‘J’l el R

NOLTR 70-;8 | IN 10lp

SCATTERING OF ELECTROMAGNETIC RADIATION BY APERTURES;

I. NORMAL INCIDENCE ON THE SLOTTED PLANE

by: Lz

L. F. Libelo
U.S. Naval Ordnance Laboratory

and
J. Bombardt
USA/MERDC, Fort Belvoir

(' ABSTRACT: We report the results of the first of a series of

- investigations into the diffraction of electromagnetic radiation
by apertures in conducting screens. We present here calculations
of the fields everywhere for linearly polarized plane electro-
magnetic radiation normally incident on a slotted conducting plane.
Although this problem has been solved by others earlier, it serves
as a useful application in that it provides a test of our method
of solution. Comparison of our work with the standard solution
shows indeed that our technique yields results in excellent agree-
ment with those in the literature. Our results were cobtained by
a technique of approximation in which infinite series representations
of the fields are systematically truncated by utilizing the device
of applying the usual boundary conditions but only at selected
points of the boundaries. In this work the mathematical boundary
used is one constructed in a manner convenient to the geometry of
the diffracting system in precisely the same manner that had been
shown earlier to be highly useful in static problems.
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I. GENERAL FORMULATION OF THE PROBLEM

We consider a plane, monochromatic, linearly polarized
electromagnetic wave traveling in the direction of decreasing Y.
This plane wave is assumed normally incident on an infinite perfectly
conducting plane containing an infinite slot of width 2p ¢ We assume
the regions above and below the slotted plane, which is tSken to occupy
the XZ plane, to be free space. The geometry of the problem for the
case where the incident wave is polarized parallel to the slot is
shown in Fig. 1.

Maxwell's equations in free space are:
JxE =0
(1)
og =0

4

(2)
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where we have used the constitutive equations:
i ~—tp P Ny P =

D =eOE ) B=/"OH (5)

. -1 )
Assuming time variation of the form e we the fields in the
incident wave are taken as

E"= - & B. e—t(ky-&w‘l’.)
(6a)

-E'— - E E e—i(kj+wt)
- 2 o

-

(6b)
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Figure 1. The Slotted Infinite Conducting Plane Showing the
Direction of Incidence
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where the propagation constant is

k: m/c (7)

and also

Eozlono: CB,_-,

where Z,= [&,/&, is the impedance of free space.

We represent the fields in free space by means of a vector
potential only, so that weé have

g - xR
(8)

£ - 28

& at (9)

where the vector potential satisfies
’ - i
( V*A =0 (10)

In the usual manner we obtain via the Maxwell equations the wave
equation for A

> 1 A

2 =
V A-cz at""—o (11)
On the conducting plane the surface current density is in the

direction of the electric field in the incident wave. Then the
vector potential has only a single component and we write

i - —fwt

A=¢e; Az e (1la)

Substituting this into eq. (1l1) yields

2
VzAz"'h Az=0 (12)
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which is just the scalar Helmholtz equation. Since the Cartesian
z-component: of the vector potential is identically the same as the
corresponding z-component in circular cylindrical coordinates we can

work in cylindrical coordinates.

Our problem now is to completely determine A_ everywhere as
this will lead to solutions of the fields everywhére, since we have

from egs. (8), (9) and (11) .
E2(f¥) = dw Az r. ¥ (13)

- =12
B (fY)= 73 Az (pr3) (14)

By(p¥= -%/3/“1(/0; y) (15)

in solving this problem we employ a device used earlier by
Kaden™ to solve static field problems involving circular apertures

in conducting plane screens. This device, in our calculation, con-

sists merely of symmetrically introducing an imaginary “slot cylinder",

or Kaden cylinder, of radius f with axis along the center line of )
the slot so as to provide a cylindrical boundary that divides all

space into three regions, namely,

(i) region (1) @ f >R , 0< y<r
(i1)  region (2) : P <L , 0<YLam
(iii) region (3): L > 2 > ML YL2T

What we must do then is determine the vector potential in each
of these regions (see Fig. 2) such that the boundary conditions are
satisfied on the conducting plane, on the upper half of the Kaden
cylinder, and on the bottom half of the Kaden cylinder as well.
Simultaneously the radiation condition must be satisfied for AP -
in regions (2) and (3) (i.e. above and below the conducting plane
but outside the Kaden cylinder). 1In the conventional manner we then
write three vector potential functions

o
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WMy s pop o< weT

(16)
(2)
AZ:A!(/DA/')/ PP, o< Y<ar (17)
(3)
Az = AZPY), P3P, T<¥<ar
(18)

II. BOUNDARY CONDITIONS

Clearly at the boundary of the Kaden cylinder all field com- J
ponents must be continuous. On the conducting plane in region (1)
. G
EL“ ([.t 0) = (w /12,[/0, 0)
= (19a)
U) (
(PT) = iw Ay (A7)
(19b)
(n i
(/DJO) =f—, [3____2/\1( V)]
= (202)
\



NOLTR 70-58

(n
1 BAz(J’,lS’)-l |
Bw (f LN W \ 2 . (20Db)

and in region (3)

(3\ }0 F)-iwAz (/07)

(21a)
‘3)(}o 27)= Jow A (P, XW)
(3) (21p)
oA
Bg)(f W) = [ M]
¥=m (222)
AL
(3) 2 (P, Q’)l
27) = s (f 9
Bw (/O' Y=17% (22b)

III. SOLUTION ABOVE THE PLANE AND OUTSIDE THE SLOT CYLINDER

Qs
We now formulate the general solution for A?. (f’:@ In
the region (1) the total resultant vector potential at any point will
consist of linear superposltion of the potential due to the incident
wave, which we shall call AZ , and a potential due to the
reflected wave, which we call A"’ . Thus we have

A(‘) A(.‘ A ér)

(23)
The incident wave potential is readily obtained since
- (l) -!Lo't - —Lk. "&w't
E"_:‘-wAZ e_L :Eoeie J
and hence
G« . -t Sin
Aa)""-.g—"-etyzgee‘h'f' g
NS IR (24)
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We expand the exponential in equation (24) in a standard

Fourier-Bessel seriesz_ to obtain for the incident wave.
® © \
A('t)__.:E_.[Jo (‘\f)*‘?.i Jn (kf)Co.s nY "Zinn (kf) sinny ]
2 ww nz24., . n=13,... (25)

To obtain the reflected wave vector potential we must solve the
scalar Helmholtz equation,

() 2 AT .
v*A, +R*Az =0
which separates in circular cylindrical coordinates under the
assumption

) .
AZ = AP 2, (¥)
to yield the pair of ordinary differential equations.

d_{,dap e =n?
s Gplpgp TRl =

4
2. (¥) Jy* (27)

2, . .
where of course, n 1is the separation constant. The solutions of
equations (26) and (27) are well known, and we then have

Ag) = Y_B1c Jc (kf,) + 'Bz,o No (k/’\.‘ (CJ '9'*' C'L) + :‘i?; LBV\ Jr\ (kf)*'

+BaaNa (R CiaCos n¥ + Can Sim ] (28)

Combining equations (25) and (28) as indicated in equation (23)
we will have the general solution for the vector potential in region
(1). This general solution must be periodic in the following sense

H

A (P9 = AL (p, Wt 27)

For this to hold we must have CiEO. We can then write
_ o ) , @ o

AL = 22 [ 3o (RpY + 2 Tn (pd cosnl@ = 20 2 Sa(lep) sinnt? ]+
1

=Z4,.-0 =‘,3 e

& oo
‘\“Zo[Bﬂ\ 3"\ (kf)«\- 'Bz.h Nn(kf))x C1f\ s Y\l? -fE‘LBh\ 3‘\ (kf) -{-'BlnNn (h’fﬂcl“ N n(f

when we have defined clOE C1 We have maintained the constants
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C. and B'n uncombined merely for convenience in applying the
baﬂndary ¢8nditions. Applying the boundary conditions in equations
(19) we find we must have

C1l’\-—': fe) 'For n:‘,?),b;—.. (30)
and also

@ a0 )
2 [T epy+ 2L In (e + T, € | Bind,

(kp>+ BuaNg (kprl=0
n=72,4. .. N20,L4, .. (31)
From equations (31) we find that we must have
Bz_ﬂ =0 “;or n=0,1)41 - (32)
Taking this into account we find
10 B1o = - E,q /i (33)
°_1p B, = - 2E, /iw for n = 2,4,6, ... (34)
i Using equations (30), (32), (33) and (34) equation (28) becomes
{ APz 2B, & o L - - ory
: = T2 L Ta(RpYsim o + 2 [BiaTn (R + B Na (k)1
n=1,3,... nz i (35)
* Can Stn nq7's,/\%)4-‘Ag:)

whére each mode of the reflected wave vector potential must consist
of only an outgoing wave. For the n-th mode this requires that at

large distances from the slot in the conducting plane the following
relation must hold

e kp
Lim {Btn:Sn(kf)*'Eun‘Qn(kal_‘h .

\tf-*oo Vi Rf’ (36)
Since the Hankel function of the first kind exhibits this
asymptotic property, "
(v - . e f
Ho (RpY T Jn (kp)+ 0 N CRp) ""kfw ATwp (37)
we can conclude that
B, = i B, for n-= 2, 4, 6, (39)
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Defining the composite constants

An = c2n Bln (40)

we can now write our vector potential in region (1) as

AL (= -3 &, §° T () sum olf w3 A WY (ep) sim aif ,

ns= 13 n=43... (41)

IV. SOLUTION BELOW THE SLOTTED PLANE AND OUTSIDE THE KADEN CYLINDER

In region 3 we have

*0 -twt

E(rt)-zwA“e e (42)

From considerations of the rrent density on the conducting plane
it has been shown by others ~’" that we must have, by reason of

symmetry
—-)“-) - (3)

A X ()= AXE ()
(43)

N/

where n=¢ is the outward directed unit vector to the conducting
plane in ¥egion (1), and ¥/ is the mirror image point of T (see Fig.3)
we then have

. —‘ t ) R -—wf - ~» [3).,_
[we (e‘;x é'z_)Azfr (P) = iwe "’ (€y x€z) Az (F)
which simplifies to

(3) r) o,
Az (F)= A(’ r’) (44)

or more explicitly we have

(3)( ) =

(r)

= (f-¥) as)

10
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Region (1)
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plane ——— 5
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Figure 3. Cross-Section of Slotted Conducting Plane Showing
Image Points in this Plane
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By equation (41) we have more explicitly

AL ( ) = -5 Aa Han (kp) sin 0 (46)

w=y3.

Note that this result satisfies the boundary conditions stated
in equations (21) and furthermore is properly periodic in ¥ i.e.

A2 (p, %> = AT (p, ®a2w)
Note a2lso that this solution behaves properly at large distances from
the slot i.e. each mode is merely an outgoing wave as required by

the radiation condition.
Before continuing on to the solution
by introducing the two functions

in region (2) we state here that

Sww “L? oL WL
G D 2 { —swanlf ' TLY< XK (47)
d .
an \}
J
k (‘LQ')= gsw\\/\'-? o< YWLT (48)
" T Lo < QLT

we can combine the information in equations (41) and (46) into one
equation which gives the vector potential everywhere outside of the

"slot cylinder”®”; This expression is

ACE oo Z'E"L Jn CpYh, (8) +Z Aan (kf)g ()

—\3 1
_ wna13,. (49)

1
o
%
]

[2°]
EO_‘ -— w\v‘l{_\_o—‘l n ™
“st (kp)s = Zch(k,o)ws 9+

nsiy3,.. ™=Eq .-

i-%i i?:;A ** (Ef)coswﬂP

12
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2
C,\ e foe wm=o =135,
T : (50)
-z- 1 l M:14;‘)"'
e + for !
(=) (nem) n=135,..

This relation is easily derived from Fourier series representations
of g .
n

V. SOLUTION INSIDE THE KADEN CYLINDER

Inside the Kaden cylinder, which constitutes region (2),
the fields must remain finite as one approaches the axis, P = 0.
We can consider the potential in this region as a linear super-
position of a contribution from the incident wave and one scattered
in from the conducting plane. For the contribution from the incident
wave we see from eguation (49) a2nd the boundary conditions at the
cylinder that this quantity should be

. @
"Effzd QL\(ngﬂ St Y
nz=13 ...
after taking into account symmetry and the non-singular nature of

the vector potential at =0 we see that the contribution scattered
in by the conducting plane should be of the form

S B Jun (R cosmy

m=c24 ..
Thus in region 2 the general solution for the potential is

oo «© .
AL = - E2 7 Jalkp)sinnd + Z BuIm (RPI o>

n=33,... wms02, ... (51)

VI. FORMAL DETERMINATION OF THE FIEIDS

Expressions for the vector potentials are given in equations
(49) and (51). These expressions still contain the undetermined
constant coefficients i.e. the A, ‘s and the By's. The conventional
technigque for finding these coefficients is to match the fields
across the Kaden cylinder boundary where all components must be
continuous. We thus have the following conditions at the slot
cylinder: '

13
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e, 9= £800, 1) e
B, ) = B, P (53
G,
qu (/d, éﬂ) = B-?) (/Q./ ¥) (54)

from equations (52) and (53) we have respectively

(\;

i.- (IPD Q'/)"A'g /‘/y’)

(55a)
(\;3) \ _ ?A(;')
f oy /-’7’9 (55b)

We can write these in terms of the explicit series representations
as the single expression.

SR IRV P B3 D S ALV

w T3 nees o ez, ATy,
o oS } =S Bm Jm(kp)
+3 Z An Con Ha(Rpe) f_mmw MZ Po
m=od;. . n=\,'5,-'-
os my _ .E_-.‘. i jn ('ka') Sim nlif 2
g {‘MS‘VV\V"‘L! « ne{ 1 .., v\wan’ ’

14
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This relation can be rewritten in the more useful form
< g 2

z -2

"—ZC R, ...

2 Cm In(RAD + 77 A D W (rpe
'\3‘;3,"' ) ’

cosmly

—~m 3 my
wsmlf
m=c2,...

n=473,.. | %
= ai‘l'?)m Jm (h'/,o) {-m sim mlf

(57)

From this we see that only the single following condition is obtained
from both boundary conditions of egs.
&,
_EOZ C

(52) and (53) :
- Ja (RPY +
n=1,3,...

:‘Z:‘ AV\ C::*\ HLV‘\‘(RPC‘) = BM j\‘h (kfo)
n=y,3 -

for m=0, 2, 4,..

(58)
Further information can be obtained from the remaining boundary
condition, equation (54). This condition requires
Wy {23
z oAz
2P T2
P /
or equivalently,
=,

7
e & 374 (kD) < o
S {_ e > Cm dJn (Rp ¥ 2 \ \ (e Syny
m:c_‘.z./._. e w=ih, .. zﬁ L% n:\"& bf /p;/,;‘
@ 3Tm (Rp) \ g
= P_)m N CD5 m
v};cl..‘ af

r e

W
" Ha (hf')
Aﬂc-rv\ a_—___4~—

(59)
From this we obtain a2 second condition relating the 2Ap's and Bp's
- & " ! @
= . .
""u—oz (.m Jn (kjoo\ A2 ?__ Ar\
wn=v3 n=1),...

Cn Y (Rp) = B T (k)

(60)

15
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where we use the notation of a prime to denote differentiation of a
function with respect to the argument of that function.

We now have in equations (58) and (60) two sets of equations
which, in principle, completely define the coefficients A_ and B_.
In practice, however, it is in general an intractable task to ™
explicitly evaluate these coefficients in closed form. One situation in
which such a solution can actually be effected is the limiting case

where

kP, << 1 (61)

We shall consider this special case next.

VII. THE LONG WAVELENGTH APPROXIMATION

In the long wavelength approximation we are in effect assuming
the wavelength of the incident radiation is very large compared to
the width of the slot in the conducting plane. This is essentially
equivalent to having static fields near the slot.

To determine the An and B as they are given by equations (58)
and (60) for the limiting situation of equation (61) we require the
small argument forms of the pertinent Bessel and Hankel functions.

These are

J;(MQ)z%m&/zf/Twp+\) 2=0,1,2,.
(62a)
— ERE 4 .
Hf(@%)zeihﬂ\(vﬂh&/f) ¥=1359. (671)
From the recursion relation for the ordinary Bessel function:
35 (k) = = Jopr (RR) + (#/ kLD Ty (Rf0) (62¢)
we obtain also
! ~ - (kp, /2)

v
(kp./2) o
__.ﬁ__—— v=1273.. (63b)

T(r+1)

Jy (k,ou)z({—)

o

16
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Similarly from the recursion function

Q)

Ho (ke = = HDL (RR) +(2/RRVH, (k)

we find
Hml = z,y = cee
» (k) = T T(w)(kf.,/z) ¥= 1,35, (64)
Substituting these Asymptotic forms into equation (58) and (60) we
dbtain
"Eo n o/ 2
c _,B__ N T (kps /2)
Z‘.a .Tin+1) rZ\,a [ka P 1
= Bm(kpe/2)"/ Tm4 1) (65)
and E n /.z
Cm (lepe/2Y" n Com T (kp./2Y
2:'13 i f" T(n+1) \+z‘;? [th’o 4 ]
= Bm (RE /Y™ [ m
( T 1) ( f’\ (66)

We can eliminate the B 's from these and solve the remaining set of
equations for all the ® 's. since these A 's are actually only

obtained for m*o we must show that they st111 hold when m=o. We do
this next. The asymptotic forms of equations (58) and (56) for m=o

-E Z ch (k,oo 12y (kpe/2Y _ z A (kP)c Tikp /2"
a=13,, Tnty T oz (67)
= Ba (k]’o&)

"B /Y (ko /2 2/\,\( &) T /27"
= -8B, (Rﬂ,/l)

(68)

Now eliminate the B for m*o from equations (65) and (66) to obtain
the set of simultan&ous equations for the A

-Eo C ( /L
(m -n) @ o/
23 T (a4 irZ_me\A Co TO(Rp/D

nN= l 5 (69)

Similarly eliminate B, from equation (67) and (68) to obtain

17
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"5 5 () B er R -i,-,Z(s -8B €0 An T (B2

(70)

For even the smallest value of n, namely unity, we have in the long
wave-length approximation

TR &
Thus equation (70) can be written in this limit.
Ec 2 4\
=D 2.n Cé‘ (Rpe /Y™ _ 1 2 nA Ca T (Rpors2y™ (71)
"=l 5 ( *") iT ;\3\3

which is Just what we would obtain from equation (69) with m=o.

We can then consider the A 's determined from equation (69)

for m =0, 2, 4, ... Now let us find the A _'s explicitly. Consider
the left hand side of eq. (69) first. We obBserve that using eq. (50)

(m-m C =tm-H[ aim + )T FIRTR -1
then we have

/. 2 P A -
“b;: _Wr(n*“ -;-\-:?\- \]—’O 'FDI‘ M‘-'-z)‘.“..‘

Similarly for m=o we have

—V\C;‘: —ﬂ(?‘z-'-_i)z—%

and

lem Tl(_v;:ﬁ (“%\“’0

Y\ ~» 00
Furthermore we know in the long wave-length approximation

3 5
¥§f% s;-(\!fgx > (kgpbs » ...
We can thus write approximately

?:..Z(M-v\\(. (\?-P"/?-\ E,kﬁ(m-ﬂ ¢! for m=02,4 ...

v

Nz Tlav) 1w (72)

L

Substituting this result into egs. (69) and (71) we find after some
simple algebra

18
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éz _3n__
z (n-\-n ~ (n=-m)
ns ‘3}00! n= ‘le"' (73)

where for convenience we have introduced the new label

anz 2t00*VD) T @ ;o (74)
A Eo\if% (hJ%) /\“

_Naw let us relabel the index as follows:

N T LN+

and we obtain for equation (73)

1=l§ 3 +1+ S danr
2 Neo (N+1) [N*-"’"‘)] (75)

6
We can use the series definition of the beta-function

T(OT) & @l 1
B(f)i) -
T Ty 2 (N $) 76)

to prove that

/.
Sanvy = (ZN)'/ZLN(N!\L (77)

Substitute from eq. (77) into eq. (75), as a trial solution, to get
on the right hand side

LTOTEM | w TCSTER)
2 T+ 21 BTN
The first term is readily evzluated:
L TAVTORY
A TN

Clearly, the second term vanishes for m=o. For the remaining m
values we see 8lso the second term vanishes

m TOSHTEN
2 T\(\_v‘_;\:\ = for m=2,4, ...

Since

T(\-'ﬁ‘i\zT(-v\=-w wlere ©=0,1,2, ..

19
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We conclude then that equation (77) gives the solution for the

coefficients 2,041 of equation (75). From this result we then obtain
|
A, = E::.E, 1_': (n-11 - (\tf) A=135 ... (78)
L o2 [(n 1)]] (hx DT ) ’

Using the result for A given in equation (78) we can explicitly
state the vector potentials in regions (l) and (3) :

4} "Z.Eo o e L'\"__L-—-
A = “Z‘T:!J“J.v\(.\)o)ﬂf'\““? + Eﬁ,'ﬂ'z LM \ll.

\ ‘ =13, (79)
and sm"g(_—fé-) “,‘\(kf) s ny

) m n- )! kfo
AL = - §__.£. (I ( [1@_1;\]1 (mnT'(n)( f—)

n-\,'b,.a

(n )
(RP) st nl?
" f (80)

and by equations (62) we rewrite these in a form more appropriate to

the range A=A <<\ where we shall be considering the boundary con-
ditions on the slot cylinder.

i S | "
» ., _ €, . _ B, (n=!} { .
At ~ “—;-kf ‘M"? a,_klp‘i_;‘ Zﬂ‘(n;\)!]z(“+1)(%) $n V\‘? )
nzy 3. (81

3 2. (n-v! 1 2\
(\~ —-kf 2 [‘(“-\)lll (h*‘l)(;') $wnq’. (82)

ﬂ%‘ 3 1l

Using equations (79) and (80) for the vector potential just off the
slot cylinder we can completely determine the potential within it by
satisfying the boundary conditions as embodied by egs. (58) and (60).
We write these conditions in the appropriate limit as

E° Con (\\f./z\ '\;E; ;\n C Y_' x T‘(n)(\fﬁ.) l (83)
~ Bm o\ |
N T (e V) (\&t—)
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PN ) aTl .
CA2) 5 aAncA BT«

(84)

v mBm (\'tfo)m

T(m+) for m=0, 2, 4, ...

solving explicitly for the B with the help of equatiens (73) through
(78) we obtain

3 _E. R Po Tlmed) T‘("‘Eﬂ T\("\ (
m= W i=m) (N_\g_.t,) \?.}’u (85)

Substituting this result back into equation (51) we obtain the
vector potential within the Kaden cylinder. Since the inside the
slot cylinder p<p, we have necessarily kpP<«< 1.

Hence we find

o T( )r( 1\ ﬁ_‘mw.smy'
o ek g Senpy D DI sy
Afz-'%;':f' s lW“’.Zloa Tz VA e (86)

)

Note that since k/®» = ¢ = speed of light, we conclude that the vector
potential we have found within the slot region as well as the
corresponding electric and magnetic fields are freguency independent
and thereby consistent with the long wavelength approximation. The
magnetic fields can be calculated in this approximation and we obtain

r."\- Am LP » ﬂ‘.
2 s BoRswd E \QZ-

BF T Tw 2" (G Nk "'“’“(&) Sl (87)

MER -
S p 53 -E::'ww = Z'LE%EE’)UL i (%)n:" " e
gOL L?__’i?: E’ﬁi :\; (f\_‘:)ﬁ"’ (r:\-\) ,/‘;)M.";sﬂbf
P T e 2 LU (90)
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. — el
e AT ek >

vess BN
. -:...S- __..-. . L?—c k ——— . —-(J—-)
- 3 "9 ’ L0 - ‘p\\‘ﬁ’ 7\-“::!!0‘) T.L M:ZS> /p. w;M?
()

mel A S
g0, LAY, Bk Eck S 2, TS (ﬁ) sr 't

o - R LAY - T A ™M .
7 2Fo% * e wo RS T R (92)

These magnetic field expressions coincide as they should with the
usual magnetostatic field solutions in each region obtained via the

magnetic scalar potential’?for the case of a uniform applied mag-
netic field of the form

— N < -
Bapplied (r) = gl-ex

we observe that our solution therefore reduces properly in the long
wavelength limit stated in equation (61)

VIII. THE GENERAL SOLUTION BY NUMERICAL APPROXIMATION )

Let us now return to the general problem of evaluating the

coefficients in egs. (58) and (60). This shall be effected by an
approximation technique which we next discuss.

If we use the ident-
ity
o
:;: n-q\- /F) iv«\hL? §Vm.0R/°\v\L¥)
v, 5'“. (93)
we can rewrite the vector potentials of egs. (49) and (51) as
' €0
v o yinlkprntf) + 2, AnHL (Rp) sianlf
A, 3"——-5\'«(\( SW\L?)'i' nitlin ,
% (fa“f\ = P AT /4 (54)

f>fa; o< ¥< T

ALY = - S mtkf""w’lz,z. AR (95)
P<Po, 0<Y<2T
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“)(f Wi= -2, An'\-i:)ihf‘x $ b n,
V\-\"},.-. f>f'/ 7f< 1f< l”—

'
18

(96)
Consider the solutions for regions (2) and (3) first.
At op=p, we can match the field expressions for each region at
any particular value of ¢ , say ®, where of course
< 2
n < mL Ll

Thus at °, we would have one boundary condition in the form

m 3
(/po, = B, (/’o,% T<hear (97)

i.e. evaluated at o=0, where more explicitly

PR, Y) = (o] 22) Sealhfp sm 20 + 2 Bon Sen Uep cos vnlfr ]

M-Ol‘nn
and
e -2 A B (hp) sim n
D0 Rs e {- AR !
(4
( We can then rewrite eq. (97) as the single equation in the doubly

infinite set of unknowns An’ B o

Z AnHm(\,‘f"y sintfy 1-2 B Jmlep) cos ..,.LP‘ = ... smlRPe Sinfy)

Nz MmO, (98)
Let's define some new notation for convenience
ns= kPo (99)
_ 2c
%n T Eopo Ay (100)
2c
bh ® ETpe °m (101)
We then can write eq. (98) as
o .  l
Q) -‘-m( Swn LP%)
2 2 MO (D) sianly + T b T () o3 mlfy = 222
ﬂ.\.}‘-.u Y30 1,... 7 (102)
Next we have the boundary condition
(L) (»
{ (f’ y}) = B (f /1'/ (103)
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which can be readily shown to be N
o €0 j
. ) . -
7. 3aHn () cos nl?,g -2 ‘umsm("?)m SWM"PA s
n3i,3d,0e , mMEO,N, 0 ) (104)
T cos Wy ws(“qsmbﬁ)
which is exactly coincident with the derivative of eq. (102) with
respect to ®, . Finally we have the boundary condition
(G (»
By (/’o, $) =By (Po,%) - (105)
which in the same manner yields the equation
@. Yy . = ‘
T 3aHN () sva lfy + T b Tm(2) os iy =
'l\'ll‘}‘-u mso‘x‘... .
sy o3 (7sin ) (106)
4 |
We note at this point that egs. (102) and (106) are, for given ®, s
independent equations in the undetermined constants a and b .
By truncating these sets of constants and choosing an gpproprigte
number of discrete values of @ we can obtain a finite set of
simultaneous equations in a finite set of unknown a 's and b 's.
These, when solved, will give us approximate values Bor the unkfowns.
This approximation technique has been shown earlier by one of us )

(L.F.L.) to yield good resuéts when applied to problems for which
the exact answers are known . Thus to numerically evaluate the a
and b let us arbitrarily terminate the series in equations (102
and (186) at n =N and m=M. We shall then have the pair of

equations

g: L.\-\i?l"?) Sua V\LPI +%‘ b T () w,m(& = s:m%)z sua )

|‘\l‘},cw M'.‘.o,iJl" (107)
N W’ M ! " ( A
Za.\\"\n (."Z)S!:-s “LQR.‘-iBM Sm("(l) (7X w\\{(: St Xy o 37 sy
n2yd . ™m=0,2, i ‘7 (108)

Let us furthermore choose N and M such that

N-M = 1
Then we have N + 1 unknown coefficients, in two equations for a given
value of o, . If we repeat this procedure by choosing (N+1l)/2

distinct vafues of o we shall have a set of N+1 simultaneous 3
equations in N+1 unknowns. This set of equations can be easily '

24



(L

NOLTR 70-58

solved. Let us further introduce some notation so as to make the
mathematical problem more compact. We define the index v where
\a) Yvan 1‘3,31 T
v |

™ V‘M3 o‘a‘ﬁallo (llo)

this results in v running consecutively from v = o to v = M+l =N.
wWe also define the following set of quantities

Cop =
)v SM (“Q) “8 ML?‘ "0( » - Y= O"L)*‘n- (lll)
J {H‘:'(‘ﬂz) Sim n'-?x for » wn=1,35..
f» = 3':\ (92) wS W\LQ‘ ‘FW Y =mz=0,2,4.. (112)
s stm (s ¥)
”Z (113)
( Qq = sim &y cos(m st
91 (114)
and relabel the coefficients in the following manner
_{an yawna 1,37, ..
X“’ = km Y =mMm=zO 7-'4‘ "ne (115)
In this more convenient notation equations (107) and (108) become
respectively
B '
Z c"v X, = -P‘ “'Of‘ 18 1‘2) ey i(Nfl\
Y=o (116)

N
yz_deer‘ QQ

(117)

These constitute N+1 equations in N+l unknows and by Cramers
rule we can solve for the xv. Thus let's write
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f

eose _

o ; C " ‘. « e b C‘N
(N4Y) Card/n,0;Cleen/a 0 000 Clneiy N
10 ; dy v din (118)

A(N'”)/L)O J A(Nbl)/;)l 3o d(N*l)/l,N

and
C:O H c\] j te o c‘,“"s?‘; C\‘M*\j ooojC‘N
Char . C
1 — ) ’-‘ﬂ $ ee C
ety |70 T ot Page Cogtnts e S | s

die ; du J e d;,ﬂ-l,‘ Gh At.‘,u,ﬂ" we di, N

du;-:l.o ; d"-:,}l.l a‘md%_ﬂ/ﬁ‘" JQ'%_'&JAN{‘,ANJ"' du,:_\,u
In then follows, of course, that in our approximation

(N*V) )

FASY - (N+D
xv =4 = xv *Or v'-"' O, " 7—,.--)” (120)

(N

A

R

when the super script “N+l1" indicates the order of approximation.
At this stage of the development it should be evident that we can,
in principle at least, find xv and thereby the corresponding a,

or b_ to any order of approximation merely by choosing N sufficient-
ly lgrge. What we are doing actually is applying the boundary
conditions along generators of the Kaden cylinder. For given k and

pe We expect that in the exact series solution the leading few
coefficients An and Bm are the only ones that are significant.

The remaining ones of course, will be quite small and hence neglig-
ible. The precise number of coefficients that will be significant

will depend on the values of k and ro.
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Larger values of the product kp will obviously require

more coefficients than would be necessary for a smaller kp value.
We therefore expect that by choosing N sufficiently large Por given
kpo we can use our approximation scheme to determine the significant
coefficients quite accurately. The corresponding higher order
coefficients will be in considerable error. Since they are
negligible anyway we should be able to numerically solve quite
accurately for the fields. Results obtained via this approach for
the slotted plane are presented below. In practice we have found
the only limitation on the accuracy of our calculations to be the
limitations of the available computer subroutines.

Let us interrupt our development to introduce and briefly
discuss the transmission cross-section for our slot problem.

A, THE TRANSMISSION CROSS-SECTION PER UNIT LENGTH.

The transmission cross-section per unit length of the slot,
is defined by

o, =P, /8y (121)

O

where

P, = total power per unit length transmitted through the slot.

S, = magpitude of the real part of the 1nc1dent complex Poynting
véctor & at the scatterer = |Re 3 E:x H; |= \Re&:|. Recalling from
eqg. (6) that the electrlc field in the incident plane wave is

E' = €. 2 Eo exr{ \Q,‘_O?-t.wt}

th
en -+ o
‘T e, VYxE(
and
- W 1 - =P N
. - - K H
which gives - -
— €. ~ther +iwt | o
H; - PT™ e es xRi (122)
from this we get
= % (123)

The total power, per unit length, transmitted through the slot is
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A e\ ® -+
€ = Sy lim (Re L ECXRD)P (124)

n /-pco
where

g el e, s - é’,zwL_A“Hkaf) sim n

nxl

Then

_ﬂg_LLS 9] Re Zcm /D-m $ 3 (125)

However we have from eq. (15) .
3
o) { Biii
ng (f)"?)"' ‘w/a. 3/0
then we have in the transmitted region (3)

H(;\‘(/:' ®) = ?_"_ An Hm(kjﬂ st nY

nai
Collecting terms we have

‘”H‘” "’“’k LWR S A AT Hm(\\f) H(M’.)’(kf) Som W0 Ml

g nwmezi
from which we obtain in the required limit

L (m=ndT/2
liom E(u (O ok 2 & . v ) :
f*”ﬁ H - - FEﬁ"A"e stm n® st ml (126)
The transmi551on cross-sectlon can then be written as usual
2
o} = Z |An = -‘5' ;. 2. |Al ©(127)
o nel ' nsd

For a normally incident plane wave geometric optics predicts the
transmission cross-section per unit length for our slot to be

optics

C% = Zﬂ (128)

This provides us with a2 convenient scaling factor to use in
normalizing the transmission cross-section. We thus define the

“"transmission efficiency coefficient" for the slot as

T (o) = o300 /aorties (129) )
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~ using eos. (99) and (100) we can write this

. - L 2
T =in & 13l (120)
It is informative to consider eq. (130) in the long-wave-length

limit. This we do next.

B. _TRANSMISSION CROSS-SECTION IN THE LONG WAVELENGTH APPROXIMATION.

For very long wavelengths n<<l and we can write
X1 2 F‘ 2
T & &3 = ]
€ (3 ‘A\l 22 laal (131)

but
: 1242 = ¥29%/16

Thus in the Rayleigh approximation

2.3 o 3 > :

P~ -
TRL T = B T (2RAY (132)
22 256
Now according to Babinet's principle the scattering cross-section

o, for » conducting strip of width 2po, and of infinite length, with
the incident magnetic field polarized parallel to the axis of the

strip is equal to the scattering cross-section of an infinite slot
of width 2p for the incident electric field polarized parallel to

the glot éx?s. This scattering cross-section is simply twice the
transmission cross section, i.e.

o =20y 2 (2R) W (2f R)/256 (133)

King and Wu9 give Bouwkamp's low-frequency result for this slot
oroblem and the results in eq. (133) correspond to the leading term in
the Bcuwkamp solution.

IX. RESULTS AND DISCUSSION.

We show in Fig. 4 the results obtained for the transmission
coefficient, T, using a seven term approximation and also a twelve
term approximation in the range 0.8sn<2.0. When t gse are compared
with the,corresponding results obtained by Skavlem and also by
Seshadri™ ™ we find that our results1 gree very closely with theirs.
The results of Morse and Rubenstein are extremely close to those of
Seshadri and for convenience we only compare our results for T (n)
with those of the latter. Interestingly, we note that the lower order
approximation is in closer agreement with the results reported by
others in the neighborhood of the first resonance. However, the
higher order approximation indicates about 3% difference from the
other results and this is not terribly significant, having as its
source the numerical technigues used in the computer program. We
shall see in the next publication, where we treat this problem
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a special case, that a double precision computer calculation

with the twelve term approximation rather than the single precision
result given here brings our calculated behavior at the resonance
into closer agreement with the seven term approximation. It should
be pointed out before going on that this latter calculation was
actually done in double precision. All further calculated data in
this report consists of single precision computer results. Figure 4
also shows the results obtained for a fifteen term approximatLion

at n = 2.2 and a nineteen term approximation for the range 2.4<n<5.6.
As we anticipated there is rather good agreement with the earlier
work of others over a considerable range of n. We present in Table 1
the calculated values of the leading coefficients |"n|?, their sum
and the corresponding values for the transmission coefficient T (n).
From this table we can clearly see how, for small n, la, |®is the
predominant contributor to T (n). Further as mn increases |a,|?
begins to become significant even though |2, |*if still the main
contributor and in fact increases with n at first. 2As n, increases
even further beyond the value 1.5 we note that |a;|', although still
the larger contributor, begins to decrease whereas !ay!|® is still
growing. About | = 4.2 this behavior still persists. Now, however,
l2,!® and |a3|® are comparable in value and, in addition, |as|® is
now contributing to T (n). For larger n, |25!? begins to exceed
|a; 1 which is still decreasing while at the game time |ag|® is in-
crersing. For still larger n say about m = 5.0, |a;|?

continues its decrease and |a3|' starts dropping off, whereas

l2ag|® is incre=sing and in addition las|®starts contributing. all
of this is consistent with our anticipation that for given % only
the first few coefficients will be of practical significance in
determining T(Nn), And 2s N increases succeeding higher order
coefficients will become significant. Figure 5 illustrates the
dependence on N of the first three coefficients la, !, 'agl, |2

and merely disovlays graphically the behrvior just discussed. We
show in Fig. 6, the deoendehce, separately, of the real and imaginary
parts of a; On'n. This behavior is characteristic of each of the a_
except that the maxima are smaller and they occur at larger yalues
of n, the further out the maxima the larger the index n.

It is worthwhile to point out that we merely chose the match-
ing angle on the Kaden cylinder so as to more or less uniformly cover
the cylinder. Obviously a different choice of this set of angles
will yield different numerical results. Howéver, by a larger order
of approximation calculation these discrepancies can be made
insignificant. Although we haven't attempted it, 2 variational
ca2lculation could orobably yield the best set of angles to use.
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We have seen that the method of approximation used here gives
good agreement with the results obtained by others for the
relatively simple test problem investigated. In succeeding reports
we shall present the results of applying the technigque to more
difficult scattering problems involving apertures.
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o

) n lall2 |a3|2 n=l§3,5...|an|2 T(n)

. 0.80 0.7307 0.7307 0.2923
0.90 0.9673 0.9673 0.4353
1.00 1.2012 0.0012 1.2024  0.6012
1.10 1.4137 0.0020 1.4157 0.7786
1.20 1.5700 0.0031 1.5731 0.9439
1.30 1.6564 0.0045 1.6609 1.0796
1.40 1.6718 0.0060 1.6778 1.1745
1.50 1.6333 0.0076 1.6409 1.2307
1.60 1.5600 0.0092 1.5692 1.2554

(_ 1.70 1.4714 0.0109 1.4823 1.2600
1.80 1.3759 0.0125 1.3884 1.2496
1.90 1.2792 0.0141 1.2933 1.2286
2.00 1.1903 0.0158 1.2061 1.2061
2.20 1.0262 0.0189 1.0451 1.1496

Table I. The Leading Scattering Coefficients and the
Transmission Coefficient
(i) Twelve Term Approximation for 0.8<n<2
. (ii) Fifteen Term Approximation at n= 2.2

(iii) Nineteen Term Approximation for 2.4<n £5.6
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Table I (continued)

(-]

" 2, 1° |2,1° 2512 2,0°  penas,el? Ten
2.4 0.9048 0.0201 0.9249 1.1099
2.6 0.7973 0.0245 0.0001 0.8219 1.0685
2.8 0.7085 0.0289 0.0002 0.7376 1.0326
3.0 0.6322 0.0342 0.0003 0.6667 1.0001
3.2 0.5624 0.0428 0.0005 0.6057 0.9691
3.4 0.5047 0.0553 0.0009 0.5609 0.9535
3.6 0.4508 0.0746 0.0018 0.5272 0.9490 3
3.8 0.3953 0.1021 0.0034 0.5008 0.9515 E
4.0 0.3429 0.1388 0.0060 0.4877 . 0.9754 ©
4.2 0.2913 0.1795 0.0098 0.4806 1.0093
4.4 0.2432 0.2125 0.0148 0.0002 0.4707 1.0355
4.6 0.2042 0.2364 0.0197 © 0.0003 0.4606 1.0594
4.8 0.1738 0.2473 0.0242 0.0005 0.4458 1.0699
5.0 . 0.1509 0.2480 0.0283 0.0006 0.4278 1.0695
5.2 0.1332 0.2423 0.0319 0.0008 0.4082 1.0613
5.4 0.1194 0.2332 0.0352 0.0011 0.3889 1.0500
5.6 0.1080 0.2224 0.0383 0.0014 0.3701 1.0363
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