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I. Introduction

f1,11]

in twe previous notes it has been shown that the temporal behavior .
of the scattered field due to an incident delta-fupection plane wave can be
daescribed by damped sinusoidal oscillatjons alone. This fact enables ome tu
get a series representation of the operator Inverse to the integral operatur
describing the electromagnetic scattering problem. In the case of slender
structures, where resonance phenomena are especlally proncunced, only a few
terms Iin this serles representation suffices to describe the scattered field.
This makes the singularity expansion method especially useful when solvine
transient scattering problems involving slender structures. Missiles and aircraft
in free space or above a ground plane and subject to a nuclear EMP are examples
of such problems.

The natural frequencies of a thin wire have been calculated by many investi-

f2-97

gators . Some have sBtudled a thin cylinder together with the so-called

£6~93

thin-wire approximation ¢of the electric field integral equation y» while
others have considered a thin prolate spheroid as the scattering objectEZ—SJ.
Recently in a note Iip this serles, trangient scattering from thin wires has
been investigated using the singularity expansiocn methodEg]. In that note .
some of the natural frequencies and modes of a thin wire have been calculated.
Based on the theory developed in reference [11] we will, in this note,
consider electromagnetic scattering from rotationally symmetric bodies. In
particular, we will calculate some of the natural frequencies and modes of a
prolate spheroid. One reason for Investigating a sphercid is to gain some
insight into the behavior of the natural modes for structures not necessarily
thin. By varying only one parameter, namely the eccentricity, the shape of a
spheroid caa be changed from a thin wire to a sphere. Thus, the results cbtained
in references [ 9] and [10] combined with the results obtained in this mote will
serve as a guideline for the behavior of the natural modes for many differently.
shaped bodies. Although the calculations performed in this note—are limited to
a prolate spheroid, the method used in determining the natural freguency,
current distribution and coupling vector of each natural meode is general and

can be used in determining, for example, the same quantities for a missile and

an aircraft in free space or above the ground.




We want te point out that scattering from a prolate spheroild can also be
treated by using the method of separation of varlables. Some calculations of
the fundamental natural mecdes using this method have been reported in the

£3] . £10]

literature . These results and the resuits for a sphere provide ugeful
checks on our numerical calculations.

The analysis in this note is based on the theory develcped in a previous
noteEll]. In the case of a rotationally symmetric body we aimplify, in section
1T, the surface integral equation to a set of one dimensional integral equations.
Based on the integral equatlons for fields independent of the azimuthal angle
we deduce, in section III, approximations necessary for the numerical calculations
of the natural modes. The results of these numerical calculations are presented
in section IV 1in graphical form for the location of the natural frequencies in
the complex frequency plane. We also graph the current distributions of some of
the natural modes. 1In order to get scme idea of the number of natural modes
needed to accurately describe an actual scattering situation we calculate the
time response of the induced current on a prolate spheroid due to a step-function
incident plane wave as a function of the number of natural modes used in the I
series expansion of the Inverse operator.

Although the gsphere has been the subject of many Investigations we
determine, in Appendix A, the eigenvalues and eigenfunctions of the integral
operator derived from the magnetic-field formulation. In one example we can

C1,11]

demonstrate the connections between the singularity expansion method
(natural modes) and the theory of characteristic modescls_lé]. We want to
point ocut that the singularity expansion method is based on the properties in
the complex frequancy plane of the operator inverse to the integral operator
of the electromagnetic scattering problem, whereas the theory of characteristie
modes gives the properties of the same operator only for real frequencies.

A descripticn of the method used in determining the natural frequencies
and modes from an integral equation is given in Appendix D. The method we use

is general and can be used in any formulation of the electromagnetic scattering

problem and is not limited to any particular shape of the scattering body.
A knowledge of the order of each pole is necessary when solving transient

electromagnetic scattering problems by using the singularity expansion method.




For a perfectly conducting, arbitrarily shaped, finite body there seems to

exist, as of now, no general analytical method that enables one to determine
the order of each pole.

In Appendix E we discuss a general numerical method
te determine the order of each pole.




II. The Magnetic Field Integral Eguation for a
Rotationally Symmetric Body
'. In this section we will consider electromagnetlc scattering from a perfectly
conducting, rotatdonally symmetric body. In this case, the surface integral
equation for the induced surface current density on the scattering body can be
reduced to a set of one dimensional integral equations.
Bagsed on the magnetic field formulation we have the following integral

equation for the surface current demsity, j, on the bedy

1 1

(‘Z‘L‘L)'llnc 2.1
where L is the identity operator, L an Integral operator defined by

Lej = ng(vc:xl)ds, (2.2)
S

iinc = Ex_rginc, Einc 1s the magnetic field of the incident wave, n the outward
unit normal to S (the surface of the perfectly conducting scattering body) G

is the free space Green's function,

G(z,r'sy) = Ghnlr - x|V & IE—E‘I, (2.3)

v{= = 1k} is the propagation constant of the Incident wave, and V operates on
the first argument of G(xr,r';v).
Let the axis of the rotatlonally symmetriec body coincide with the z—axis
in a Cartesian coordinate syastem {(x,y,z). 4 point on the surface of the scattering
body can be represented by two orthogonal coordinates (£,¢) so that for points

on § we have

x = p{EJcos 9

y = p(E)sin ¢ (2.4)

z = z(&)
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A rotationally symmetric body with a local orthogonal
curvlinear coordinate system. The coordinate § is

used to represent the arclength measured from the

bottom point B. At the top point A, £ takes the value Eo.

Figure 1.




where 0 < £ = 5 and 0 £ ¢ < 21 (see figure 1).

Expanding j and 1}nc in a Fourier series in ¢,

J= jEE + j¢¢, . {(2.5)
i}nc - jé.nc % + jinc $ (2.6)
where o -
j.(E,9) = jl (E)cos me + It _(E)sin mé, 2.7
: uko Jim oLy Jim
3,0 = 1 3, ®)stnm - [ 17 (Edcos ms, (2.8)
m=1 m=0
i) = E 3237 ryeos me + f 1717 0y a1 mg (2.9)
g ? £m fm ? -
m=0 m=1
i ey = E §147 () g1n mp - E 3108 gy cos mo (2.10)
¢ ’ m=1 om m=0 om

we get,after some tedious calculationsg, the following two sets of coupled one
dimensional integral equations, m = 0,1,2,....,
3 £

1 ° 1 r 1 1 T ° 1 ) ) 1 1 T

7 Jgn &) - fo A (B ED e (8N, (BT)aE" - fo Ba(8,EMp (83, (&7)dE" = jzinc(E)’
(2.11)

3 £

1y ° ' tysT ' 1 ° ' tyat 1 ' y inc

7 d4n(E) - Jo Cp&8M)e (€3 (E1)ag! - fo DR800 (8103, (B1HAE" = 3, "7 (8),

1 EC) E"’O 1

7 Ig® - Io ACELAPEICIPR MIRCEDE A Jo By(E,8" e (£")3 0 (R1ag" = jgmnc(g),
(2.12)
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where

A(E,8T) = ale,8Ne (£,€") + a' (5,878 (£,8"),
B, (£,£") = b(5,5")0_(£,E"),

Co6:8") = c(g,8")0_(£,8"),

DL(E,E7) = d(g,8"e (£,£7) +-d"(£,£")8_(£,8"),
a(£,£') = (2' - z)sin 6" ~ p' cog &',
a'(£,§') = p cos 8',

b(5,8') =z - z',

c(€,2') =p' sin 6 cos €' - p cos B 8in 8" + (z - z')sin O sin ',

d(£,£") = (2" - z)sin 8 + p cos 6,
d'(£,£') = - p' cos @,

2m
a_(§,87) = J f(R)cos ¥ cos mypdy,

0
2m
B (§,8") = f(R)cos my,
m ‘0
27
am(E,E') = J f(R)sin ¢ sin midy,
0
3,.-1
f(R) = < (1 + yR)(4wR™) ~ exp(-yR),

“3
R = [02 + p'2 - 2pp' cos Y + (z ~ z')zj .

o = p(g), p' = p(g"),




z = z(E), z' = z(E"),
8 = 8(E), g' = 9(g"),

and

8(£) = - arc sinfn(g)-z].

The advantages of transforming a surface integral equation intec a set of
one-dimensional integral equations are obvious Iin numerical computations and
have been discussed in the literaturetlzj. Notice that for m # 0 the only
difference between the set of integral equatioms (2.11) and the set (2.12) is
the right-hand side. Since the natural frequencies and natural modes are determined
by the kernel of the integral equation it follows that the natural modes can be
determined from the set of equations (2.11). The only difference between the

solution of equationms (2.11) and (2.12) is in the coupling coefficients given by

1
{(c.f. section VI of [11]).

Next,let us consider the case m = 0. In this case the set of coupled

integral equations decouple and we have the two integral equatlons

3
£70Q
235 - IRSCHDLICRENCOL 171 ey, (2.13)
0
EO
23" - I D(E,E"Dp(EMI"ENEE" = 377 (E) (2.14)
0

where

A(E:E') = A-O(E:E'):
D(£,5') = D_(£,8"),

378 = 3L (@)
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15575,

$UEY = 3y (),
and I
wlnc
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When the scattering body is a sphere the integral equation (2.13) gives
the surface current densgity of transverse magnetic fields (no radial component
of the magnetic fileld) and the integral equatlon (2.14) gives the surface current
density of transverse electric fields (no radial component of the electric fleld).
An investigation of the integral equations (2.13) and (2.14) when the scattering
body is a sphere 1s given in Appendix 4.

let the z - x plane be the plane spanned by the unit—vector in the z-
direction and the unit vector iIn the direction of propagation of the incident
wave. If the incident magnetic field is perpendicular to this plane we have

j'inc = 0, and if the incident electric field is perpendicular to this plane we

have j"inc = 0,

We now go on to consider the integral equation

*
(%_; _ EF)'E. - h-inc

(2.15)

when the scattering body is a rotatiomally symmetric body. Here LF = LT* where
the asterisk denotes complex conjugation and ;f is the adjoint-operator of [
(c.f. Appendix C of [11]). Expanding Ef and E}nc in the Fourier series (2.5)
through (2.10) the surface integral equation (2.15)} can be transformed inteo the
following set of one dimensional intégral equations

£ a2

1 ' * ° ' ' ke ' ° T 1 1 * o 1 yinc
Inre - JO Ay (€ )P (€ INI* (g aE" - jo B (£, 00 (ERNEA" = i), .
(2.16)
EO EO
ZhRITE) - | c (N, Ep(EDRIEDEE" - | D_(5',E)eE R (Eag" = n1 i)
5 b R IC RO IR LRI R Sl O
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§ £,

Q
By (6) - f A (E"E)0CE IRy (1 )dE" ~ J B (E",E)p (8B (68" = mr"S (o),
0 0

1

(2.17)

Eo Eo
n¥ 1 1 n™ T r 1 T ¥ 1 LI ninc
2 h¢ €) - JO Cm(E »8)o (& )hEm(E ydg' - JO Dm(E s&€)p (£ )h¢m(E )dg h¢m (&>

and especially for m = 0 we have

g

o
2w @) - J ACET,E)p (eNR' T (EdET = nt 1P, (2.18)
0
E'Z)
*
@) - J D(ET,E)p (ETIR™ (E1)dE" = h" % () (2-19)
0
where
¥* = 'I'*
h'T(8) = bl (8D
II* —_ ll*
B () = nh (6

tinc = rinc
RTPE(E) = ml POCE),

uine = npine
LA S (Op

In the next section we will discuss the numerical sclution of the integral

equations (2.13) and (2.14) with the aid of equations (2.18) and (2.19).
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ITII. Numerical Calculaticn of the Natural Modes

In this secticno we will give a numerical method for computing the natural

modes of a rotationally symmetric body. In reference [11] we have shown that the
natural frequericy and the current digstribution of a natural mode can be determined

from the eigenvalue problem

éﬁYn).ln =0 3.1
vhere A(y) = %-; - L{y) and 1 £ 0. We have also shown in reference [11] that
there exists h % 0 such that

~n
At " a0 2
Ay )b = 0. (3.2)

From the preceeding section [c.f. equations (2.13), (2.14), (2.18) and
(2.19)] it follows that—in the case of a rotationally symmetric body we can,

for the ¢-independent modes, reduce equations {3.1) and (3.2) to

3

o

250 - [ A, g sy Do (€I (ENAE" = 0, (3.3)
“ -’ o
E’D
l 11 ] T
L - JO DCE, 5" v Dp (£ 1(E s = 0, (3.4)
EC’
1 r* ' I | t I* t r
5 hIE) - JO AGE',E5yDp(ENRY (E)dE" = 0, (3.5)
1 n* %0 1 -] 1 h”* L} d T _ O 3 6
5 By (&) - JO D(& ,E,Yn)p(E ) 1 (£")dg' = 0. (3.6}

In the following we will analyze in detail the numerical solution of
equations (33) and (3.5). The numerical solution of equations (3.4) and (3.6)
can, of course, be obtained in a similar way. The numerical method we will use
is based on a zoning technigque. Divide the surface of the scattering body into

N segments, and approximate each segment of the surface by a frustum of a cone.
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Moreover, on each frustum we assume that the current density is constant. The
laft hand side of equation (3.3) can then be approximated by the sum
2

e ] N ‘
‘;l_;j'(E) - J ACE,ET ,v)p(E")1"(g")adE" N'lz-j'(i) - ): K(E,EE;Y)WQJ'(EE) (3.7)
0 =1
where
62
R(E,8,5v)w, = j AR, + E';Y)D(Ez + ENEE" ~ ) AR,E, sY)w
—61 kl A b A

and Ez ig the midpoint of the lth interval, which consists of all £ such that

E - 5£ = E < El + 62. Furthermore,

2

w = pf{E r and w, = Z w,
Rk Lk Lk 2 i kg

r

where r, are the weight factors and Ek are the abscissas used in the Gaussian
2 J

quadrature formula on the interval (E2 - 61, El + 62). In order to form a set
of algebraic equations we proceed as follows: multiply equation (3.7) by p(£)
and IiIntegrate the expression thus feormed over the interval (Ez - 62, gz + 61).
Setting each resulting expression egual to zero we can form the following system

of algebraic equations from the integral equation (3.3),

N

1
Fwdy - Ezl w, P, (Y)w,3, = 0, l1<1i<N (3.8)
or N .
RZ}. 05 8, = B, (1w, 15, =0, 1<i<N (3.9)
since vy ¥ 0. Here
- AT
i, | (51),
and
wow P (y) = 7V ow ow A, & v)-
ire s Kok, key kg TRy TRy
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The set of equations (3.9) can be written in the matrix form
M(y)+J = 0 (3.10)

where E-is a column vector with elements ji and M(y) is a N x N matrix with

elements mii(Y)' defined by
m, (y) = L, - (yow,.
ig 2 g ig 2

Similarly, 1t can be shown that the integral equation (3.4) can be approxi-

mated by the following set of algebraic equations

*
. Pgi(Y)Wghg = 0, (3.11)

I ~12

1 *
7 By

3

Whe.re "
h = hl -

Multiplying equation (3.11) by Wy and introducing
By (3.12
p = Yo' -12)
we get the following matrix equation
‘I' f—

M (y)q=20 (3.13)
whereWMT(Y) is the tramsposed matrix of M(y) and q is a column vector with
elements qq-

Thus, by finding those Yo for which

det{M(y )} = 0 (3.14)

and the corresponding nontrivial soclutions, ?n and E;, of the equations

14




My ) -?n = 0, (3.15)
and

M(y )eq =0 (3.16)

*
we can determine j; and h; numerically. A detailed analysis of how to determine
Yo 3; and E; from equatidns (2.13) and (2.18)715 given in Appendix D.

We now go on to consider the comstruction of the solutlon of the non-

homogeneous integral equation
i
A1 =177, T E Y, (3.17)

Let us consider the special case where the inverse operator érl(y) has only
simple poles. Furthermore, we assume that for each pole there i1s only one linear

independent nontrivial solution iﬂ of the equation
atv )-1 =0, (3.18)
*
and thus only one linear independent nontrivial soclution En of the equation
T *
4 (y)'h = 0. (3.19)

We also assume that 1?nc is an analytic function in the entire y-plane, The

sclution of the integral equation (3.17) then takes the following form

1@ = § G- vt KE 1 b T (4 0 (3.20)

ext

{c.f. equation (6.29) in [11]). When the incident wave is a step—function in

time we have the following time response for the induced current density J(r,t),
-1
= - L J—
J(z,e) = Ulet - n ) Et v, {oxH exply (- n)1.h>

[(_En-j_n,hnﬂ—l 1, EXP[Yn(nO - ct)]. (3.20)
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Here n, = é'fo where e 1s the direcrion of propagation of the incident wave,

r is the point on 5 first hit by the incident wave, En is an integral operator

defined by

(B 0@ = - o Jsﬂﬁs)xtv exp(-y |r - ' DIxE(x")ds’, -

and

{f.8> = [_f_(g_) -g.*(g_)ds.
-8

For the ¢-independent modes we get the following approximative expressions .

. (n)
By i) (5 ~ L by v (3.22)
and
B oibde T b, Gum @ v ™ e T are™ s (3.23)
i,2 1,8
where - -
w.w_ b (Y ) = E B(E ’E ;'Y)W W »
i"g 12 'n ki'kg ki kg ki kE
B(£,£'3¥) = a(§,£7)A (£,8") +a' (g, (5,87,
2T
A (E:E") = J gR)cos wy,
)
and
g(R} = % exp (-yR) .

Furthermore, the coupling coefficient_for the ¢—independent modes takes the form

L5 e [ .




In the next section we will present the results of the numerical calculations
. obtained by using the method ocutlined In this section. Some altermative
numerical methods are presented In Appendix C, and certain properties of the

convergence of the numerlical scluticn is given in Appendix B.
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IV. Numerical Results

In this section we will discuss theresults of the numerical calculations

that have been performed on the basis of the theory cutlined in sections IL and
ITI. First, we will present the calculations of the natural frequency
the current distribution, and the charge density of some of the natural modes.
Then, we will continue with the construction of the time history of the current
and charge induced on a prolate spheroid by a step functieon incident plane wave.
For practical purposes we are mainly Interested in electromagnetic inter-
action of a2 plane wave and relatively slender sctructures {aircraft and missiles
are examples of such structures). For slender structures the most important
current ‘density is independent of the azimuthal angle ¢ and satisfies the
integral equation (2.13). Therefore, the numerical calculations will be

limited to the soclution of the integral equations (2.13) and (2.18).

A. Numerical Determination of the Natural Modes

The prolate spheroild used as a scattering object together with a coordinate

system is depicted In figure 2, The semiminor axils is denoted by a and the

semimajor axis by b.
In order to determine the natural frequency, current distribution and .

coupiing vector of-each natural mode it is necessary to find the nontrivial
solutions of equatloms (3.10) and (3.13). Throughout all the numerical
calculations the prolate spherold was divided into 32 gegments (see figure 2).
However, since the current distribution and coupling vector of each mode is
either an even or an odd function with respect to the x-y-plane all matrices
involved consist of 16 rows and 16 columns.

The location of a natural frequency 1s determined from the equation
det{M(y)}} =0 (4.1)

{c.f. equation (3.10)). In Appendix D we have shown that equation (4.1) is

satisfied for those values of ¥ that—satisfy the equation

tNN(Y) = 0. 4.2

18
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Figure 2. A prolate spheroid with the segments and sample points
used in the numerical calculations.

19




Here, tNN(y) is the last diagonal element In the triangular matrix obtained
by applying the Householder triangularization method to the matrix M{y). An
iterative method was used to find the solutions of equation (4.2). Each
iteration was started by an initfial guess of the nartural frequency. A method
similar to the Newton-Raphscon method of finding zeros of a real function was
then used to find the natural frequency. Each iteration was stopped when the
absolute value of the difference of vb between two consecutive iterations was
less than .001. The value of [tﬁﬁfv)| was then found to be less than .0001,
whereas |tii(y)|, 11 g N-1, varied between .1 and 1. It was also found
numerically that all zeros of det{M(y)} are simple zeros. Note that each zero
of detiM(y)} is a pole of M_l(v), the inverse of M({vy).

The result of the numerical search in the complex y-plane for the poles
of M_l(y) is ghown in figure 3. In calculating the results presented io
figure 3a the ratio of the minor axis to the major axis of the spheroid was
chosen to be .l1. Since all poles of M_I(Y) have negative real part and since
all poles except those on the negative real axis occur 1n complex conjugate
pairs we only present the second quadrant of the complex y-plane in figure 3a.
In figure 3a we observe that the poles of M_l(v) occur in layvers. This fact
has also been observed In previous studies of the natural frequencies of a thin

[9’10]. Following the notation introduced previouslytgj, we

wire and a sphere
use the index £ to describe each layer of poles and the index n to describe

a pole within each layer. Here % is a positive integer and n i{s a nonnegative
integer. Poles on the negative real axis have Index n = 0. Poles in the third
quadrant can then be characterized by a negative value of n. We have also

listed some natural frequencies in table I.

In figures 3b and 3¢ we have graphed the locus of some of the natural
frequencies as the length of the minor axis (2a) varies, but—the length of cthe
major axis (2b) is fixed. In figure 3b we have graphed the normalized quantity
yb and in figure 3c we have graphed yd. Here, 4d is the circumference of an
ellipse with minor axis 2a and major axils 2b;—i.e.,

[1 - (1 - a%/b%)sinZs]" do. (4.3)

T/ 2
d=5% [

"0
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Figure 3a. Natural frequencies of a prolate spheroid where a/b=.1.
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Figure 3b. The locus of natural frequencies when .lsa/b<l. The location of the
natural fregquencies for a/b=.1, .2, .5, 1 is indicated on the curves.
Thie arrow indicates the direction Inm which the natural frequencies

move for increasing wvalues of a/b. .
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Table 1, Watural frequencies of a prolate spheroid where a/b = .1

g n Re{vb} Im{yb}
1 1 -. 265 1.458
2 -.400 2.977
3 -.497 4.510
4 -.582 6.051
5 -.658 7.598
6 -.727 3.149
7 -.793 10.703
§ -.855 12.260
9 -.915 13.818
10 -.973 15.377
11 ~1.030 16.937
12 -1.08¢6 18.450
13 -1.141 20.006
2 0 ~-2.969 0
1 -3.776 1.888
2 ~4.278 3.575
3 -4 . 670 5.194
4 -4.,975 6.782
5 ~5.248 8.352
3] -5.493 9.911
3 0 -5.697 0
1 -6.658 2.012
2 -7.311 3.812
3 -7.834 5.509
& -8.290 7.146
5 -8.717 8,727
6 -9.003 10.306
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Table 2. Natural frequencies of prolate spheroids where a/b = .1, .2, .5, 1

a/b = .1 a/b = .2 a/b = .5 a/v =1

£ n Re{yb} Im{yb} Re{yb} Im{yb} Re{yb} Im{vyb} Re{yb} Im{yb}
o 1 1 —-.265 1.458 ~-.336 1.374 -.453 1.152 ~,500 .B66
n 2 ~. 400 2.977 -.516 2.817 -.703 2.380 ~.702 1.807
3 -.497 4,510 ~.635 4,277 -.890 3.623 -.8413 2.758
4 -.582 6.051 -.773 5.745 -1.042 4.876 -,.0954 3.715
5 -.658 7.598 -.876 7.220 -1.,171 6.136 ~-1,048 4,676
6 -.727 9,149 -.970 3.698 -1.286 7.401 -1,129 5.642
7 ~.793 10.703 -1.057 10.180 ~1,388 8,669 -1,201 6.610
8 -~,855 12,260 -1,138 11.666 -1,480 9.938 -1,267 7.580

2 0 -2.,969 0 ~2.672 0 ~-2.130 0 ~1.596 0
1 -3,776 1.8856 -3.522 1.652 ~-2.879 1.210 -2.157 871
2 ~-4.278 3.575 4,070 3,195 ~3.408 2,410 -2.571 1.752
3 -4 .660 5.164 -4,491 4,694 ~3.830 3.609 -2.908 2.644
4 -4.975 6.782 -4.,839 6.174 ~4 . 187 4,810 -3.195 3.545




For poles in the L = 1 layer we note that the absoclute value of the real part
of yd is a monotonically increasing function of a, whereas the imaginaxry part
cf vd stays almost constant. Making a comparison with circuit theory this means
that the Q-value of each mode 18 a decreasing function of a when b is fixed.
Another way of expressing the same fact is te say that thin spheroids are more
resonant as compared to thick spheroids. For poles in the & = 2 layer we note
that the absolute value of the real part of yd is a decreasing function of a.
In table 2 we have tabulated some of the natural frequencies of a prolate
spheroid for different values of a/b.

Comparison with previous calculationstS] of the location of the first
pole in the first layer was made and good agreement was found 1in those cases
where a comparison could be made. Unfortunately, for .3 < a/b < .02 it ig hard
to make accurate comparisons with the results presented in [ 3] since the series
expressions used there converge very slowly for .3 < a/b < .02,

The current distribution of some of the mnatural modes is depicted in

figure 4. In figure 4 we have chosen to normalize the current density, j EO

that its absclute value is less than or equal to cone. To get some 1dea ognthe
total current assoclated with each mcde we have also graphed the current distri-
bution multiplied by p/a. Here, p = p(z) is the "local radius” of the sphercid.
The current distribution is an odd (even) function with respect to the x-y-plane
for modes where the index n is an even (odd) integer. Moreover,the current
distribuction 1s a real function for modes whose natural frequency is on the
negative real axis in the cowmplex s-plane. In the case of a sphere we note

that (1) the current distribution can be represented by real functions (spherical
harmonics) and (2} that the current distributilon of modes with indices & = 1,
n=2and £ =2, n=0 are identical. For spheroids with an arbitrary eccentricity
it can be observed from figure 4 that the current distribution is almost real.

al

of the accuracy of the numerical calculatione indicate that the complex values

This fact has also been observed in the case of a thin cylinder Egtimates

obtained are not due to numerical errors. This means that the current distri-

bution indeed is a complex function.
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The continuity equaticn enables us to calculate the charge density, Qpn®

of each mode frem the current density, j?n’

1
= 3 - 2
q,, = 3,0 /ey, ). (4.4)
Here the prime denctes differentiatlon with respect to £. The charge density of
some of the matural modes is depicted in figure 5. In figure 5 we have chosen

the same normalization as in figure 4, 1.e., so that
mix{lJln(z)l} =1,

In order to get some idea about the total charge asscclated with each mode we
have also graphed the charge density multiplied by p/a. Note that the charge
density is an even (odd) function with respect to the x-y-plane for modes where
the index a Is an even {odd) integer.

The results nresented in figure 5 were obtained from the current density,
jﬁn’ by performing a numerical differentliation of pjln (e.f. (4.4)). Therefore,
we expect the resuits for the charge density to be less accurate than the current

density {especilally close to the poles of the ellipsoid).




[y
w
R

Figure 5a. 7 . charge density of natural modes of a prolate spheroid
v sere a/b=.1.
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3. The Coupliup Coefficient-

Assume that the perfectly conducting preclate gpheroid 1s struck by an
incident step-function plane wave. The angle of ‘incidence and the polarization
of the incident wave is shown in figure 6. It is desired to cobtain the total
induced axial current on the scatterer as a functicn of time and space.

The current density can be calculated from equation (3.21). Let us
introduce a normalized coupling coefficient Ctn’ defined by the expression

_ inc . =4
Con = Lo Rop?HBey Lono ) (4-5)

where

ine -
10 ks F (x 6 + &) 7.
ia nxy exp[}in(h sin z cos &) ]

Here the incident wave is a _step-function plane wave passing through the origin
of the coordinate system at t = 0, The coupling coefficient as defined by

*
equation (4.3) is independent of the normalization of—the coupling vecter E“n’

whereas it depends on the normalizarion of i,,- As mentioned previously we

have normalized iﬂn so that
mgx{|1{n(z)|} = 1.

The variation of an with the angle of incidence for four different modes
is depicted in figure 7. We note that
(1) all coupling coefficlents investigated are zerc for & = 0%, which
means that no modes are excited where the current distributicn 1s
independent of the azimuthal angle 9;
{(2) for 6 = 90° (broad side incidence) no modes are excited where the
current distribution is an odd function with respect to the x-y-plane.
The only quantity that varies with the incident field is <ii2c’hﬁn>' Thus,
varying the angle of incidence or the shape of the incident waveform requires
very little extra calculation time once the natural modes of a given structure
have been determined.

Due to the normalization chosen when calculating qy» Ve have, of course, —

the same coupling coeificient; C‘?n, for the charge densityv as for the current .

density.
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Figure 6. A plane wave impinging con a perfectly conducting,
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C. The Time Domain Response

Jne representation of the current density iInduced by a step-function plane

wave is given by equation (3.21),

J(r,t) = Ufct - n) 7J Y_I(EFH exply, (n' - n )1k, >
(o} ext Ln -0 in o 111

[<§in'i£u’hin)]dli2n exPEYRn(no - Ct)]] (4.6)

£9,11]

Another representation of J{(r,t) is given by

i(_r_,t) = U{ct - n) ejzct [y;i(ﬂxﬂo e.‘tp(Ylnn')U(ct - nf)’ﬂﬂ'n}
E<iﬂ,n.iﬂ,n’hﬁ.n>]_1‘j—2n exp (ﬁmc‘:)] 4.7

For & < £y both (4.6) and (4.7) give J{(r,t) 0. BHere £y ig the time when the

wavefront first hics the scattering body,

t =c ! nin fé-r}.

° I€S
The representations (4.6) and (4.7) are both sums of damped sinusoidal osciliations
for t > t.. Here t, is the time when the wavefront just passes the scattering

1 L
body,

£, = c_1 max {8-r}.
1 =
YE€s
For intermediate times, to < t < tl’ (4.6) consists of 2 sum of damped sinusoidal
oscillations whereas (4.7) does not. The representation (4.6) is numerically

unstable for b, st <t whereas (4.7) converges for all times.

From the numericai point of view it is impertant to know how to truncatsa
the sum (4.7) and st?l1l maintain a given accuracy. Therefore, wa have numerically
studied the convergence of the sum (4.7) as the number of poles is increased. The
results of this study are presented in figures 8 through 13 in form of graphs of

the time history of the induced total current on the sphercid at z/b = -.5, 0, .5
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with the number of poles and the angle of incldence as parameters. 1In figures

8 through 13 we have Introduced a normalized axial current, I = I(z,t), defined

by
I{z,t) = 2WDJ(Z,t)/(bHO)-

Throughout this time-domain study the shape of the spherold remained fixed
with a/b = .1. The time scale 1g chosen so that t = { when the wavefront first
hits the scattering body.
The time domain current response as shown in figures 8 through 13 has teen
obtained by combining the contributions from poles In the second quadrant with
the ceontributions from their complex conjugate poles, i.e., poles in the third
quadrant. The accumulated contribution from the first nine poles in the § =1
layer is considered together with a solution, labeled "all poles', which consists
of 13 poles from the L = 1 layer, 7 poles from the & = 2 layer and 7 poles from
the &£ = 3 layver. A comparison with the conventional method of first solwving the
integral equaticn aleong the ik axis and then performing a numerical Inverge Fouriler
transform was alsc made. Excellent agreement was found and the curves labeled "all
poles" also refer to the results obtained by this conventional method.
From these curves we can make the following observations: .
(1) There is no contribution to I{0,t) from modes where the index n is an
even integer. This follows from the fact that the current distribution
is an odd function with respect to the x-v-plane for modes where n is
an even Integer.
(2) For t > 12b/ec only the £ = 1, n = %1 poles are needed to accurately
describe the induced current.

{3) Tor t > 5b/c only the first five poles in the 2 = 1 layer are needed

to accurately describe the induced currents

(4) Poles in the & = 2 layer only contribute appreciably for t < b/c.

(5} The effect—of the causality is clearly indicated.

() The relative importance of the higher order modes as compared to the
fundamental mode is a decreasing function of 9. This effect can also
be seen in the graph of the coupling coefficients (figure 7).

The ¢—~independent part of the charge density, o{g,t), at an arbitrary point

on the scattering bodv can be calculated from the é-independent part of the
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induced current density, J(Z,t), by using the continuity equation,
t
c(g,t) = ~ J v-J(E,c")dt". (4.8)
o

At the "north pole"” and the "south pole'" of the prolate spheroid (the points A&
and B in figure 2) equation (4.7) can be integrated to

£
o(E _,t) - lim [ 2rpJ. (g, ¥de'/[sCE ) - s(£)]
o Jo 13 °

EE
° (4.9)

t
al0,t) = limU 2npd (E,t')dt'.-’S(E):,
E+0 o 5

where

£
s{g) = J 2mp (£7)dg".
o]

When calculating the quantities G(Eo,t) and 7{(0,t) we used the representation
(4.7) for JE(E’t)' A numerical integration, based on the trapezoid formula, was
used for 0 < t < t, whereas for t > ] the sum {4.7) was integrated amalytically
termwise and summed numerically.

In figure 14 we have graphed the time history of the induced charge density

at z/b = t1 for & = 300, 600, 90°. The normalized quantity g = q{z,t) used in

figure 14 is defined by

q(z,t) = o(,e)/ (e E )
where Eo is the strength of the incident electric field. The convergence of
the charge density as the number of poles is increased is studied in figure 15.
It can be observed that the convergence of the charge density as a functlon of

the number of poles 1s somewhat faster than the current density.
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The following table summarizes the different combinations of parameters

for which numerical data are presented in figures 8 through 13,

Figure Quantity g Time interval Number of poles

8 current 30° O<ct/bs 12 {1, 2, 3, 4, 5, all
g current 30° 0<ct/bs5 5, 6, 7, 8, 9, all
10 current 60° 0<ct/b<12 | 1, 2, 3, &4, 5, all
11 current 60° 0<ct/b<5 5, 6, 7, 8, 9, all
12 current 90° 0<ct/bs12 |1, 2,3, 4, 5, all
13 current — 90° 0<ct/b<5 5, 6, 7,8, 9, all
14 charge 30%, 60°, 90° | 0 < ct/b < 12 all

15 charge 60° 0O<ct/bs=12 |1, 2,3, 4, 5, all

Note that

(1) the incident fleld is a step-function plane wave;

(2) the minor-axis—-to-major-axls ratio of the prolate sphercid is .l;

(3) t== 0 when the wavefront first hits the scattering body;

(4) all data in figures 8 through 13 refer to the total induced current at
z/b = -.5, 0, .5;

(5) all data in figures, 14 and 15 refer to the Induced charge density at
z/b = £l.
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Appendix A

Natural Modes of a Perfectly Conducting Sphere

Although the sphere has been the subjectof extensive investigations for
many years by using the methoed of eigen-function expansions[l’lo’lgj we will
here determine the natural modes of a sphere by using an integral ecuation
approach. There are several reasons for treating the sphere here: (1) we
wish to give a simple example to expound the method discussed in Appendix D
of [11]; (2) the analytical results derived for the natural modes of a sphere
were very valuable in the numerical calculaticon of the natural modes of a
spheroid; {(3) in the sphere problem we will see some of the connections between

[13—16] and the mnatural modesEl’llj.

the characteristic modes
We will start with an investigation of the eigenvalues and eigenfunctions

of the integral operator L, defined by

L-] = f nx(vGxj)ds, a.1)
]

when 5 is the surface of a sphere. The approach we will use in the following

is indirect. First, we will show that the eigenfunctions of the "ordinary" .
expansion of the wave equation by separation of wvariables in spherical coordinates

alsc are gzigenfunctions of the operator L.

Introduce the functions

aY oY
g - mn o 1 mn ~

where (9,9) are the polar angleg and
m
= - =ms
Ymn(e,¢) Pn(cos 8)exp(-img¢), nx 0, 0 m n
are the spherical harmonics. We then have

(Loir D(8,4) = J a’ E(RIK(6,8",¢6 — ¢") 1  (8',¢")sin 8' 49" de' (A.3)
S

where a is the radius of the sphere,
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£(R) = —(1 + yR) (47R>) " exp(—R),
R=a(2 - 2 cos u)%,
cos o = cos8 6 cos 6' + 8in 8 8in 87 cos(d - ¢'),

K(8,8",¢) 1s a matrix with elements:

kee(e,e',w) cog § ~ cos B cog 8' cos ¥ — sin § sin 8T,

ke¢(8,8',¢) {cos 6' - -cos 8)sin v,

k.. €8,8",w),

k¢e(3,9 W) 06

and k¢¢(e,8’,:b) - kee(a:s'ﬂ#)-

After some lengthy algebraic manipulations equation (A.3) can be transformed

into S
(;;ién)(e,¢) = %-(l + é%ﬁ Jsag(R)gge,e',¢ - ¢')-i;n(8',¢‘)sin g' do' dé' (A.4)
where _
g(R) = (47R)™ exp(-yR),

N(8,6"',9) Is a matrix with elements:

nss(ﬂ,_',\i) = ~ cos VY,
nab(e,e‘,w) = cos 8' sin u,
n$5(5,6',¢) =0,
n¢¢(8,8',w) = - 1/sin 6.
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L21] .

Making use of the expansion

2 (1)
g(R) = (~y/4w) } (20 + l)jn(iYa)hn(iTa)Pn(cos o)
n=0
where
a -1
Pn(cos &)_E_mzo Em(n -—m![f{n + m)!] Pz(cos BJPz(cos 8" Ycos m{gp — &)

equation (A.4) can be simplified to
12 2 o D
(Lejy Y(8,8) = = = [v" a” 3 (iva)h Giva)l 1 (68,¢). (A.5)

tiere the prime at the bracket denotes differentlation with respect to va. -

Introducing the modified spherical Bessel functions in(z) and kn(z), defined

byElJ
i () = iy G, *
(L)
o2
kn(c) = i hn(i;)
we have
> (Loi' e, e =2 y2 a? 1 Gk _(va)T i’ (8,8 (A.6)
= dnn » @ z Y n-f n.réd don 20 - h
Now with the I«Jronsk:{,r:m[1:|
Wiei (2),ck ()] = zi_(0)lek ()] - Tt ()3 ek _(8) = -1
we have
L3t )8,) = {5 - [yal_(v)l' vak_(va)}i! (8,4)
. = - {% + Yain(va)EYakn(Ya)]'}i;n(9,¢)- (4.7)

(&1

A
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To sum up we have shown that

where _ ——— e — —
3L 4 Cat (va)] yak (ya) = = 5 4 = vaf (ya)lyak (va)]'
mn s 2 1 HtEIph e YRR L2 T g ey rax,rasd
ol ién is given by eauacion (a.2).
We will now scudy 1;q, the eota erpact of iii, given by
[ 5y
T S SN . G N - RN 1
Ian'®e9) = GaE ey (898 - Ghhe

[n Lie same way onte can show chat

here : S . .

. . ! ] - '
+vei (va)lvek (va)l = -5+ Ivai (a)l vak (va).

¢ -

LVich

LI qn
—mn *nn

LLiS DWW casy co ghwow thac

T [ 3

= A

Losix'™ A
=] -mn MmN —Tn
et che operacor L, is deflned by
L k= | “Gx(n-£)ds.
-3

a2

(A.8)

(A.9)

3,103

(a.l1)

(a.12)

(a.11)

(A. 145




From equation (A.l4) and the analvsis in Appendix C of [11] it Follows that

T

L +h'* = — x' h'* (A.15)

—mn mn —onn

where

and éj is the adjoint operator of L.

With

nk _ !
he = dan (A.16)
we also have

T

-

B I A LN (A.17)
—mn mn —mn !

Noetice that ién and Q&; are proportiomal to the surface current density

and tangential magnetic field, respectively, for transverse magnetic {TM) fields
and that j' and h'"* are proportional te the current density and tangential
n ~mn
magnetic f£ield, respectively, for transverse electric (TE} fields on the sphere.
From equations (A.8), (A.ll), (A.15) and (A.17) we can form the following

set of equations:

- 1 ot _ l = 1 : ! - . ' _ < !
GLrW-Al = Gra i =lral Ga)l yak (ra)ig. (4.18)
l : o _ Ll oAt oy : i T
(GL:D-i = (G 7 Aping Yaln(\a)Eyakn(Ya)] it (A.19)
1<) n'*= & XA dn'* = - yat (ya)[yak_(ya)]1' n'* (A.20)
o 2= =7 —mn 2 & mn—mn yastvasiyar, Wy —mn’ )
1 . T rrk _ 1 - " nk _ ' ik i
. (GL=L)h*= G+ A" dhi* = [yal (ya)l vyak (vadh %, (A.21)
. Lyipegr = AT = - .
5 L f_;) s = G i, vai_(ya)lvak (ya)l 1’ , (a.22)
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1 n " = L PR 1 = . N ' N re o -
zL1l+DL-in =G E)-mn)] o = Dvat G2l vak (va)iy . (a.23)
A D on* = &4 yn'* = [yat (va)1' vak (yadh'* (A.24)
2=,2" —“mn 2 ' "mn’—mn TS MY Y& MR 2nn :
<13 LT)'h”* = (~1— 1 A" Yr"* = - yai (va)lvak (va2)]' n"™* (A.25)
2 = =7 -mo 2 ' "mn'—mn yaL Ay vax, iy “mn” ’

From equations (A.l18) through (A.25) we observe that imn and i%n diagonalize
l 1k nk 3 T
the operators 2 L+ L, and that Emn and hmn diagonalize the operztors 5 4 L
This diagonalizatlion is, of course, valid for anv complex frequency s = cy.
We will now go on to compare the diagomalization procedure for the integral
operator derived from the magnetic field equation with the diagonalization

[13]

procedure derived from the electric field equaticon The integral equacion

derived from the electric field formulation of the electruomagnetic scattering

problem can be cast into the following operator form
z-5 =z ! ™ (A.26)
where 24 is an integral operator defined by

Z:i= (L -0 m{¥$ + ya),

s =-y" f GV-1ds",
S

IRYIN . . . - .
e " 1s the tangential component of the incident electric field, and Z, is the

wave 1lmpedance of free space, ZO ~ 3770. After some algebraic manipulations we

get

é.imn = Cén ién (a.27)

and

el = I s rr
‘Z—lmn LN, n {A.28)




where

G =T EaYin(aY)] Lavk_(ay)]
and
-t = 2 T - - -
S (avy) 1n(af)kn(ar)-
Moreover, with
R= (Z+g%/2 (A.29)
and
X = (2 - Z%)/(21) (4.30)

the operators R and X are real and symmetric. It has been shown that for

r13]

y = — ik, (k real), we have

i‘j-n'm = Xr:m é.*j-nrm (4.31) .

and
4 "1;1"[1'1 - Xr't;n E'ir'rlm (A.32)
where —
i = - 1! (ka)/y! (ka),
and

L

oo -
yN = - §_(ka)/y_(ka).
We notice that 1in the case of a sphere the same functions diagonalize both the
elactric field integral operator and the magnetic field integral operator.

It has been shcn-m[:w:I th

at for real frequencles {y = - ik), the electro-
magnetic fields generated by surface current densities on an arbitrarily shaped

body satisfying
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‘ © o X'j = xR (A.33)

diagonalize the scatcering operator. Without proof, we conjecture here that

solutions of ecquation (A.33) also satisfies
Lej = A (A.34)

for real fregquencies.

e now proceed to consider the natural frequencies and modes for a sphere.
First we notice that i;n and i;n correspond tv the eigenfunctions gy s intreduced
in Appendix D of [1173 and that hén and Q;n cerrespond to G- The nacural

fraquencies are given by the solutions of the equations

1L + 23" = 0. (4.357
mi

2" =
I + 2 0 (A.36)

(c.f. equation (D.21) in [11]). 1In the case cf a sphere 2quations (&.35) and
. tA.3o) can be reduced twu

v

[vai_(va)]' vak (va) = 0, (4.37)

I - T s -] —1_' = .
.aln(ra)Lwakn(.n)A 0, {a.38)

and equations (A.37) and (A.38) can be split inte the following set of equativuns

kn(ya) =0, (A, 393
Trax_(ya)1 =0, (A.40)
1 (va) = 0, (A.41)
Lvai (231" = 0. (4.42)

o9




The solutions of equations (A.41) and (A.42) are pure imaginary and correzpond

to interizsr {(gavity) natural frequencies. The solutions of {A.39) and (A.4Q)

sive the exterilor natural frequencies of the sphere.

Assume that Tén satisfies equation (4.3%9). It then fellows from equations _

(a4.18) and €(A.21)} that

l - P =
(2 1 L+ n 0, (X.43)
and
i _ T nk _,
(F L-L>h =0 (A.44)

Next, let Y;n satisfy equation {A.40). TFrom equations {A.I19) and (A.20) it

then follows that

L-L-i" =0 (A.45)
and
(% L -L1hn* = o, (A.46)

) @

However, we have seen that*jén = h'"* and i;n = Dé: {see equations (A.13) and

(A.16)). Thus, in the case of a sphere the operators 5 I — L and % I - é? have
the same nontrivial solutions at the natural frequenci;s. This fa;t was of
great help in the numerical calculation of the natural modes of a spheroid.
Notice that eguations (A.18), (A.19), (A.24) and (A.25) describe the
exterior scattering problem whereas equations (A.20) through (A.23) describe

the interior scattering problem (c.f. Appendix C in [11]).
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Appendix B

. Some Remarks Concerning the Convergence of the Numerical Solution

In this appendix we will consider some of the convergence properties of

the numerical solution of the irtegral equation

r

o
ig) - J L(g,£")3(c")dE’ &) (B.1)
0

,inc
]

1o r=

where the kernel L({5,8') = A(E,E")p(Z") and A(£,£") is defined by equation (2.13)
in section II. We will pay special attention to the convergence in the numerical
determination of the ratural frequencies.
It is easy to show that A(£,£'} has a logarithmic singularity at § = '
and that
c:o Eo
( J Lee,e) % dgagt < = (8.2)
VIR
Thus, the kernel L{(£,£') is of Hilbert Schkmidt type.
Let 3 be the Hilbert space consisting of all functions [{£)}, defined on
. the interval (0, é‘,o), such that

g

2 o
LE[i© = ! E(EYE™(E)dE < o (B.3)
0

ax
i=1
tworm of the operator L,

loreover, let [Ei} be a complete orthonommal set in 3. The Hilbert-Schmidt

Z0
(LEY(5) = J L{z,£")E(g")dL", (B.4)
0
is then given by

ILe, i (5.5)
1

2 )
aT h — v
Ly = L

and from (B.2) 1t followrs that ||[L| < . The Hilbert Schmidt norm does not
: (.20
depend upon the partfcular basis used but only upon the Hilbert space -,

Thus, the orchonormal set, {Ei}i— used as basis for i can be chosen to be

L,
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independent of ;. Lt also follows from (B.4) that for any ¢ ~ O there existcs

a2 finite number N such that

]

g 17 < e (3.6)

i
i=N+1

Next we introduce some new quantities. The reason for Introeducing these
quantitles will become clear as we proceed, Let H¥ denote the finite dimensional
. . . N ) -
Hilbert space spanned by tfi}i_i. The orthogonal complement of ﬂﬁ with respect

to ¥ is denoted bv H;. Thus, we have
I = H% + 3. {B.7)
Let us also define a projection operator PN so that
PﬁK = Hﬁ (B.8)

and

(1 - PN)JC=}<'_,:. (8.9)

where 1 is the identity operator on X.

The integral vperater L = L(7¥) can then be split up into two parts

I. = LN -+ RN (B.13)
where
LN = PNLPN (B.11)
and
- — ]
RN L lﬂ (B.12)
With
1 -
A== I -1L {B.13)




and

i

A‘\]=EI_LN (B.].li-)
we have - _ i}

iy = A+ R.\T (B.15)

-1 -1 .
assume that v is sveh tnet A = A (y¥) exists. From equation (B.b; 1t then
]—1

We then have

follows that we caaz choose ¥ such that ”RN” < ”AHH

-1 -1, -1 -1 |
A=A (I + A RN) . (B.16]

L. 1
|

Moreover, since HA_l RW” s A HRNH < 1 it foliows that (I + A
) -1

s that the ipverse oparatur A" &lso exists. Thus, for any vy such that & ()

-1
RN) exists

. . : -1 . .
evisrs then there exists an N such that AN (v) also exists. But the existapce

. . L _ 3 -1
of the inverse operator a .  eisures the axistence of the inverse operator M“ s
Al &

My = PyAPL. (8.17)

- . - . . -1
in refererce | l17) we have shown that the only singularities of 4 are

poles. TFrom the analysis presented in section ITL it folleows that the only
. s . -1 - N

singularities of M,,” also are poles. Let Tﬁ )
~1 — : :

& 7w From the above it then follows that for any given 53 » 0 we can find a

be a pole of M;l and Y, 2 pole

at

integer N such chet

|T§N) - Yn| < s. (8.18)

tevation (B.14) ensures the convergence of the numerical calculation of the

poles.
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Appendix C

Two Numerical Methods for Determining the Natural Modes

In this appendix we will consider the matrix equation
M(y)*3 = E. (C.1)

There are different ways of arriving at this equation. Two examples are the
matrix approximations of the magnetic—-field integral equation and electric-—. _
field integral equation. TFor all the caseg under consideration we will assume

that each elementof the matrix M(y}, m, (y), is an analytiec function of %. The

iz
column vector f is determined by the incident [ield.

Methoed 1 _ ) -
Since M{y) 1is an analytic matrix valued function ofy it follows Immediately

that Mﬂl(Y), the inverse of-M{y}, is also an analytic matrix valued function of

v except for those vulues of v, (yn), where det{M(y}} = 0. For v # Yy the

solution of equation {(C.l) can be written as

T = nlen) T = RO -E/AG) (c.2)

where )
d(y) = det{M(y)}

anl R{y) is a matrix whose elements are the cofactors of the elements of the
transposed matrix MT(T). Suppose now that y = Y, and M(Yn) is a N » N matrix
of rank N - 1, so that d(yn) = 0 but d'(vn) # 0 (vhere prime denotes differentiation

with respect to ¥). Following the procedure in reference [11] we then have

T o -1 3
j= ) [&r=y0da"(y 021 " Ry DE (c.3)
n n n
ext
when f is an analytic column vector valued function of vy.
Since M(Yn) is a N x N matrix of rank N — 1 there exists one and only one

nontrivial solution, 5;, of the equatien
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M~ r =
My 273 =0 (C.4)
and one and only one nontrivial solution, a;, of the equation
T — - R
M (y Yeq, = 0. (C.5)
Each component of equations (C.4) and (C.5) takes the follewing form

= 0, 141 <N (C.8)

) m, .4, = 0, l1<i<WN (C.7)

Here -

=
I

TR TS

and j, 1s the pth component of 3; and q,, is the LR component of En'

Let R(Yn) have elements r From the expansion of the determinant of

ig”
M it then fellows that

0 (C.87

il

.Y =
1 12 2k

[ s =

£

=nd by comparing equations (C.6) and (C.8) we get

= s .= ¢.9
T = 2 1 N (c.9)

where tie az's are constants.

= L
From the expansion of the determinant of M (Yn) we have

|
in




mhirkﬁ =0 (C.10)

i1z

=1

so that by comparing equations (C.7} and (C.10) we have

r =D r (Cc.11)

ke = Prdp» ek = P9y

where the bg's are constants. Comparing equations (C.10) and (C.11) it follows

that
o T Cquk (C.12)

where C 1{s a comstant.
Thus, we have the following solution of equation (C.1)
n

7= 106 -y a7 e @E DT (c.13)
n

where the constants Cn have to be determined by numerical methods by considering

the solution of equation (C.1) In the wvicinity of each pole. The derivative of .

the determinant can be evaluated numerically by finite difference methods.

Method 2

The second method is based on the Householder method for triangularizing

matrices. To each N x N matrix M there exists a unitary transfcermation U such

that
UM = T (C.14)

where T is an upper triangle matrix with elements'cii and det{U} = 1, so that

N
det{M} = det{T} = C..- (C.15)
, ii
i=1
Moreover, i1if M(yn) is of rank N - 1 we have
tNN(Yn) = 0 and tii(yn) # 0, 1 <1< N-1.
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From this 1t follows that
N-1
T = ! -
d (Yn) tNN(rn) I tglv)- (C.16)

For v # Y, ve have

N
U= T ' = TR/det(M} = TR/ o -

. c.17)
1= i1
Since T 19 an upper triangle matrix we have
N N-1
i tNNrN'N/igl fi1 ~ rNN/iI;Il i1 (C.18)

and the last expression In equation {€.18) is well defined even for vy = Th

For v = Y, ve have {(c.f. equation (C.12))

T

Ry ) = C j a (C.19)

and we normalize jn and q so that

Igg = ! and g = un (v )

It then follows from equation (C.19) that

(Tn) = Cu (Yn)- (C.20)

NN NN

Comparing equations (C.18) and (C.20) we get
N-1

cn = 1/191 tii(*(n). (C.21)

From equations (C.13), (C.15) and {(C.21) we have
- : -1 ~T = =
I= 1 OO~y en v 2T (o -7 (C.22)
ext

where t (yn) has to be determined numerically from finite differences.

1
NN
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Aappendix D

A Subrourine for Triangularizing a Matrix A and Solving the

Equations A-E‘= AT-E = 0 When A is a Singular Matrix

In this Appendix we will describe a computer subroutine HLRDET that
triangularizes an arbitrary complex valued N x N matrix A. When the matrix &
is singular, i.e. det{A} = 0, the subroutine also determines nontraivial solutions

of the lhiomogeneous equations

and

e
0
n

<

The method used lhere ig based on the Householder method for reducing an arbicrary
matrix to an upper tyiangular matrix by a series of unitary transformations.
The subroutine is written in Fertran IV fer the CDC 6600 computer. This sub-

routine follows closely the subroutine CMLR for solving M linear complex equations

in N unknownsEls]. . . - ] .
£17

The algorithm we use is based on a method developed by Householder

Introduce the notaticons

th

Ek = the k column of the N x N identity matrix I, {D.1)
a, = the k™ column of the N x N matrix A, (D.2)
G, = (ET-E-)% = the Euclidean norm of a (D.3)
k k "k k? b
. *
ET = (;T) s 0.4
— - _.-'r--._ — __41'--_
vy = (ek ak)ek/] % akI, (D.5)
1
— _— —_ ___+ — 3
v = (.a,'c + akvk)/EZQR(ak + vkoak)] . (D.6)
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We then have

p— _ J— L — -1---_._I - __.fi-._ J— J— - —_
a; [(al + alvl) al‘[al(al + vy al)j (al + alvl) av;. {0.7)
Thus, the tramsfiormation Ul’ defined by
— —t
U, = I - 2ulu1, (D.8)

transfuorms the matrix A into & matrix UlA where in the first column all elements

are zero except for the first element. Next we suppress the first row and first
column in UIA and repeat the process described by equations (D.l) through (D.8)
on the (N-1)x(N-l) matrix. After N steps the matrix A is trangularized so that

UA = T (D.9)

where T is an upper triangle matrix with elements t and U is a transformation

12
N-1
v= N v =uu. ... B0 (®.10)
=0
where -
— —f
U =1=2uu (D.11)
ju} mm

- . . . th
and u is a column vecteor with N — m elements determined from the m iteration

of the algorithm (D.l) through (D.8). The transformation Uy actually only

introduces a change in the sign of the element t From a lemma proved by

F17] NN®

Householder it follows that Um is a unitary transformation and that

det{Um} = 1. Since Um is a unitary tranformation and hence U is also a unitary

transformation, the condition of A 1s preserved throughout the transformation, i.e.,
v(T) = y(&)

where

vy = Jlaff ja7h)
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and [|A]| is the Euclidean norm of A. We also notice that

N

det{A} = det{T} = I t.. . (D.12)
i=1 M1

Let the column vector Eﬁ have elements u Il 22 s N-m+1. The

fm’
infermation abeut the transformation U can then be expressed by a lower triangular

matrix W with elements w. . where

il
wey ® o, i< g
(D.13)
Yie T Ygeg-1,i0 T E
When the N *x N matrix A is of rank N - 1l so that detiA} = 0 we have
ENN = (0, but tii #0, l=i<N- 1. A nontrivial solution of
— D.14
A3 = 0 (D.14)
can then be determined in the following way. By multiplving equation (D.14)
from the left by U we get
UAp = T'p = O. (D.15)

Since all elements in the last row of T are zero we can, without changing the

value of T’E, put—
Py = 1 (D.16)

where Py is the last element—of E. Since tii'# Qfor 1l £ 1 <XN-1 we can

obtain the other elements of ; by backsclving equation (D.15),

-1

p. = - €

. l<41i<N-1. (b.17)
i ii

| et e B8

t. . P.»
+1 it s

n
=

A nontrivial solution of
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AT.qg =0 (D.18)

can be obtained by making the following observation:

o7 = (ua)T = aTuT, (D.19)
so that with
q=u'"5 (D.20)
we have
aT.3 = ATwT5 = 7.5 = 0. (D.21)

A wontrivial solution of equation {D.21) is given by

S, = Gﬁg’ 1< <X {(D.22)

where 61 is the Kronecker symbel. A nontrivial solution of equation (D.20) is

2
then given by

= _ ;(0)

q (D.23)
where E(O) is determined iteratively from the expression
—(n-1 T — — — —T —{(n)~
a . E'-s(u> = s(n) - 2u* EuT-s(n);, l1sn=sN (D.24)
o n - non
—_y —
and s(') = g. - Maxing use of the elements of the matrix W we get
-1) | _(n) 5 (a)
1% = ;s * " {
si si 2win Z Wgnsg . (D.23)

i=n

Equaticn (D.17) wes used in calculating the current distributlicn of each
mode and equztien {D.25) was used in calculating the coupling vector of each

natural mece.
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Appendix E

A Method for the Numerical Evaluation of-the Crder of Each Pole

A knowledge of the order of each pole is necessary when sclving transient
electromagnetic interaction problems by the singularity expansion method. For
speclal shapes of the scattering body the order of each pole can be determined
by analytical methods. For example, in the case of a perfectly conducting

L1]

sphere, it has been found that all poles are simple poles by considering

the differential equation for spherical Begsel functions. However, for an
arbirgvarily shaped, finite, perfectly conducting body there seems, as of now, to
exist uo general analytical methed that enables one to determine the order of

each pole. Therefore, we will in this Appendix discuss a general numerical method
to determine the order of each pole,

lLet 1L be a natural frequency, i.e., there exists iﬂ £ 0 such that
g(Yn){ln = 0. (E.1)

f11]

We also introduce the operators gﬁq, defined by

(B, 0@ = (-1)%amg ™! fﬂ(i)“{vtlz - o' [T exp (v _|r - £ DIxEGED ST (E.2) .
q < n

The order of each pole, p, 1s then given by the smallest value of p such that

ghq.in = 0, Osg=sp-1
and (E.3)
an'iﬂ £ 0
where
= Q(Yn) '

Translated into the numerical language this means the following. Let

Yo be a root of the equation -

dec{M{y)} = 0 (E.4)
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where M(y) is the matrix approximation of A(y). The matrix approximation of

B q is dencted by an. The order of the pole at Ty is then given by the

smallest value of p such that

det{M_} =0, 0<g<p-1
ng
and (E.5)

detLan} # 0

where e

Mno = M(Yn).
Frem ecuaticn (E.5) one can determine the order of each pole.

A knowledge of the natural modes enables one to calculate the current
induced on the surface of the scattering body.[llj The contribution from modes
corresponding to simple poles of é:l(y) are easy to obtain as we have seen in
section IIT of this note. The contributicn from higher order poles is not so
easy to obtain. For example, the contribution from a double pole has been
determined inm Appendix E of reference [11]. Since we have not yet encountered

the problem of calculating the contribution from higher order peles we find,

a5 of new,no need to ipvestigate this problem any further.
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