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ABSTRACT

The electrostatic field inside a semi-infinite cylindrical cavity
present in a grounded, conducting half-space is determined using
Green's theorem. An integral equation is derived for the aperture
potential by requiring continuity of the normal component of the
electric field in the opening. This integral equation is solved
formally by expanding the unknown aperture potential in a convenient
series form. Only the leading series coefficient is required to
approximate the electrostatic field in the cavity away from the

opening. Approximate numerical values are given for this leading
coefficient.
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1, INTRODUCTION

In the absence of the cylindrical cavity shown in figure 1(a), an
ambient electrostatic field, Ey, is established along the z-axis. The
presence of the cylindrical cavity alters the ambient charge
distribution on the surface of the conducting half-space giving rise
to a potential distribution in the opening. The reactive field in the
region where z > 0 [region II in fig., 1(b)] and the field in the
cavity [region I in fig. 1(b)] can be calculated from knowledge of the
potential distribution in the opening at z = 0, The essence of the
boundary-value problem, then, is the determination of the electrostatic
potential in the opening.

An electrostatic field, E(T), can be represented as the gradient
of a scalar potential function, 3(r):

E(@) =7 (@) (1)

where the scalar potential function satisfies Laplace's equation in
the absence of free charge. 1In a charge-free region bounded by the
surface S, the scalar potential function within the region can be
obtained from Green's theorem:

e(T) = - ¢ -+(FIV' 6(r,r")].n' 47" (2)
S

where G(r,r') is Green's function, the integration is over the closed
surface S, and fi' is an outward unit normal to S. The Green's _
function is the potential function due to a point charge at T = T'
within S, i.e.:

v2 a(r,r') = =6(r - ") (3)
subject to the boundary condition that
6(r,T') = 0 for T on S. (4)

The procedure for solving this electrostatic boundary-value
problem is analogous to that followed by Latham and Lee! in their
treatment of the corresponding magnetostatic problem. First, the
appropriate Green's functions must be derived for regions I and II.
Next, an integral equation is derived for the electrostatic potential
in the opening by equating the z-components of the electrostatic field
from regions I and II at the opening. Lastly, the resulting integral
equation is solved by assuming a convenient series form for the
unknown potential in the opening.

2. GREEN'S FUNCTIONS

Referring to the cylindrical coordinate system in figure 1(c),
the Green's function in region I satisfies
V2 G (F,T') = -1/p &(z - 2') 8(p = p") 8(¢ ~'¢") (5)
where

G (F,T") = GI(F,F') =0 (6)
p=a p<a
z<0 z=0

1 fatham, R.W., and Iee, K.S.H., "A Study of Some Factors Affecting the Imntericr
Flelds of a Semi-Infinite Pipe Exposed to a Low-Frequency Magnetic Fiela,"
EMP Imteraction Note X, Air Force Weapons Laboretory, Kirtland AFB, New Mexico,
August 1967.
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Figure 1. Semi-infinite cylindrical cavity in a grounded conducting half-gpace.



A Fourier-Bessel series can be constructed to represent the product of
radial and azimuthal Dirac delta functions appearing on the right-hand
side of equation (5):

- % 8Co = p') (¢ = ¢"') = =] A T (u ) cos nls - ¢")

where Bood is the argument which yields the r-ts zero of the n-th
order Bessel function. Multiplying the last result by me(umrp)cos mé,
integrating over ¢ from 0 to 2n and over p from 0 to a, yields
J )
Apr = ’eg nf"nrp ) ) (7)
ra‘(J; (vypeadl

where the prime on the Bessel function in the denominator indicates
differentiation with respect to the argument and

e = 1, n =0
n |2, n=1,2,3...
Consequently, equation (5) can be replaced by

v2 G (T,T') = -6(z - 2z') J A_J (u_plcos n(p =~ ¢') (8)

y5q D nTAr
n=0
where Anr is given in equation (7). Continuing, the Green's function
can also be expahded in a Fourier-Bessel series; for example

GI(F!F') = ZlJn(unrp)cos n(¢ - ¢') £ _(2) (9)
n:O
where fnr(Z) is an unknown function to be determined. Employing
equation (9) in equation (8) leads to
a2g  (z) Y
—azz — " ;‘;nrfnr(z) = -Aan(Z - z'")

which is solvable using conventional methods of ordinary differential
equations.,

(10)

From the boundary conditions that

lim
290 fnr(Z) + 0

and

lim
Zae fnr(z) + 0

the solution of equation (10) becomes
z
_ nr _. it —
f (z) = T sinh u__z £. exp(u__8) &(s z')ds

2nr jo (11)
- == exp(u__2z) sinh u__8 6(s -~ z')ds
(T nr-” o nr

which, for the situation of interest, reduces to



z <z' <0, £,(z) = =(A /u ) exp(u_ z) sinh u_ 2' (12)

Therefore, Green's function in region I is
» ¢ cos n(¢ - ¢')J (u p)J (u ') exp(uhrz)sinh BonZ

6 (F,F") = -] = L z . - (13)
z:% aZmy [J1Cu a)]
The Green's function in region II is a solution of
vZGII(F,F') = =8(x = x")&(y - y")&(z - z') (1)

subject to the boundary condition
r,r") 3 0 (18)

z=0

It is not necessary to solve equation (14) directly since the potential

of a point charge above a grounded conducting plane is well known.,

From image theory, for example, Green's function in region II is

GII(F,F') {[(x -x"N2 + (y -y"2 4+ (z - z')ZJ %
- l}x - x"2 + (y-y")2 4+ (z + z’)z] ’5} (16)

3. THE INTEGRAL EQUATION FOR THE APERTURE POTENTIAL

The potential in region I follows directly from equation (2):
2.(T) = - § o, (T') [V'G (F,F')].a' dF'
8
I
The surface SI is the surface of the semi-infinite cylindrical cavity
but since the lateral portion is a grounded conductor, the surface

integral has a nonzero value oniy over the opening. Noting the
azimuthal symmetry of the problem, then, leads to

a 2w« aG (r,v")
9.(p,2) = - g é oy (p',0) -—-3—1-—— Zt=g P'dp'de’

The potential in region II is made up of an ambient potential, ¢,(¥),
and a reactive potential due to the presence of the cavity:

II(r) = 9g(¥) -~ f OII(r‘) A GII(r T')].atdr!
II

(17)

where _
29(r) = Egz (18)

The surface SII is the grounded conducting plane at z = 0 such that the
integral has a nonzero value, again, only over the opening:

aGII(r ')

a 2=«
QII(p,Z) = Egz + é g OII(p »0) —3z7T |z'=0 P 'dp'de' (19)

Since the potential in the aperture must vanish at p' = a,
OI(p',O) and QII(p',O) must be equal and cannot differ by some constant
value, So, for convenience, we define

e (p",0) = o,.,(p",0) = Eof(p") (20)

10
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Enforcing the requirement that the z-component of the electric field
be continucus in the aperture yields

2 « - L ] ]
f n Ja. £0o1) 2 € Mo, COB n(: T )Jn(unzp)Jn(unrp )
0 0 i:% a w[Jn(unra)]

p'dp'de' (21)

2

T a 1
=1 + g I f(p')
0 2nlp'2 + p2 - 2pp! cos (¢ - ¢')13/2

for p < a which is an integral equation for the aperture potential.
This integral equation can be put in a more convenient form by using

pldp'd¢'

p = ax, and p' = ax' (22)
4 = u__a (23)

and nr nr
o = ¢' - ¢ (24)

Equation (21) now becomes

27-¢ 1 - e cos ne J_(z__x)J (g __x')
[ { £(xty ] 2T oD% - D_DF  x'dx'de  (25)
- 0 r=1 arfdf (g _ )]
n=0 n "nr
2r~¢ 1 1
=1+ | £(x") x'dx'de for 0 < x < 1
-¢ 0 2ra(x'2 + x2 - 2xx' cos 9)3/2

4, FORMAL SOLUTION OF THE INTEGRAL EQUATION

( The first step in solving equation (25) for the aperture potential
is to perform the integrations over 8. The integration over 8
appearing on the left-hand side of equation (25) is trivial:

27-¢ _
£¢ cos né de = 2mcos n¢ 8 g
where & o is a Kroneker delta which is given by

8 = [0y m # U
n0 1, n =0
The integration over & on the right-hand side of equation (25) can be
achieved by noting?
Fo= (P24 22)"% = [ ¥ go(kPyax
0

where the plus (minus} sign in the exponent is for Z < 0-(Z > G). The
last result can be differentiated twice with respect to Z and evaluated
at Z =0 in order to obtain

- - x23,(kP)ak
p3 0

2 -panofeky, W.K.H., and Phillips, M., Classical Electricity and Magnetism, Addison-
Wesley, Reading, Messachusetts, 1962, p. B9.
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where we choose

P= (x2 +# x'2 - 2xx' cos §)1/2
Hence, expanding Jg(kP) via the addition theorem for Bessel functions
and integrating over 6 provides

27=¢ de 1~
— _— z - T j’ szo(kX)Jo(kx')dk
0

1
virdl|
$ (x2 + x'2 - 2xx' cos §)3/2

The integral equation for the aperture potential, equation (25),
becomes

1 @ 5 Jo(5, x)JTo(g x")
27 p(xry X e rax!
20 rz1 Logez )12

1 L]
=1 -3 £ [[ K2TeGo)Tolkxdak ] xTax! (26)
0 0

u

for U < x < 1 wherein

8 = Fop (27)

The following form is assumed for the aperture potential:

f(x') = § CTolzgx"), 0 < x' <1 (28)
s=1

where C_ must be determined from the integral equation. The potential
in the opening given in equation (28) does indeed vanish at the edge
where x' = 1., Next, we employ equation (28) in equation (26), multiply
by xJo(ctx) and integrate over x from 0 to 1 to obtain
: ) m t
é fi fl ot CsJo<CSX')Jo(CtX) ; 8 J0(5,X)To(5 x")
0 0 s=1 r=1 Lrgce2a?

dx'dx

1
/ xJ oz, x) dx
0

1 1 «© o
2
é XJO(CtX){é x'sZ1CSJ°(Csx')[£ k Jo(kx)Jo(kx')dg]dx'} dx

I
pir

which can be written as

C_t
s = s’y 1 1 ‘
Y ‘§1 —_— [é x'J°(ch')J°(;rx')dxi][£ xJo(crx)Jo(ctx)d%l
P IR

RN

xJo(Ctx)dx

1]
OY—

1
plr

- k k .
1 :
Cg [ ;;[é vao(usyv)Jotyv)dy{][é yT0Cuy)doCy)dyfdk (29)

5=1 0

12
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X

where
y = kx and y' = kx! (30)
with

u, = ¢s/k and u

x = Ct/k (31)

t
Several of the required integrations in equation (29) are given
in tables of integrals:

-1
=1 2
é XJQ(;mx)JQ(Snx)dx = [J:)(?n)] Gmn
1 Ji1(g )
_ m
'g xJo(z x)dx = ——cm
k k
JO- VJQ(umV)JO(V)dV = uT-—-I umJl(umk)Jo(k)
m

where m and n are integers and all other parameters are as defined
previously. Using these results for the integrals appearing in
equation (29) and performing some algebraic manipulation yields

4 Ji(z.) C w k2[Jg(k)]?
t t t
[(Ji(g )1 ¢, = - = 2[3,(r. )2 S )

Za U o t Ct a ‘t[l 't] é (;%_kz)z

7 e JiCz_)Ji(z) jw KPL3e ()1 dk (32)
- [4 [ 108 14z

g=1 & 'S 't 8 0 (c% - x2)(g2 - k2)
£t s

Finally, equation (32) can be expressed in a more succinct form
by introducing

D = Cschl(cs)/a (33)
and
- k2[Jg (k)12 Lot ()12
Mg = é PR TeRrE—E dk + — Sqt (34)
t ] S
where 65+t is a Kroneker delta, so that
7 M D = o=y t o= 1,2,3,... (35)
s=1 C%

This infinite system of algebraic equations can be formally stated in
matrix form as

MD=R (36)
where
M = (Mts) tys = 1,2,3,... (37)
D= (Ds) 8,5 £,2,3,... (38)

3 Abramowitz, M,, and Stegun, I., Handbook of Mathematical Functions, Dover, New
York, 1965, pp. L4BL-L8s, )
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and
R = (1/;%) t = 1,2,3,... (39)

If the determinant of the matrix M is nonzero, the formal solution of
the matrix equation, equation (367, is

D=M!R (40)

where E-I is the inverse of the matrix M.

5. SUCCESSIVE APPROXIMATIONS FOR THE FIELD IN THE CAVITY

Only very special matrices of infinite order can be inverted
rigorously. A practical approach that is commonly employed is to
truncate arbitrarily a matrix of infinite order and invert the
truncated matrix numerically or analytically using standard techniques.
Higher-order approximations are achieved by inverting trunctated
matrices of larger orders. Following this approach, the algebraic
system in equation (35) can be approximated by the following finite
system of algebraic equations:

L

om0 s X, v 1,2,...,L (41)
s=1

where D;L) is an approximation to Ds for s = 1,24...,L, L being some

integer greater than or equal to one. Furthermore, the implicit

assumption is made that if

L ' L
;L+1) -‘D; )l << ]D; +1}|

e

|D
then
- plL+1) -
le Dg | “-lpsl
The potential in region I can be gpecified by using the expansion

for the aperture potential, equation (28), in equation (17) and
performing the necessary integrations. The potential in region I is,

thus,
@I(p,z) = Eg er Cr Jo(crp/a) exp(crz/a) (42)
The potential away from the opening can be approximated as

0I(p,z) + EgCyJdo(z1p/a) exp(g;z/a) (43)
z|>a

such that

EZ<0(p,zi I + 8 [-Eq(C1/a)51J1(51p/a) explgyz/a)l
Z1>a

+ éz[Eo(Cl/a);l Jo(g1p/a) exp(riz/a)l (44)

Consequently, only the leading expansion coefficient, C;, is necessary
to adequately approximate the electrostatic field in the cavity away

from the opening.

14
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In order to obtain approximate numerical values for C;, the
integral that appears in the definition of M¢g, equation (34), must be
evaluated. This integral is treated in the appendix of this
memorandum. The following numerical values are readily obtained:

i) < 0.5872a
c{?) < o.6024a (45)
ci® = 0.6070a
where
D;L> = c;L) T T1(z ) /a (46)

6, CONCLUSION

The electrostatic field in the cavity can be calculated more
accurately at any position in the cavity by solving large systems of
algebraic equations., Presumably, any desired degree of accuracy could
be achieved with the aid of a high-speed digital computer. Also, the
electrostatic field in region II can be readily specified from
equation (18). Lastly, the findings of this study should be valid for
time-varying electric fields when the wavelengths of the ambient field
are much greater than the cavity diameter--i.e., in the so-called
quasistatic approximation.

15



APPENDIX

In this appendix the integral appearing in equation (34) is
evaluated for several values of the parameters that appear in its
integrand. This integral is denoted, here; as

. - k23 (k) ] 2
1(Cs,ct) = j .

— dk (A-1)
0 (c% - k2)(c§ - kx2)

Latham and Lee have evaluated the integral denoted by
© x2
x24T (X)T (%)

- dx (A-2)
(x2 - g2)2

I(m,n,ict) =

and found that

T _4q(mn) /2 A\ )
I(m,n,ize) = 7(-1] {pEO T (p+1l) T(ptwtl) T(p+nt+l) [ (ptmtnt+l)

(13/ D™ 2P L o4 (min1) /2] F(2p+m+n+1)}

2o/ D)™™ [t (win) /2+1] T (2qtmintd) ,
I'(q+372) T(qtmt3/2) T(q+n+3/2) r<q+m+n+3/2)} (a-3)

_,%[_1](m+n>/2{ 3
~(min)
q= 2
Now, there is & relationship between the integrals defined in equations
(A-1) and (A-2), viz.
iCza5y) = I(O,o,ict)

such that

102
y yaz 2 3 (i5,/2)°P (p + 1/2) T(2p + 1)
By :.t’ct -E 'C L

¢ p=0 [r(p + 1)]*%
I (2,/2)%% (g + 1) r(2q + 1)
-7 I »d
q=0 [r(q + 3/2)1%

The last result can be simplified by using the identity
o (-1)P r(2p + 1>(z 2p
_7)

[Tp(2)1% = -
p=0 [r(p + 1)]*

and its derivative with respect to z, i.e.

- (_])p T(ZP + ])P (z)zp
- J = E A R
ZJQ(Z) 1(2) 4 o )]k 3

such that

, [T (z)12 ; (i5,./2)%P(p + 1/2) T(2p + 1)
-t Jolz )J1Cg) + =
T 2 p=0 [rip + DI*

since Jo(Ct) = 0., Therefore

i(g,5) = ] B 2P (A-4)

ps0 P

where

186

)



(
.

(-1)P*126P=2 (5 4 1)(p1r*(2p + 1)
B = - —
P n(p + 1/2)%[(2p)1]3

Numerical evaluation of equation (A-4) on a digital computer provides:

(A-5)

_i Ty iz ,zy)
1 2,4048 0.1798
2 5.5201 0.,0853
3 8,6537 0.0556
4 11,7915 0.0356
When ¢, and g  are distinct, equation (A-1) can be written as
i(Cs,Ct) = (;Ti?). [F(Cs) - F(Ct)] (A-6)
t =]
where
w 2 2
F(z ) = | Inl3o G917 (A=7)

0 g2 - Xx?
The function defined in equation (A-7) can be expressed, however, as

g
= - n_qys ' 1 -
F(r ) = -2 é grilel,gldde] (A-8)
and, therefore
- (Cn)2P+2

Hence, numerical evaluation of equation (A-6) on a digital computer
prowides

s t il yzy)
1 2 -0.0108
1 3 -0.0060
2 3 -0.0032
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