural resonance method over
the other conventional ways of treating this problem will be men-
tioned.
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I. Introduction

In classical circuit theory, the description of the time do-
main response of a linear circuit which is excited by an arbitrary
waveform may be determined by knowledge of the location of any
singularities of the response function in the complex freguency
plane, as well as the corresponding residues. The time domain be-
havior of circuit may be obtained as a sum of all of the residues
multiplied by exponentially damped sinusoids. The purpose of this
paper is to verify the extension of this method to electromagnetic
scattering and antenna problems.

In the past, the time domain response of an electromagnetic
scattering bedy has been determined either by time harmonic anal-
ysis coupled with Fourier inversion, or by direct time domain so-
lution. For a change in the angle of incidence, the polarization,
or the time behavior of the incident wave, considerable effort
must be spent to recalculate the scattering behavior of the obsta-
cle. As will be evident in the next section, the natural frequency
method provides a means of rapidly computing the response of the
scatterer or antenna for a wide variety of parameters.

A number of early investigators have treated the exterior
natural resonance problem to some degree. Pocklington(g) devel-
oped an approximate relation for finding the natural resonances of
a linear and a circular ring scatterer. The case of a prolate
spheroid and later the limiting case of a thin-wire has been in-

(8) and the case of a spherical scat-
(10)

vestigated by Page and Adams
terer is treated by Stratton.

Mcore recently, Baum(l) formalized the singularity expansion
technique as applied to general scattering problems by defining
the natural frequencies, modes, and coupling coefficients which
arise for a general three dimensional body. Marin and Lathamts)
have investigated some of the analvtical properties of the scat-
tered field from a perfectly conducting, finite body and approxi-
mate natural resonance frequencies of a thin c¢ylinder have been

obtained by Lee and Leung.(S)




The present note is a logical extension of this previous work.
From the E-field integral equation for currents on a thin-wire
scatterer, the method of moments is employed tc form a matrix
equation. The zeros of the determinant of the system matrix
define the locations of the natural resonance, and are found by a
numerical search procedure. At each of the natural resonances, it
is possible to define a matrix of residues, from which the time
domain response of the structure can be computed in terms of ex-
ponentially damped sinuscids. The residue matrix is a dyadic and
can be defined by two N-~dimensional vectors and, in the E-field
formulation, these vectors are identical. Moreover, these vectors
are independent of the angle of incidenca of the incoming wave.
As a result; the scattering body may be characterized by a few
pole locations with the corresponding vectors, and the solution
for any wave incident obtained.

As will be shown, this method is more rapid than the conven-
tional frequency domain, Fourier transform technique. For late
times, ct/L > 3, only about 3 or 4 poles are needed to adeguately
describe the time behavior of the currents for an incident step
wave which grazes the axis of the scatterer. For broadside inci-
dence, even fewer poles are needed.

It should be pointed out that in the sections to follow, only
the scattering case is considered. The application of this method
to the antenna problem is straightforward, requiring only a modi-
fication of the excitation function so that it is non-zero only

over a finite gap on the wire structure.




I, Formulation

Consider a thin-wire scattering element of length L and diam-—
eter 4@ which is struck by an incident pulse of electrOmagnetic'ra-
diation. As shown in Figure 1, the incident electric field is as-
sumed to lie in the plane of the figure and the direction of prop-
agation makes an angle 8 with the axis of the wire. For conven-
ience, it is assumed that the time behavior of the incident wave
is described by a step function, striking the scattering wire of
z = 0 at time t = 0. It is then desired to obtain the induced
currents and charges on the wire as a function of time.

Neglecting the effect of the end-caps on the wire, a Pockling-

ton type integro-differential equation can be written for the ax-

(7)

ially directed current flowing on the wire. Using the complex

frequency s = jw + 0 and assuming that the temporal variation of

the fields goes as est, this egquation takes the form

. L 2 2
—sEOElnc(z,s) = Jr I(z',s)(ij - E-z-)K(z,z',s)dz‘ (1)
2z c

@)

where the kernel K is given by

' 1 27 e—sR/c
R{(z,z!',8) =mj; —W—adcb (2)
1/2
with R= [{(z-2%)2 + a% sin?(4/2}] ) (3)

This kernel is exact in the sense that the thin-wire approximation
is not used.

The incident tangential electric field along the wire is
given by

Einc -gzcosb/c (4{

{z,8) = Eo(s) sing e
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Figure 1. Geometry of the wire scatterer and incident field.



and for a step wave,

EO(S) = Eo/s . (5}

From knowledge of the current on the wire, the linear charge
density, p, can be obtained from the equation of continuity

di(z,s)
dz

= -8p{z,s8) . (6)

In order to find the time domain behavior of the wire current,
it is customary to solve Eg. (1) for a large number of frequencies
along the contour s = jw, and then numerically perform a Fourier
inversion. The method of moments may be employed to cobtain the
solution for I(z,jw) and the Fast Fourier Transform algorithm(2'3)
is one possible way to obtain the inverse Fourier transform.

A typical plot showing the magnitudes of the currents in the
frequency domain as observed at z = .25L, .50L, and .75L on a thin
wire with 4d/L = .01 is shown in Figure 2. For these particular
curves, the angle of incidence is 8 = 30° and it is assumed that
Eo(s) is a2 constant. Hence, this spectrum is that resulting from
an impulsive incident field, not an incident step. The corres-
ponding spectrum for the step wave is then obtained by a multipli-

cation by (kL) L.

The resonance-like behavior of the currents as the freguency
increases suggests that there are singular points in the response
at certain points just off of the jw axis in the complex s plane,
much in the same manner as in classical circuit theory. This fact

(1,10) and prolate spheroid(a)
(1)

has been verified for the aphere and

has been postulated as true for any finite scattering body.
That the response function for bodies of finlte extent has only
pales and no branch cuts has been shown by Marin(ﬁ), and it is
speculated, but not rigorously proved, that these poles are simple

for perfectly conducting bodies.
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To study the thin-wire scattering or antenna problem from
this point of view, it is first necessary to determine the loca-
tion of any pecles of the current function I(z,s) in the complex s
plane. This is equivalent to finding the freguencies at which

there can exist a non-trivial solution of Eq. (1) with E'"C = 0.

Eq. (1) may be cast into matrix form by the application of
the method of moments as described by Harrington.(4) The result

is of the form

[2(s)][I(8)] = [V(s)] (7

where [Z{s)] is an nxn matrix and is referred to as the system
impedance matrix. {[I] and [Vl are the response and source vectors

respectively, and are of dimension n.

The natural frequencies of the thin-wire, denoted by su, are
those such that the homogeneous. version of Eg. (7)

12(s )1 [1(s )] =0 ) ‘ (8)

has a non-trivial solution for [I]. The implication of this is
that the determinant of f?ﬁ must vanish at these frequencies.
Hence, the equation for determining the natural resonances of the
current becomes

det[z(sa)] = A(Sa) =0 (9}
From the circuit theory analogy, a number of things can be

inferred regarding the location and nature of the natural reso-

nances. These rescnances must occur in the left-hand portion of

st

the s plane since the time behavior is as e and exponentially

growing currents are now allowed. Moreover, the poles must occur




which contribute K to the time behavior must not reside on the jw
. . ! .
axis. It is assumed, but without proof, that the poles are all
simple. This has been substantiated numerically. ..

The solution to Eg. (7) can be written in the form

HOMERS I SE Ty (10)
where [Z(s)]'l = [Y(:)] 80 as to show the dependence on A explic-

itly. The construction of the time domain response is then given
as

o+

. _ 1 © [¥Y(s)] .58t

[l(t)] = m-[d _jm —m [V(s)]e ds . (11)
O

Instead of numerically evaluating this integral along the %

contour, it is possible to apply the residue theorem to f£ind the 8

time response., Assume for the moment that fﬁﬁ_l can be represented
as

= R |
-1 _ [¥(s)] _ a

which is a sum over all of the poles in the complex s plane. The

—

constant matrix IRai is referred to as the system residue matrix

at the pole at 8- It has been shown by Marin and Latham(s)

(1)

and
by Baum that this residue matrix is actually a dyadic and can
be represented as the outer product of two n dimensional vectors

independent of s as

p——

T
[R,) = (M 1[C ] . (13)
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Here [Ma] is defined as the natural mode vector and is a solution

to the eguation

(Z(s)i{M_] =0 . - (14)

The vector ﬁiﬁ is referred to as the coupling vector, and solves

the equation

[Z(s_) 1 [C ] = 0 (15)

where the T denotes the transpose. For the electric field formu-
lation where symmetric matrices are encountered, the coupling vec-
tors and the natural mode vectors are the same, so that the resi-
due matrix becomes

[R ] = [Cc Ilc 1" , (16)

where [Ca]T is the transpose of [Ca]’

._":-‘_1

It should be pointed out that the expansion of [Z] in Eq.
(12) is incapable of representing any essential singularity which

may occur in the complex s plane at infinity. The matrix [¥Y(s)]
of Eq. (12) involves terms like e®T which show a singular behavior
ags 8 + =, For the present analysis, this inadequacy is neglected
and only the effects of the poles in the finite s plane will bhe
considered. As numerical results will show later, the effects of
such singularities at infinity are not important in the time do-
main solution for this particular example.

With such a representation for Eﬁ-du Eg. (11} becomes

: o_+3j —_—
° [c11C_]
[i(e)l = E?lrj'J; iy Za —(ﬁ (V(s)1 e®tas . (17)
Qo

11




The forcing vector [V(s)] alsc can have poles in the finite s

plane. For example, the step wave excitation has a single pole at

8 = 0. Indicating this pocle explicitly as

[V, (s)]
Vis)l = —=2—, (18)

Eq. (17) can be written as

g_+ij» % _ - at
(o) ] =Lf ° Z ClIC TV T se _ [C4] €17 (V(s)le N
2'n'j —joo el sa(s - SCC) 8 Sa

The first term of this equation contains the singularities of

the thin-wire scatterer, while the second term contains the singu-
For a more general type of in-

(19}

larities of the incident waveform.
cident electromagnetic pulse, there might be poles other than the

*

#

one at 8 = 0 for this last term.
Interchanging the order of summation and integraticn in Eq.

(19) yields the following eguation:

a +j T
) _}_ U’ [c 1ic 17 [V (s)] Stag
21} p

(T(e)] s A

_Jm

+
S o o R N T 5 R
= e ds (20)
%6 Sa
Closing tire contour along jw = 9, at «© in either the left-

hand or right-hand part of the complex s plane will permit the
evaluation ¢of the integrals in the previous equation by the Cauchy

residue theorem. Thus,

12



f [CLilC i V(3] o [V (8] st
e+ 15 = séYﬁ s, e ds==(2n3)[cu][ca] 5y [U(t)]e
M (21)
€T v (s] cmicmk
and f e °© — &%fas = (2my) —E = [V_{071(0(0)]
C=Cm+C6 (s o

(22)

In Eq. (21) [U(t)] is a diagonal matrix of unit Heaviside Ffunc-

tions which serves to enforce the regquirements of causality. That
this Heaviside matrix is necessary can be seen from the following.
Suppose we consider the contribution to the current in the ith
cell or zone on the scatterer due to the incident wave falling on
the kth cell having length (Azk). This fraction of the total re-

sponse can be written from Eg. (21) as

.f.(ca)i(ca}k (VO(S))k ot (Vo(sa))k Sdt
- s = sa) .- e” "ds = ij(Ca)i(Ca)k-———E;———-Ué;)e
(23)
where
) -sazkcose/c
(Vo(sa)) = Eo s;ne(Azk) e .

k

Defining tk = zkcose/c, it is seen that the exponential function

in Eg. (23) becomes esa(t-tk).

From the shifting theorem, this
implies that for t < t, the contour C, is to be closed in the
right-hand part of the complex s plane, giving no contribution to
the integral. For t > tk’ there is a contribution given by Eg.

(21). Hence, Ukk(t) = U{t - Zy cosb/c).

A graphical representation of this effect is shown in Figure
3. Suppose the incident wave strikes the wire at z = 0 at &t = 0

13
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Figure 3. Diagram showing the relation between the incident field
and the scattering wire in early times,
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and at time tyr it is desired to calculateé the induced current at
some point on the structure. If tl is such that the incident wave
has not yet propagated completely across the wire, only those
cells which are excited by the field will contribute to the in-
tegral in Eq. (19). After the wave front has completely passed by
the obstacle, each cell contributes to the current and the Heavi-~

side matrix becomes the jidentity matrix.

Inserting Egs. (21) and (22) into Egq. {(20) and noting that
the integral on C_ of the simple pole terms is zero, the following
equation for the current results:

B =T
e e WV (5)] s _t [C,llC ]
[i(e)] = Z fcifci® —_—%_ Tm(ale ¢ - Z—E—“—- vV (iU

[+ 4
a SCI o 2 s 4

(24)

The last term must sum to zero, since it is constant in time, and
the axial current on the antenna must approach zero for late time.
Thus, the time domain solution for the current on the wire becomes

[ite)l = ZEE"E{?:—]T —2_2— (olole © . (25)

For late times such that the Heaviside matrix is a unit matrix,
this expression is simply a sum of damped sinusoids.

A corresponding equation for the linear charge density along
the wire can be developed. Starting with Egq. (17) and using the
continuity equation, we have

g_+j T
-1 o "™ [Da] [Cc‘.] [VO(S)] St
[p(t)] = mj; _ ;S(B — Sa) = e ~ds , {26)
[a] L=+

15




where the l1/s dependence of [V(s)] has been shown explicitly, and
the vector [Du] is the discrete representation of the ath natural
mode for the charge and it is determined by

=4

Da(Z} dz

C,(2) (27)

Note thatin this expression that there is a double pole at
s = 0. One is contributed by the structure and the other is from
the waveform. Eg. (26) can be expanded in a manner similar to Eq.
(20), and upon using Cauchy's integral theorem, the time domain

representation for the linear charge density becomes

e 0 m V(s )] ——— s_t
b (e)] = -Z_[n 1C 1" —2—2 [u(t)ie °

- a o (su)
Y+ ) —
+ - [DU.] [CCG] ——‘?— [u(t)] o
a - :
— ——q V_(0)]
+ tZ[Da] [Cel1" —2—— [U(D)] (27)
a a

Notice that the 1/52 term in the frequency domain expansion has
contributed a term proportiocnal toc t in the time domain. Again from
physical knowledge of the time response we know that the late time
behavior of the charge density must approach a constant and not
grow with time. Thus, it—is seen that the last sum in Eg. {(27)
must be zero. It-is interesting to note that—this sum is almost
identical to tha+*t -in Eg. (24) which also sums to zero, except that

the natural mode vector is different.

In order to evaiuate Eq. (27), it is perhaps easier to di-
rectly calculate the static response by evaluating the integral
equation at's = 0, instead of-performing the summation indicated
by the second term. From the final value theorem, 3

16




lim £(t} = lim sF(s) (28)
£ 8+0

where £ and F are transform pairs. Letting F(s) be the charge
density for an incident unit step, Egs. (18) and (10) give

i _ _, W (&)1
1im(p(D)1 = lim s {-idi Z(s)1 - —-2—-} (29)
oo B0 s dz ]
where the 1/s term in the incident field is shown explicitly.
Simplifying this expression gives
'==_1_—
_— ) a fZ (5) ] [Vo(s)]
[p(=)] = -1im iz 2 (30)
5+0
This last expression is recognized to be the s = 0 response

of the charge on the wire due to a delta-function incident field.
Since Vo(s) iz well behaved at é = 0, it can be removed from the
limiting process. Substituting Eq. (30) into Eg. (27) yields the
final equation for the step response of the charge density as:

S - e [V (8 )] e s t -1y _
[o ()] =—§a:tna] [C 1" —t— e © 'ii’g(diz —-Z—(—Bé’-—)[vo(on
a

(31}

From this relation and the corresponding equation for the
wire current (Eg. (25)), it can be seen that by specifying only
the pole locations 8, and the corresponding coupling vectors Eiﬁ,
the step-wave time response for the thin-wire can be calculated.
Since the only dependence on 6 (the angle of incidence of the in-
coming pulse) occurs in the forcing wvector ﬁi:ﬁiﬁj and the Heavi-
side matrix [ﬁ, the problem can be solved for many different
angles of incidence without recalculating the S, and ﬁ:ﬁ. More-—
over, these quantities define the delta function time response of

17




the system. The more general time response due to an arbitrarily
time varying incident field can be obtained through application of

convolution or transfer function techniques.

In Egs. (25) and (31), the product fE;]T[VO(ca:] occurs.
This is basically the scalar product of the coupling vector and
the incident field vector. Baum(l) defines this as the coupling

coefficientfca at the pole s = S,r SO
e, = [tV (sl . | (32)
v} a o a

Although the coupling vector is independent of the angle of inci-
dence of the field, it is clear that Sy is not. From Egs. (25)
and (31), it is seen that the coupling coefficient defines how
much of each mode should be used in obtaining the time domain re- -
sponse of the scattering wire.

It should be pointed out that this is basically the Type 4
coupling moefficient defined by Baum, Three other types of coef- .

"

ficients can be defined, but this last type appears to be a natu-
ral choice for the present problem.

In a practical application of this method, it is not possible
to consider all of the poles in the complex s plane. As will be
seen in the next section, some poles contribute more to the time
response than others, since they are not so heavily damped in time.
Thus the infinite sums in Egs. (25) and (31) may be truncated when
the time response appears to have converged. For the thin-wire
case, only about 10 poles (plus their complex conjugates) are
needed for a reasonably accurate description of the early time re-
sponse. For the late time response (ct/L > 3) much fewer poles

are needed.

L
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ITI. The Numerical Determination of the Natural Freguencies

In order to determine the natural fregquencies, the coupling
vectors and the natural modes for the thin-wire, it is necessary
to solve the Pocklington eguation as presented in Eg. (1) for a
general complex frequency s. As previously mgntioned, the method
of moments is employed, with the basic functions chosen to be
pulses and the testing functions being delta functions. Clearly,
a more refined choice can be made if desired. Throughout the
study, the number of unknowns, n , which describe the current have
been chosen so that n = 10 x |s|L/rc. This implies that if s = juw,
ten cells per half-wavelength are used.

The location of the natural resonances of the wire are deter-
mined from Eg. (9). Regarding the determinant of the system ma-
trix as a complex function of the frequency s, Eq. (9) can be ex-
panded in a complex Taylor series about a point S, as

= - Ql—l— — 2 LI
A(sa) =0 = A(so) + A'(so)(sa so) + 2(BOL so) + (33)
Keeping the first two terms in the expansion gives
- = - ]
(s, so) A(so)/ﬂ (so) r (34)

which can be used to find the pole location Sy in an iterative
manner, similar to the Newton-Raphson method for real functions.
To start the solution, an initial guess of the resonant frequency
must be made. From Figure 2, it is seen that the resonances ap-
pear to occur with (wL/c) = mm. From the widths of the resonance
curves, an estimate of the imaginary part of (sL/c) can be made,
much in the same manner as in circuit theory. Once an initial
guess as to the pole location is made, Eg. (34) may be used to
iteratively find the pole location.

The results of a numerical search in the complex s plane for
the zeros of A(s) are shown in Figure 4. The ratio 4/L = .0l for
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this particular thin-wire scatterer. Note that only the upper
left-hand guadrant of the complex s plane is presented. As pre-
viously mentioned, only the left half of the s plane has singular-
ities and these singularities are symmetric about the s = ¢ axis.
Both of these facts have been verified numerically.

It is interesting to observe the nature of these natural res-
onances, which appear to occur in layers. The dotted extensions of
the higher order layers of poles have not been calculated, but are
postulated to exist by analogy to other related problems, such as
the natural resonances of the sphere. 1In Figure 4, the natural
frequencies are presented as having mode distributions that are
either symmetric or anti-symmetric with respect to the center of
the scatterer. A discussion of this point will be made in the
next section.

From the location of the poles in the s plane, it is noted
that the single index ¢ is not convenient for distinguishing be-
tween the different poles. For the present problem, the poles will

henceforth be labeled by two indices as s , where & refers to

. Z,n
the layer of the pole and n refers to the pole within that layer.
It will be asstimed that the index n runs from 1 to = and in doing
80, both of the complex conjugate roots are considered for a par-

ticular n, if Sﬂn is complex.

As the solution I(s) is evaluated along the axis s = ju, it
is obvious that the first layer of poles contributes the most ef-
fect, as is evident in Figure 2. The effects of the other layers
of poles are not so obvious. In the time domain, it ig noted that
the effects of the poles with a large value of o die out rapidly
as they are heavily damped.

A similar problem has been worked out for the scattering by

a sphere.(l’lo)

FPor that problem, there are two sets of poles,
one for the electric modes and the other for the magnetic modes
and are determined by the zeros of [(- ls)h(zJ( -ig)]' = 0 and

(- ls)h(z)( -ig) = 0 respectively. The locatlons of these poles are

21




shown in Figures 5 and 6. The electric modes of the sphere cor-
respond most closely to the natural modes on the thin-wire, since
there is a charge density asscociated with each mode. For the mag-
netic modes which are divergenceless, no charge density occurs and

these are not found in the thin-wire solution.

In comparing Figures 4 and 6, it is seen that there is a sim-
ilarity in the pole patterns in the s plane. The first layer of—
poles for the sphere is farther away from the jw axis than for the
thin-wire, indicating that the sphere has a lower  than the wire.
This result is also observed as the wire radius becomes larger.
Figure 7 shows the trajectories of the first 7 poles of the & =1
layer as the ratio d/L varies. As 4/L, increases, these poles move
farther away from the jw axis.

More expanded views of the trajectories of the first three
poles as d/L is varied are presented in Figures 8, 9 and 10. For
the first resonance (n = 1), the approximate locations as deter-
mined theoretically by S. W. Lee(s} have also bean shown. For
thin witesz, the agreement is reasonably good, but deteriorates as

d/L increases.

Some numerical difficulties were obtained in attempting to
find the higher-order natural rescnances for the thicker wires.
Ags the wire diameter becomes bigger, the system matrix for the E-~
field formulation becomes ill-conditioned and substantial numeri-
cal errors are found in its inverse. As a result, the pole loca-
tions are alsoc in error. For thicker wires, the H-field integral
equation should provide a better starting point for the analysis.
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IV. Evaluation of the Residue Matrix

Once the pole locations have been determined, it becomes nec-
essary to evaluate the system residue matrix at each pole as de-

fined by Eg. {(12). Suppose the residue at the kth pole is desired.
1

As seen from Eg. (12) the inverted system matrix [Z(s)] ~ becomes
k" Multiplying both sides of Eg. (12)

and taking the limit gives

undefined as s approaches s

by 8 - Sy

_ (®_1 —
lim (s - s ) [Z(8)} ' = lim (s - sk)za: -s——_—aq = [’ (35)

B"'Bk

Denoting the difference between the freguency s and the pole

frequency 8, by € so that s = g, + £ gives Eg. (35) in the follow-

k
ing form

R = lim efZ(., + 51 L. (36)
£+0

The numerical method for finding IRkI is to evaluate Eg. (36) with
a suitably small value of e such that the residue matrix dces not

vary as £ is changed.

As previously mentioned the residue matrix may be defined as
the outer product of two vectors, and for the electric field for-
mulation, these vectors are identical. The vector EE;io is the
solution to the eqguation

G I = o (37)

which is assumed to be normalized such that the maximum value of

[Ca]o is real and has a value of unity. With this normalization,
Eg. (16) can be written as
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[R.] = 8_{C.] [C_] (38)

with Ba being the appropriate normalization factor.

Once the normalized solution to Eg. (37) is determined, and

the residue matrix of Eq. (36) is computed, the normalization con-
stant Bu can be found from Egq. (38).

The normalized natural modes for the first three resonances
occurring in the & = 1 layer of poles are presented in Figure 1ll.
The ratio d/L = .01l for this data. The normalizing factors Bu are
also presented. It is noted that the modes are either symmetric
or anti-symmetric about the midpoint of the scatterer. For these
modes, it is also observed that the imaginary part is relatively
small, implying that these natural modes are almost real functicns
of position. Whether or not these imaginary parts arise from nu-
merical errors is a gquestion still to be addressed. It is known

from the sphere problem that- the natural modes arz purely real

e

functio.:. 7This_appears not to be the case for the thin-wire.

In the sphere problem, there are some poles which have the
same natural mode distribution. For example, in Figure 6, the
poles for n = 2 in the first branch and in the second branch both
have the same natural mode. In fact, all poles with the same in-
dex n (which refers to the order of the spherical Hankel function]
have the same natural mode distribution. 1In the thin-wire case,
this would correspond to the n=2 pole in the & = 1 layer having
the same mode distribution as the n = 1 pole in the & = 2 layer.
Figure 12 shows that this is not the case for the- thin-wire. The

natural mods for s has a maximum value closer to the center of

1,2
the wire than does the meode for S5 1° Moreover, it is known that
r
the mode for S, 1 is completely real, as the pole resides on the
r
-0 axis, whereas the other pole does have a small imaginary part as

indicated in Figure 11.

- T
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The coupling coefficient as defined by Eg. (32) is particu-
larly useful in attempting to reconstruct the time behavior of the
currents for any angle of incidence €. Figure 13 shows the three
noermalized coefficients for £ = 1 and n =1, 2, & 3 as a function
of the angle 8 for the incident field as shown in Figure 1. Note
that for this normalized coupling ccefficient, the coupling vec-
tor itself ﬁiﬁ has been normalized to have a maximum of unity.

In addition, the coupling coefficient has been multiplied by a
factor e~ (8al/2e)cosb _. .. .o reference £ = 0 at the midpoint of
the wire and thus preserve any symmetries ogcurring in the coupling
coefficients.
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V. The Time Domain Response

With the natural modes and resconant freguencies computed as
in the previous sections, the time domain response of the currents
and charges on the wire may be easily computed. From Eqg. (25) it
is seen that the current time response is a sum over the various
poles which contribute to the response. The coupling and mode
vector fE;i and the pole locatiocon s, are independent of the angle
of incidence, 0, of the incoming wave. Hence, once these values
are calculated and stored, any angle of incidence can be easily
considered by evaluating fG;T;;Ti and [U(t)] for the particular

value of 6.

The case of 68 = 30° is considered in Figures l4a through l4d,
where the currents at z/L = .25, .50 and .75 are plotted as func-
tions of time. As before, 4/L = .01l. These curves show the con-
vergence of the time response as the number of poles is increased.
Only poles for the £ = 1 layver have been included, as it was ob-
served that the £ > 2 layers gave a negligible contribution to the
current response. In these curﬁes it is interesting to note that
for n being even, there is no contribution to the current of z/L =
.50. That this should be correct may be verified from the fact
that the natural mode vector for even n is an odd function about
the wire middle, and hence gives zero contribution at that point.
If should also be noted that for n = 4, 8, etc., there are zero

contributions to the current at all three points. This can be
also verified by looking at the magnitude of I(jw) in Figure 2,
where it is seen that the contributions of the 4th and Bth poles

are zero.

The resultant curves after 10 poles have been considered ap-
pear to have converged quite well, even for early times. The ef-
fects of causality are clearly indicated. A comparison of these
results to those obtained by solving the integral equation along
the jw axis and taking a Fourier transform (Figure 15) shows that
the agreement between the two methods is excellent. For the
Fourier transform results, a spectrum from kL = 0 to kL = 40 was
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used, and the integral equation was evaluated at 128 unique fre-
qguency points. For the natural resonance method, only 10 inver-
sions of the integral equation are required, in addition to the
search for the poles. Typical computation times non a CDC 6600

were 150 sec. for the natural resonance method vs. 400 sec, for

the Fourier transform method.

As may be seen from the current curves, the late time
(ct7L > 3) behavior is fairly well defined after the first 4 or 35
poles have been considered. If one wishes to average out the
ripples in the early time portions of the curves, it could be
that only 6 poles are needed for this particular case.

Similar convergence behavior was noted for the linear charge
density at z/L = 0 and 1.0. The curves in Figure 16 show the
normalized charge density c/(eoEoL) as a function of time for both
methods of computation. The early time behavior of the charge for
the natural rescnance method is not as smooth as in the other
curves, but nevertheless, the agreement between the two is very

good.
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VI. Conclusions

From the electric field integral equation formulation of the

frequency domain scattering from a thin-wire, the exterior natural

resonant frequencies have been computed. The coupling and natural

mode wvectors, as evaluated at each of the natural frequencies,

were also calculated and used in obtaining the time domain behav-

ior of the induced current on the scatterer. From this study, a
number of observations can be made about this method and its ap-
plication to the thin-wire. These may be summarized as follows:

1)

2)

3)

4)

5)

6)

7)

The exterior natural resonant frequencies of the thin-wire
lie in left half portion of the complex frequency plane,
and exhibit conjugate symmetry about the real ¢ axis.

The natural frequencies of the wire all have a finite
real part, corresponding to damping by radiation.

The natural fregquencies for the wire occur in layers as
in the sphere, with the first layer being most important
in determining the time response, due to its proximity
to the jw axis. As the thickness of the wire increases,

the poles move away from the jw axis.

The singularities in the current response appear to be

described by simple poles.

For scattering bodies of finite extent, there are no

branch cuts in the complex frequency plane.

The residue matrix at cne of the natural frequencies is
the outer product of the £field coupling vector and the
natural mode vector. For the electric field formulation,

these two vectors are identical.

The time domain response of the structure can be computed
for any angle of incidence and shape of incident waveform

by knowing the coupling and mode vectors and the corres-

ponding natural frequencies. For the late time response
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{ct/L > 3) only 3 or 4 poles may be regquired for an ade-
quate description of the response.

8) For times such that the wavefront has ccmpletely passed
by the wire, the current response is a s:»; -z sum of
damped sinusoids. For earlier times, the presence of
certain regions of the wire is not felt and this must be
accounted for in the determination—of the response through

the nse of a matrix of Heaviside functions.

In the course of this work, a number of assumptions and ob-
servations have been made which leave unanswered gquestions regard-
ing this method. It would be interesting if future work could ad-
dress some of these guestions, both from an analytical and numer-

ical point of view.

1) Under what conditions, if any, do poles of order greater
than one occur? If they do occur, how are they best
treated numerically?

2) Doas an antenna with a d-source gap- have a branch cut in

ey

the 8 plane?

3) In another note(ll)

a finite wire within a parallel plate
region was treated in the frequency domain. Are the dis-
continuities observed in the response as jw is increased -

due to branch cuts in the 3 plane?

4) Can the problem in 3) above be treated by the natural
resonance method?

5) Are the natural modes, in general, real functions of po-
sition aleong the wire, or are they complex?

6) Can the method be successfully applied to more complex
bodies such as crossed wires?

7) Can it be shown rigorously that the essential. singulari-
ties at infinity of the inverted system matrix are not
required to find the time domain response? Stated in
other terms, can it be shown analytically that the y

44




integral at infinity in the application of the residue
theorem can be neglected?

Answers to these guestions will aid in a better understanding
of this method, and will facilitate its usage on a wider basis for
the description of electromagnetic scattering and antenna problems.
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